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Abstract. The intrinsic differential Galois group is a twisted form of the standard differential
Galois group, defined over the base differential field. We exhibit several constraints for the inverse
problem of differential Galois theory to have a solution in this intrinsic setting, and show by
explicit computations that they are sufficient in a (very) special situation.

1. The intrinsic differential Galois group. Let (K, ∂) be a differential field of
characteristic 0 with algebraically closed constant field C, let DK be the ring of differential
operators K[∂] and let DK be the tannakian category formed by the left DK-modules
M , whose underlying K-vector space V has finite dimension. Fix an object M in DK

(reference to M will often be omitted in the notations).
Let ω be a fiber functor of DK over C (cf. [Br], 1.1.5), and let Gω(M), or Gω for

short, be the quotient of the C-proalgebraic group Aut⊗(ω) cut out by M ; the C-points
of Gω form the usual differential Galois group of the Picard-Vessiot extension L = LM,ω

of K defined by M at ω. By extension of scalars from C to K, we obtain a K-group
GωK := Gω(M)⊗C K. (In [B], these groups were respectively denoted by GC and GK .)

If we replace ω by the the forgetful fiber functor M → V of DK , we obtain instead of
Gω an algebraic group GK(M) = GK over K: the stabilizer in GL(V ) of all the objects
of DK which occur as subquotients in sums of tensor powers involving M and its dual.
This group, first considered in [K1] for arithmetic purposes, can be called the intrinsic
differential Galois group of M (as in [A1]), or the Katz group (as in [P]). When K = C(B)
is the function field of an algebraic variety B (cf. [K1], [A2]), it may also be viewed as the
Galois group based at the generic point of B, and called the generic differential Galois
group of M . (In [B] and [P], it is denoted by G′K .)

We now recall the existence of an algebraic variety PK,ω = PK,ω(M) over K, whose
field of K-rational functions is isomorphic to the Picard-Vessiot extension LM,ω, and
which is, in a compatible way, both a left torsor under GK and a right torsor under
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GωK . In particular, GK and GωK become isomorphic over the algebraic closure K of K:
more precisely, the bitorsor structure on PK,ω shows that GK is an inner K-form of
GωK (cf. [K1], 4.1, [Br], 5.2). Since the connected component of the identity (GK)0 of
GK is defined over K, it too is a K-form of the connected component of the identity
(Gω)0⊗C K = (GωK)0 of GωK , though usually not an inner one anymore (see §3 below for
several examples).

Let ΓK = Gal(K/K) be the absolute Galois group of our base field K, and fix a
K-group G with uninteresting K-structure (for instance, K-split, as is GωK). The iso-
morphism classes of the K-torsors over G (resp. the K-forms of G) are parametrized by
the pointed set H1(ΓK , G(K)) (resp. H1(ΓK , AutK(G))), where AutK(G) denotes the
group of K-automorphisms of G. The classes of inner forms of G lie in the image of
H1(ΓK , G(K)) under its natural (usually not injective) map Int to H1(ΓK , AutK(G)), cf
[Sp], 12.3.7. The knowledge of GK(M) is therefore a priori finer than that of Gω(M), but
less precise than that of PK,ω. One of the problems we raise here is where in between it
really lies: cf. end of §3. Another problem we address is whether each ‘reasonable’ K-form
of a given K-group G takes the shape of a GK(M) for some M : cf. §2, and some explicit
examples in §3. In neither cases do we get definitive answers, and the paper should just
be viewed as a random approach to a better formulation of these problems.

Of course, such questions are of interest only if K is not algebraically closed, and
for a given M ∈ DK , the algebraic closure K ′ := K ′M,ω of K in the Picard-Vessiot
extension LM,ω plays a role in our study. Denoting by ω′ a fiber functor over C extending
ω to DK′ , we recall that L/K ′ is a regular Picard-Vessiot extension, whose standard
differential Galois group is the group of C-points of the connected C-group Gω

′
(M ⊗K

K ′) ' (Gω(M))0, while on the level of intrinsic groups (now over K ′), we have in view
of [K 1], Prop. 4.3,

GK
′
(M ⊗K K ′) = (GK(M))0 ⊗K K ′.

Thus, the (classical) Galois extensionK ′/K has intrinsic Galois groupXK := GK/(GK)0;
this amounts to endowing the finite group Xω := Gω/(Gω)0 ' ΓK/ΓK′ ' Gal(K ′/K)
with the structure of ΓK-group given by conjugation by the elements of ΓK .

Finally, two points on terminology:
• K-split(1) group G: although the intrinsic Galois groups GK(M) come equipped

with a connexion, this expression is here not used in the sense of Pillay’s paper [P] in
these Proceedings, but in the usual sense of algebraic groups over fields of characteristic
0, namely: a K-group is K-split if its connected component of the identity contains a
maximal torus T which is defined over K (there always is one) and whose group of
characters over K generates the K-algebra K[T ]. Any K-group G is split over K, and a
minimal subfield of K over which G is split will be called a minimal splitting field for G.
• constant K-group G: this just means that G is obtained from a C-group by extension

of scalars from C to K (typical example: G = GωK). Since C is algebraically closed, a

(1)i.e. groupe déployé sur K. We shall also encounter split extensions (extensions scindées),
but fortunately no splitting field of a polynomial (corps de décomposition) or of an algebra (corps
neutralisant).
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constant K-group is trivially split over K. A constant finite group X (typical example:
Xω := Gω/(Gω)0) is the finite ΓK-group corresponding to the trivial action of ΓK on X.

2. The intrinsic inverse problem. Let (K, ∂) be a differential field as in §1, let G be
a K-algebraic group, and let R : G→ GL(V ) be a faithful K-rational representation on
a K-vector space V of finite dimension. In [B], I raised the following ‘intrinsic’ version of
the inverse problem of differential Galois theory: given G and R, can one find a structure
of DK-module M on V and a K-isomorphism i : GK(M) → G such that R ◦ i is the
natural inclusion of GK(M) in GL(V )? If it has a positive answer, we say that G is
realizable (see [M-S], 2.3, in the standard case), and that the corresponding solutions M
realize (G,R), or less precisely, G. But this formulation of the problem is too naive. It
immediately follows from the discussion of §1 that

a realizable K-group admits a constant group among its inner K-forms.

The first constraints listed below for a K-group G to be realizable are mere variations on
this theme.

1st constraint: a realizable K-group G must be isoconstant, i.e. isomorphic over K to a
constant group. Indeed, an intrinsic differential Galois group GK(M) is a K-form of the
constant group GωK(M).

Of course, this condition is automatically fulfilled if G is a reductive group (cf. [B]),
but it is a non trivial one if G is unipotent. For instance, on using the correspondence
between unipotent algebraic groups and nilpotent Lie algebras in characteristic 0, the
family of nilpotent Lie algebras given in [Bbk], Ex. 18, §4, yields a counterexample.

2nd constraint: if G is commutative, it must be isomorphic over K to a constant group.
Equivalently, its maximal K-torus must be split over K.

This is clear: a commutative group has only one inner K-form.

3rd constraint: we have just seen that a realizable K-group G which is non split over
K cannot be connected if its connected component of the identity is commutative. In
fact, the same conclusion holds true without the latter assumption as soon as the base
differential field K is of cohomological dimension cd(K) ≤ 1 (cf. [S], II.3), as is the field
of meromorphic functions on a compact Riemann surface B. More precisely:

Proposition 1. Let G be a realizable K-group. Assume that cd(K) ≤ 1, or alterna-
tively that G0 is commutative. Then, the degree over K of one of the minimal splitting
fields for G divides the number [G : G0] of connected components of G⊗K K.

Proof. Let M ∈ DK be a differential equation such that G = GK(M), and let L =
LM,ω be the corresponding Picard-Vessiot extension of K. We shall show that in both
cases under review, the K-group GK = GK(M) is split over the algebraic closure K ′ of
K in L. Therefore, for one (‘the’, in the second case) minimal splitting field F for G,
[F : K] divides [K ′ : K] = [G : G0].

Since the condition on cd(K) is stable under finite extensions, and sinceGK
′
(M⊗KK ′)

' (GK(M))0 ⊗K K ′, we may assume without loss of generality that K ′ = K, i.e. that
GK is connected. In the second case, we are already done. In the first case, we apply



30 D. BERTRAND

Steinberg’s theorem (cf. [S], III.2.3, [M-S], 2.2): all torsors under a connected group over
such a field K are trivial. Choosing a K-rational point on the bitorsor PK,ω now yields
a K-isomorphism between GK and GωK . Thus GK is constant, hence split over K.

Remark 1. Here is a more conceptual proof of Proposition 1. Since ΓK acts trivially
on Xω = Gω/(Gω)0, the elements of H1(K,Xω) identify with certain equivalence classes
in Hom(ΓK , Xω), and we deduce from the exact sequence of pointed sets

{1} = H1(K, (Gω)0)→ H1(K,Gω)→ H1(K,Xω)

that the class of the GωK-torsor PK,ω, hence of the associated inner form of GωK , dies over
a Galois extension of K whose degree divides the order of Xω. In fact, the exact sequence
above gives a bijection β between the pointed sets H1(K,Gω) and H1(K,Xω), cf. [S],
III.2.4, cor. 3, so that a more methodological way to formulate the inverse problem is as
follows (we assume cd(K) ≤ 1). Let G be a C-group, and let X be its group of connected
components. For any ξ ∈ H1(K,X ), let Gξ = Int(ξ′) be the inner form of G⊗CK defined
by the inverse image ξ′ = β−1(ξ) of ξ in H1(K,G). Under which conditions on ξ is Gξ
realizable? In this point of view, the description given in §1 of the K-structure of XK can
be viewed as a constraint on Int(ξ). On denoting centers by Z, and on applying [S], §5,
Prop. 42, the only freedom left to ξ then lies in H1(K,Z(X )), or more precisely, in the
quotient of this group by the image of H1(K,Z(G)).

4th constraint: this does not concern the realizable group G itself, but the differential
equations which realize it (in some faithful representation). We assume that K is the field
of meromorphic functions on a compact Riemann surface B and denote by K̂s the formal
completion of K at a point s ∈ B.

Proposition 2. Let G be a realizable K-group, and let s be a point in B such that
G ⊗K K̂s is not split over K̂s. Then, any M ∈ DK realizing G must have a singularity
at s.

Proof (cf. [K1], 4.1). Otherwise, the torsor PK,ω(M) has a K̂s-rational point (Cauchy’s
theorem), and GK becomes isomorphic to the constant group GωK over K̂s.

Remark 2. When stating an inverse problem, one usually fixes a set of points S on the
base B, and insists that the realization M be smooth away from S . Proposition 2 shows
that the minimal number of singularities needed to solve the intrinsic inverse problem
may be larger than the corresponding one (cf. [M-S]) in the standard case. In fact, S will
now depend on the K-structure of G, and it may be useful to view the differential Galois
groups as group schemes over B \ S, as in [A2].

5th constraint: the last condition I want to list concerns G0. Although it definitely
plays a role (cf. §3, Remark 3), I apologize for stating it vaguely. Suppose that for some
finite extension K ′ of K, G0 ⊗K K ′ has been realized by an object M ′ in DK′ , and that
we know that G can only be realized through the differential equation M over K deduced
from M ′ by restriction of scalars from K ′ to K, i.e. (cf. [K2], 2.7, [A1], II.1.3) that the
C-representation of Gω given by M is necessarily induced from the representation given
by M ′ of its normal subgroup (Gω)0. The following result then provides a condition
on G0.
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Proposition 3. Let K ′ be a finite extension of K, let M ′ ∈ DK′ , and let M =
ResK′/KM

′. Then, GK(M)0 is contained in the K-group ResK′/K(GK
′
(M ′)).

Proof. Since M ′ is a subobject of M⊗KK ′ in DK′ , GK
′
(M ′) is a quotient of GK

′
(M⊗

K ′), and we get aK ′-morphism from (GK(M))0⊗KK ′ toGK
′
(M ′), hence (cf. [Sp], 12.4.2)

a K-morphism ψ : (GK(M))0 → ResK′/KG
K′(M ′). Looking at the corresponding maps

on the usual Galois groups attached to ω, ω′ as in §1, we deduce that ψ is injective. See
also [A1] II.1.3, where the isomorphism in the last formula should be replaced by an
inclusion.

Going back to Remark 1, notice that since AutK(G) acts on the connected component
of the identity G0, the cocycle ξ′ also provides a K-form G0

ξ of G0. This gives another
interpretation of the group (Gξ)0 with which Proposition 3 is concerned. When G0 is
abelian, this form can be directly described through the natural action of X on G0, cf. §3.

We now turn to examples, and check that the simplest possible groups which satisfy
the above conditions can indeed be realized as intrinsic Galois groups.

3. Examples in dimension 1. We limit our description to the C1-field K = C(z),
with ∂ = d/dz = ′, to K-groups G of dimension 1 and to faithful representations R into
GL2(K). We leave the case G0 = Ga to the reader. Then, G0 is a one-dimensional torus
T , i.e. the split torus Gm or the circle group SO(q) attached to a non-degenerate binary
quadratic form q over K. Recall that these anisotropic forms of Gm are parametrized
by H1(K,AutK(Gm)) = H1(K, {±1}) = Hom(ΓK , {±1} = K∗/(K∗)2: to a non square
φ ∈ K∗, one associates the quadratic form q(x, y) = x2−φy2. The minimal splitting field
for T = SO(q) is the quadratic field K(

√
φ).

We further make the simplest possible assumption taking care of the 3rd constraint
simultaneously for all T ’s, namely that X = G/G0 has order 2. The only ΓK-structure X
can be endowed with is then the trivial one. In other words, the K-groups G we consider
are extensions of the constant group X := Z/2Z by the K-torus T . We start by listing
all possible such groups.

Let τ be the homomorphism from G/G0 = Z/2Z to Aut(G0) = {±1} induced by
conjugation. If Im(τ) = {1}, G is commutative, and by the 2nd constraint, T must be
split. In other words, G must be then the constant group Gm × Z/2Z. We know that
any differential system over K with standard Galois group C∗×Z/2Z will realize G, say(
y′1
y′2

)
=
(

1
2z 0
0 1

)(
y1

y2

)
, and (G,R) can easily be realized too. Thus, we assume from

now on that τ is an isomorphism, i.e. that G is not commutative. Notice that when T is
isotropic, this forces the restriction of R to T to be isomorphic to the standard diagonal
representation of Gm into SL2. Since H2({±1},Gm) has two elements, two kinds of
groups may then occur:
• If the extension splits, G is the semi-direct product T ×τ Z/2Z . This is the dihedral

group OT attached to T (i.e. when T = SO(q), the orthogonal group O(q)), and R is
isomorphic to its standard representation.
• Otherwise, G contains only one element of order 2, and is the unique extension NT

of Z/2Z by T which is not a split extension, while R(G) is the normalizer in SL2 of its
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Cartan subgroup R(T ). (If we replace T by a cyclic group of order 4, this would give the
quaternionic group.)

Here, then, are the images under R of the groups G we are concerned with. The first
line indicates the connected component G0 = T of G; the first column gives the possible
split forms G ⊗C K for G, the second one their inner forms. The reason why these inner
forms are precisely parametrized by the (outer) forms of G0 ⊗C K on the first line, i.e.
by φ ∈ K∗/(K∗)2, was hinted at after Proposition 3: the hypothesis made on τ gives
an identification of Z/2Z = G/G0 with {±1} = Aut(G0), which is compatible with the
natural maps H1(K,G) → H1(K,AutK(G0)) (given by inner automorphisms of G) and
β : H1(K,G)→ H1(K,G/G0) (as in Remark 1).

Gm=

{(
x 0
0 y

)
,xy=1

}
; SO(q)=

{(
x φy

y x

)
,x2−φy2 =1

}

———————–

NGm=

{(
x 0
0 y

)
,

(
0 x

−y 0

)
,xy=1

}
; NSO(q)=

{(
x φy

y x

)
, i

(
x φy

−y −x

)
,x2−φy2 =1

}

OGm=

{(
x 0
0 y

)
,

(
0 x

y 0

)
,xy=1

}
; O(q)=

{(
x φy

y x

)
,

(
x φy

−y −x

)
,x2−φy2 =1

}
.

Realizing O(q): let φ, with ord∞φ ∈ {−1, 0}, be a non square element of K∗, so that
d := 1

2
φ′

φ is not a logarithmic derivative in K∗, and let M be the DK-module structure
on V = Ke1 ⊕Ke2 given by:

∂e1 =
1
φ
e2 ; ∂e2 = −e1 +

1
2
φ′

φ
e2.

In other words, we are considering the differential equation y′′ + 1
2
φ′

φ y
′ + 1

φy = 0. Let us
show that its intrinsic Galois group GK = GK(M) is O(q), for some quadratic form q

associated to φ. We recall that GK(M) is the stabilizer of all the objects of the full tensor
category generated by M in DK :

(i) Since the wronskian equation w′ + dw = 0 is not trivial, but its symmetric square
is, GK is not connected and its intersection with SL2 has index 2 in GK .

(ii) The K-line generated by the tensor Q = φe2
1 + e2

2 in Sym2(V ) is stable under ∂.
Indeed,

∂Q = φ′e2
1 + 2φe1∂e1 + 2e2∂e2 = φ′e2

1 +
φ′

φ
e2

2 =
φ′

φ
Q.

(In fact, 1
φQ is an horizontal tensor.) Therefore, GK is contained in GmO(q), where

q = φu2 + v2 denotes a quadratic form in the class of x2 − φy2. In view of (i), GK must
then be contained in O(q), but not in SO(q).

(iii) GK is not finite, say because M has an irregular singularity at ∞. Hence, GK

has dimension at least 1, and in view of (ii), must coincide with O(q).

The main point in this proof is that in (ii), the tensor Q is not pure, yielding a non-split
form of the dihedral group OGm. Of course, the standard differential Galois group Gω

then has no choice but to coincide with the group OGm over C. For instance, if φ = z,
a basis of solutions of the differential equation is given by {e2i

√
z, e−2i

√
z}, and it is easy

to check directly that Aut∂(K < e2i
√
z > /K) = C∗ ×τ Z/2Z.
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Realizing NSO(q): this group can be realized by the tensor product of the previous
DK-module M with the rank one equation (Λ2M)−1/2, i.e. restricting for simplicity to
the case φ = z, by the differential equation with basis of solutions z−1/4e±2i

√
z. Let us

give another realization, involving only regular singularities. Let M be the DK-module
structure on V = Ke1 ⊕Ke2 given by:

∂e1 =
1
4z
e1 −

1
z − 1

e2 ; ∂e2 =
1

z(z − 1)
e1 −

1
4z
e2.

In other words, we are considering the differential system
(
y′1
y′2

)
=
(− 1

4z − 1
z(z−1)

1
z−1

1
4z

)(
y1

y2

)
.

Let us show that its intrinsic Galois group GK = GK(M) is NSO(q), with q in the class
of x2 − zy2:

(i) The wronskian is now trivial, so that GK lies in SL2.
(ii) The K-line generated by the tensor Q = e2

1 + ze2
2 in Sym2(V ) is stable under ∂.

Indeed,

∂Q = 2
(

1
4z
e2

1 −
1

z − 1
e1e2

)
+ e2

2 + 2z
(

1
z(z − 1)

e1e2 −
1
4z
e2

2

)
=

1
2z

(e2
1 + ze2

2).

Therefore, GK is contained in GmO(q), and in view of (i), in GmO(q)∩SL2 = NSO(q).
(This reflects the existence a horizontal tensor on this line, namely 1√

z
Q, once the scalars

have been extended to the splitting field for SO(q).)
(iii) Here, M is fuchsian. But the local monodromy around 1 has infinite order, so GK

has dimension at least 1, while the local monodromies around 0 and ∞ have finite order.
Therefore, GK is not commutative, hence cannot lie in SO(q), and in view of (ii), must
coincide with NSO(q). (In particular, the standard Galois group Gω of M is NGm.)

Not realizing OGm, nor NGm, through R: as already pointed out, the restric-
tion of the representation R to the connected component G0 of such a group G is the
direct sum of a character of Gm and of its inverse, while R(G) permutes the corre-
sponding lines. So, if M realizes (G,R), there exists a quadratic extension K ′/K with
Galois group Gω(M)/(Gω(M))0 such that M ⊗K K ′ is a direct sum of two dual (and
non trivial) objects M ′, M ′′ of rank 1 in DK′ . These spaces cannot be defined over K,
since G stabilizes no K-line. They are therefore conjugate under Gal(K ′/K), and their
product in Sym2M is an object S of DK , which contains no non-zero pure K-tensor.
Not being isotropic, the stabilizer of S cannot contain R(G), which is therefore not
realizable.

Remark 3. Here is a tentative argument to discard these split groups from the
list of ‘reasonable’ K-groups in the intrinsic inverse problem: since M ′ and M ′′ are not
isomorphic overK ′, we deduce from [K2], 2.7.4, thatM is induced fromM ′, i.e. isomorphic
to ResK′/KM ′. By Proposition 3 of §2, G0 should then be contained in ResK′/KGm/K′ ,
but not in the K-split subgroup Gm/K given by the homotheties (again because M⊗KK ′
is not isotypical). By [Sp], 12.4.7.(2), G0 must then be isomorphic to the non split K-form
of Gm/K corresponding to the quadratic extension K ′/K, and G cannot be realized. In
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spite of its incomplete formulation, one can thus consider that OGm and NGm violate
the last constraint of §2, and do not provide a negative answer to the intrinsic inverse
problem.

In conclusion, we point out that although we have yet to meet a group admitting
both split and non split realizations(2), the above examples do show that GK(M) is a
sharper invariant than Gω(M) in the classification of differential equations: let just φ run
through K∗/(K∗)2. Of course, such possibilities do not occur over base fields of the type
K = C((z)), so that in general, higher dimensional examples will be needed to shed light
on the link between the finite group Gal(K ′/K), and the K-structures of GK and (GK)0.

Acknowledgements. I thank Z. Hajto and T. Crespo for allowing a discrepancy
between the titles of my talk(3) and paper (and for the very nice atmosphere of the
Będlewo conference), F. Ulmer for having offered me the opportunity to present the above
examples at a Rennes, 1996, conference, M. Singer and A. Pillay for their insistence on
my writing them down, and Y. André and J. Oesterlé for several enclearing discussions
on these topics.

Added in proof. In the style of §2, Remark 1, here is a cohomological explanation
for the non-realizability of the split groups G = OGm, G = NGm of §3 as intrinsic Galois
groups (and more precisely, for the non occurence of Gm/K as their connected component
of the identity). Recall the bijection

β : H1(K,G)→ H1(K,G/G0).

Since the group G0 = Gm is its own centralizer in both G’s, a cocycle ξ′ ∈ H1(K,G),
mapping in H1(K,Aut(G0)) to the class of its trivial outer form, must come from the
trivial class β(ξ′) = ξ ∈ H1(K,G/G0) = H1(K,S2); but the rank 2 K-algebra which
such a ξ parametrizes is not a field, and can therefore not be realized as an intermediate
Picard-Vessiot extension K ′/K.

More generally, letK be a differential field with cd(K) ≤ 1, let X be a finite quotient of
its absolute Galois group ΓK , and let G be a C-group with group of connected components
G/G0 ' X . Then, the constant form G = G⊗CK of G is realizable if and only if the center
Z(G) of G maps onto the (necessarily abelian) group X—in which case no other K-form
of G will be realizable—while the constant form G0 ⊗ K of G0 occurs in a realizable
K-form of G if and only if the centralizer of G0 in G maps onto X .
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