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Summary. In recent years, convergence results for multivalued functions have been devel-
oped and used in several areas of applied mathematics: mathematical economics, optimal
control, mechanics, etc. The aim of this note is to give a criterion of almost sure conver-
gence for multivalued asymptotic martingales (amarts). For every separable Banach space
B the fact that every L1-bounded B-valued martingale converges a.s. in norm to an inte-
grable B-valued random variable (r.v.) is equivalent to the Radon–Nikodym property [6].
In this paper we solve the problem of a.s. convergence of multivalued amarts by giving a
topological characterization.

1. Preliminaries. Let XS be the set of all random elements (r.e.) de-
fined on a probability space (Ω,A, P ) with values in a Polish (separable,
complete metric) space (S, %), i.e. XS = {X : Ω → S; X−1(B) ⊂ A}, where
B = BS stands for the σ-field generated by the open subsets of S.

Let P(S) denote the set of all probability measures defined on (S,B).
The Lévy–Prokhorov metric on P(S) is defined as follows:

L(X,Y ) = L(PX , PY ) = inf{ε > 0 : PX(A) < PY (Aε) + ε,

PY (A) < PX(Aε) + ε for all A ∈ B},

where PX is the probability distribution of the r.e. X, Aε = {x : d(x,A) =
infy∈A %(x, y) < ε}, and PX(B) = P [X ∈ B] for B ∈ B.

It is known [1] that the convergence of a sequence of probability measures
in the Lévy–Prokhorov metric and the weak convergence of this sequence
coincide.
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A collection {Pj : j ∈ J} of probability measures is tight if for every
ε > 0 there exists a compact set Kε ⊂ S such that

Pj(Kε) > 1− ε for all j ∈ J.
We shall say that a sequence {Xn : n ≥ 1} of r.e. is tight if the sequence

of their distributions is tight.
By the Prokhorov theorem [1] if a sequence {Xn} of r.e. is convergent in

law to a r.e. X, then the sequence is tight.
We denote by T the collection of all bounded stopping times relative

to the sequence {σ(X1, . . . ,Xn) : n ≥ 1}, where σ(X1, . . . ,Xn) denotes the
smallest σ-algebra with respect to which X1, . . . ,Xn are measurable.

Now we recall some further notation and definitions. A sequence {Xn}
of random elements is randomly convergent in law to a random element X

(Xτ
D→ X) if for each ε > 0 there exists τ0 ∈ T such that L(Xτ ,X) < ε for

every τ ∈ T , τ ≥ τ0 a.s. (see [9]).
A sequence {Xn} is essentially convergent in law to a random element

X (Xn
E.D.−→ X) if for every PX -continuity set A, i.e. PX(∂A) = 0, where ∂A

denotes the boundary of A, we have

P (lim sup
n→∞

[Xn ∈ A]) = P (lim inf
n→∞

[Xn ∈ A]) = P ([X ∈ A]).

A sequence {Xn} of random elements is said to converge almost surely
(with probability 1) to a random element X (Xn

a.s.−→ X) if

P ([ lim
n→∞

%(Xn,X) = 0]) = 1.

It was proved in [9] that Xτ
D→ X iff Xn

E.D.−→ X iff there exists a r.e. X ′

such that Xn
a.s.−→ X ′ and PX = PX′ .

Definition 1. We say that a sequence {Xn} of r.e. is strongly tight if
for every ε > 0 there exists a compact set Kε ⊂ S such that

P
( ∞⋂

n=1

[ω : Xn(ω) ∈ Kε]
)
> 1− ε.

Uniform boundedness of E‖Xn‖ is a necessary condition for almost sure
convergence of real-valued amarts. However this condition is not sufficient in
Banach spaces. It turns out that strong tightness is a necessary and sufficient
condition for almost sure convergence of L1 bounded Banach space valued
amarts [6].

Theorem 1 (see [7]). If Xn
a.s.−→ X, then the sequence {Xn} is strongly

tight.

It is easy to see that this theorem fails in the case of convergence in
probability.
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2. Hausdorff metric. Let (S, %) be a Polish space. By (B(S), %̂) we
denote the metric space of non-empty closed bounded subsets of S equipped
with the Hausdorff metric defined as follows:

%̂(F,F ′) = max{sup
x∈F

d(x, F ′), sup
x′∈F ′

d(x′, F )}, F, F ′ ∈ B(S).

Let C(S) denote the class of compact subsets of S.
The following theorem is known (see [8, Proposition 1.2.5]):

Theorem 2. Let (S, %) be a metric space with the property that every
closed bounded subset of S is compact , and let {Fn} be a sequence in B(S)
such that

⋃∞
n=1 Fn is bounded. Suppose that there exists a dense set D ⊂ S

such that for every x ∈ D the limit limn→∞ d(x, Fn) exists and is finite.
Then {Fn} converges in (B(S), %̂).

Theorem 3. Let L denote a compact subset of (C(S), %̂). Then
⋃
A∈LA

is a compact subset of S.

Proof. Let {xi} be a sequence in
⋃
A∈LA. Without loss of generality,

we can assume that xi ∈ Ai for i = 1, 2, . . . We can extract from {An} a
subsequence {Ank} converging to an A ∈ L. If limk→∞ %̂(Aik , A) = 0 then
there exists a sequence {x′ik} such that x′ik ∈ A and limk→∞ %(x′ik , xik) = 0.
Since A is compact we can extract from {x′ik} a subsequence convergent
to an x ∈ A ∈ L. This implies that every sequence in

⋃
A∈LA contains a

convergent subsequence, which means that
⋃
A∈LA is compact.

3. Multivalued functions. Expectations. In what follows, B will
denote a real separable Banach space with a norm ‖ ‖, and B∗ its dual.

For 1 ≤ p <∞, Lp(Ω;B) denotes the Banach space of measurable func-
tions f : Ω → B such that ‖f‖p = {

�
Ω ‖f(ω)‖p dP}1/p <∞. A multivalued

function F : Ω → 2B with nonempty closed values is called measurable if for
each Borel set D ⊂ B, F−1(D) = {ω ∈ Ω : F (ω) ∩D 6= ∅} ∈ A. Denote by
M (Ω;B) the family of such multivalued functions. By Mc(Ω;B) ⊂M(Ω;B)
we denote the subset of measurable multifunctions with nonempty compact
values. A measurable function f : Ω → B is called a measurable selection
of F if f(ω) ∈ F (ω) for all ω ∈ Ω. For F ∈ M (Ω;B) we define

SpF = {f ∈ Lp(Ω;B) : f(ω) ∈ F (ω) a.s.}.
The following basic theorem concerning the measurability of multivalued

functions is given in [4].

Theorem 4. Let (Ω,A, P ) be a probability space and (S, %) a Polish
metric space. Let F : Ω → 2S be a multifunction with closed values. The
following conditions are equivalent :
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(i) F is measurable.
(ii) For each closed set C ⊂ B, F−1(C) ∈ A.

(iii) For each open set O ⊂ B, F−1(O) ∈ A.
(iv) D(F ) = {ω : F (ω) 6= ∅} ∈ A, and d(x, F (ω)) is a measurable

function of ω ∈ D(F ) for each x ∈ S.
(v) D(F ) ∈ A, and there exists a sequence {fn} of measurable functions

fn : D(F )→ S such that F (ω) = cl{fn(ω) : n ≥ 1} for all ω ∈ D(F ).
(vi) G(F ) = {(ω, x) ∈ Ω ×B : x ∈ F (ω)} is A⊗ BS-measurable.

By [2, Theorem III.2], a multivalued function F : Ω → 2S with compact
values is measurable iff it is measurable as a function from Ω to (C(S), %̂).

By Theorem 3 we have the following

Corollary. Let {Fn} be a strongly tight (in (C(S), %̂)) sequence of mul-
tifunctions defined on Ω with values in C(S). Then every sequence {fn} of
selectors {fn ∈ Fn} is strongly tight (in (S, %)).

Proof. For every ε > 0 there exists a compact set Kε ⊂ S such that

P
( ∞⋂

n=1

[ω : Fn(ω) ∈ Kε]
)
> 1− ε.

If we put A =
⋂∞
n=1[ω : Fn(ω) ∈ Kε] then K =

⋃
ω∈A

⋃∞
n=1 Fn(ω) is a

compact subset of S, and P (
⋂∞
n=1[ω : fn(ω) ∈ K]) > 1− ε.

Theorem 5. Let F be a multifunction such that F (ω) is the set of all
cluster points of a sequence {fn : Ω → S} of r.e. almost surely. If the
sequence {fn} is strongly tight then F is a measurable multifunction.

Proof. By strong tightness of {fn} we have F (ω) 6= ∅ and F (ω) is closed
almost surely. For every x ∈ S we have d(x, F (ω)) = lim infn→∞ %(x, fn(ω)),
and in view of Theorem 4 we see that F is a measurable multifunction.

Theorem 6. Let {fn} be a strongly tight sequence of r.e. with values in
a Polish space S. If the sequence is not a.s. convergent then there exist two
r.e. h1 and h2 such that P ([h1 = h2]) < 1, and h1(ω) and h2(ω) are cluster
points of the sequence {fn(ω)} with probability 1.

Proof. The multifunction F defined in Theorem 5 is measurable and by
Theorem 4 there exists a sequence {gn} such that F (ω) = cl{gn(ω) : n ≥ 1}
a.s. From the sequence {gn(ω)} we can choose two functions h1 and h2 which
are measurable selections of F and P ([h1 = h2]) < 1.

Theorem 7. Let {fn(ω)} be a sequence of r.e. adapted to an increasing
sequence {An} of sub-σ-fields of A, and f be a r.e. such that f(ω) is a
cluster point of the sequence {fn(ω)} with probability 1. Then there exists a
sequence {T 3 τn ≥ n} of stoping times such that fτn

a.s.−→ f as n→∞.
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Proof. The proof is a simple modification of the proof of [7, Lemma
3.1(a)].

4. Convergence. The basic theory of integrals, conditional expecta-
tions and martingales of multifunctions is due to Hiai and Umegaki [5].

We shall deal with multivalued functions in M (Ω;B).
A multifunction F is L1 integrably bounded (F ∈ L1(Ω; B(B))) if

E%̂(0, F ) <∞.
We denote by K(B) the family of all nonempty closed convex bounded

subsets of B, and by KC(B) the family of all nonempty compact convex
subsets of B.

We define two subspaces of L1(Ω; B(B) as follows:

L1
K(Ω;B) = {F ∈ L1(Ω; B(B)) : F (ω) ∈ K(B) a.s.},

L1
KC(Ω;B) = {F ∈ L1(Ω; B(B)) : F (ω) ∈ KC(B) a.s.}.

Definition 2 ([5]). Let F ∈ L1(Ω; B(B)). We call E(F | G) ∈
L1(Ω,G,B(B)) satisfying S1

E(F |G)(G) = cl{E(f | G) : f ∈ S1
F } the multi-

valued conditional expectation of F relative to G. If G is trivial (G = {∅, Ω}),
then E(F | G) is the expectation of F .

Definition 3. Let {Fn} be an integrable family of multifunctions which
is adapted to {Fn}. We call {Fn,Fn} an amart if the net {EFτ , τ ∈ T} is
convergent to some set H,

EFτ → H, τ ∈ T.
An amart {Fn,Fn} is L1 integrable (Fn ∈ L1) if

sup
n≥1

E%̂(0, Fn) <∞.

We will need

Theorem 8 ([4, Theorem 2.7]). Suppose that B is reflexive and
E supn≥1 %̂(0, Fn) < ∞. If F,Fn ∈ L1

KC and the sequence {Fn} converges
almost surely to F then EFn → EF .

Theorem 9. Let B∗ be a separable space and F1, F2 ∈ L1
K. If P [F1 = F2]

< 1 then there exist two functions τ1 and τ2, which are measurable with
respect to the σ-field σ(F1, F2),

τ1(ω) =
{

1 for ω ∈ A,
2 for ω 6∈ A, τ2(ω) =

{
1 for ω ∈ B,
2 for ω 6∈ B, A,B ∈ σ(F1, F2),

and %̂(EFτ1 , EFτ2) > 0.
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Proof. By the assumption P [F1 = F2] < 1 there exists a selection f ∈
F1 such that P [%̂(f, F2) > 0] > 0. By [5, Lemma 4.4] there exists a set
A ∈ σ(F1, F2) such that

�
A f dP 6∈ cl

�
A F2 dP and %̂(

�
A f dP,

�
A F2 dP ) > 0.

For

τ1(ω) =
{

1 for ω ∈ A,
2 for ω 6∈ A, τ2 ≡ 2,

we have
%̂(EFτ1 , EFτ2) ≥ %̂

( �

A

f dP,
�

A

F2 dP
)
> 0.

Theorem 10. Let B be a reflexive separable Banach space. Every
strongly tight amart {L1

KC(Ω;B) 3 Fn,Fn} such that supn≥1E%̂(0, Fn) <∞
converges a.s.

Proof. Assume that this is false. There exist two multifunctions F ′1 and
F ′2 such that for every ω, F ′1(ω) and F ′2(ω) are cluster points of the sequence
{Fn,Fn} and P ([%̂(F ′1, F

′
2) = 0]) < 1. In view of Theorem 9 there exist

multifunctions F ∗1 , F ∗2 such that for every ω, F ∗1 (ω) and F ∗2 (ω) are cluster
points of {Fn,Fn}, P [%̂(F ∗1 , F

∗
2 ) = 0] < 1 and %̂(EF ∗1 , EF

∗
2 ) > 0. Then there

exist two sequences {τn ∈ T} and {σn ∈ T} such that Fτn
a.s.−→ F ∗1 and

Fσn
a.s.−→ F ∗2 , and hence by the definition of amart it follows that EFτn → H

and EFσn → H, which together with Theorem 8 yields EF ∗1 = EF ∗2 = H.
This contradiction ends the proof.
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