FINITE-DIMENSIONAL DIFFERENTIAL ALGEBRAIC GROUPS AND THE PICARD-VESSIOT THEORY

ANAND PILLAY

Department of Mathematics, University of Illinois at Urbana-Champaign Altgeld Hall, 1409 W. Green St., Urbana, IL 61801, U.S.A. E-mail: pillay@math.uiuc.edu

and

Institut für Mathematik, Humboldt Universität, D-10099 Berlin, Germany

Abstract. We make some observations relating the theory of finite-dimensional differential algebraic groups (the ∂_0 -groups of [2]) to the Galois theory of linear differential equations. Given a differential field (K, ∂) , we exhibit a surjective functor from (absolutely) split (in the sense of Buium) ∂_0 -groups G over K to Picard-Vessiot extensions L of K, such that G is K-split iff L = K. In fact we give a generalization to "K-good" ∂_0 -groups. We also point out that the "Katz group" (a certain linear algebraic group over K) associated to the linear differential equation $\partial Y = AY$ over K, when equipped with its natural connection $\partial - [A, -]$, is K-split just if it is commutative.

1. Introduction. Let (K, ∂) be a differential field of characteristic 0 with algebraically closed field k of constants. Let

 $(*) \qquad \qquad \partial Y = AY$

be a linear differential equation over K. That is, Y is an n by 1 column vector of indeterminates and A is a n by n matrix over K. Let (L, ∂) be a Picard-Vessiot extension for (*). The differential Galois group $Aut_{\partial}(L/K)$ is well-known to have the structure of an algebraic subgroup of GL(n, k), so the group of k-points of some linear algebraic group G_k over k. On the other hand, another group G'_K , a linear algebraic subgroup now over K, was defined in [5] via the Tannakian point of view. The current paper was in part motivated by an informal question of Daniel Bertrand regarding the *differential algebraic* meaning of G'_K . In fact the Tannakian theory already equips G'_K with a "connection" $\nabla : \partial - [A, -]$, giving it the structure of a ∂_0 -group over K (see section 2 for the definitions). The group of L-points (or even \hat{K} -points for \hat{K} a differential closure of K) of this

²⁰⁰⁰ Mathematics Subject Classification: Primary 12H05; Secondary 34M60.

Partially supported by an NSF grant and a Humboldt Foundation Research Award.

The paper is in final form and no version of it will be published elsewhere.

 ∂_0 -group (G'_K, ∇) (see Definition 2.4) acts on the solution space of (*) in L and should be viewed as the real "intrinsic" differential Galois group of (*). (G'_K, ∇) is isomorphic over L to G_k equipped with the trivial connection, so is (absolutely) split in the sense of Buium [2]. We will point out that (G'_K, ∇) is K-split (that is, isomorphic over K to an algebraic group over k equipped with the trivial connection) just if G'_K is commutative. In particular $((G'_K)^0, \nabla)$ is K^{alg} -split iff $(G'_K)^0$ is commutative.

On the other hand we will point out that any ∂_0 -group (G, ∇) which is defined over K and absolutely split, gives rise in a natural way to a Picard-Vessiot extension L of K: essentially L will be generated over K by a canonical parameter for an isomorphism of (G, ∇) with an algebraic group over k equipped with the trivial connection. Moreover any Picard-Vessiot extension of K arises in this way: given the equation (*) above, a fundamental matrix U of solutions of (*) will be a canonical parameter for an isomorphism between $(G_a^n, \partial - A)$ and G_a^n equipped with the trivial connection.

The observations in this paper are not too difficult. In fact the paper should be seen as an introduction to the Kolchin-Cassidy-Buium (and model-theoretic) theory of ∂_0 -groups, for those familiar with the Picard-Vessiot theory (Galois theory of linear differential equations). Concerning the general theory of ∂_0 -groups our only innovation is to bring into the picture rationality issues, the notion of being split *over* K, where K is an arbitrary (not necessarily differentially closed) differential field.

The rest of the paper is devoted to filling in the details of the above observations. At some point in section 3 some model-theoretic notation is used. The reader is referred to [11] for explanations.

I would like to thank Daniel Bertrand for his original questions, his interest in the answers, as well as for his beautifully concise and informative review [1] of Magid's excellent book "Lectures on differential Galois theory". Thanks also to Wai-Yan Pong for several helpful discussions.

2. ∂_0 -groups. The differential algebraic groups (of Kolchin [7]) are essentially just the group objects in Kolchin's category of differential algebraic varieties. From the modeltheoretic point of view they are definable groups in a differentially closed field (see [11]). Such a group is said to be "finite-dimensional" if the differential function field of its connected component has finite transcendence degree (over the universal domain say). Finite-dimensional differential algebraic groups were exhaustively studied by Buium [2].

It will be convenient to introduce finite-dimensional differential algebraic groups (∂_0 -groups) via a different formalism, that of Buium's "algebraic *D*-groups": a ∂_0 -group will be an algebraic group equipped with what I will loosely refer to as a "connection". Let (K, ∂) be a differential field (of characteristic 0), with field $C_K = k$ of constants.

DEFINITION 2.1. A ∂_0 -group over K is a pair (G, ∇) where G is an algebraic group over K and ∇ is an extension of ∂ to a derivation of the structure sheaf $O_K(G)$ of G, commuting with co-multiplication. A homomorphism (over K) between (G_1, ∇_1) and (G_2, ∇_2) is the obvious thing (a K-homomorphism f of algebraic groups such that the corresponding map f^* between structure sheaves respects the respective derivations). Rather quickly we will replace the derivation ∇ by a more accessible object. Given an algebraic group G over K, T(G) will denote the tangent bundle of G, another algebraic group over K. $\tau(G)$ is a twisted version of T(G) taking into account the derivation ∂ of K: working locally, if G is defined by polynomial equations $P_j(X_1, \ldots, X_n) = 0$, then $\tau(G)$ is defined by the equations $\sum_{i=1}^n \partial P_j / \partial X_i(X_1, \ldots, X_n) Y_i + P_j^{\partial}(X_1, \ldots, X_n) = 0$, where P^{∂} is the result of applying ∂ to the coefficients of P. $\tau(G)$ has naturally the structure of an algebraic group over K with a surjective homomomorphism π to G (see [8]). If G is defined over k (the constants of K) then $\tau(G)$ identifies with T(G) and π is as usual. A K-rational homomorphism f from G_1 to G_2 yields a K-rational homomorphism $\tau(f) : \tau(G_1) \to \tau(G_2)$ commuting with π .

REMARK 2.2. If G is an algebraic group over K, then a ∂_0 -group structure on G (that is, a derivation ∇ as in Definition 2.1) is equivalent to a K-rational homomorphic section $s: G \to \tau(G)$ of $\pi: \tau(G) \to G$.

Proof. This is immediate: given a point a of G, ∇ determines a derivation of the local ring at a, yielding a point s(a) in the fibre $\tau(G)_a$. ∇ commuting with co-multiplication is equivalent to s being a homomorphism.

Thus a ∂_0 -group over K can be identified with a pair (G, s) where G is an algebraic group over K and the "connection" $s: G \to \tau(G)$ is a K-rational homomorphic section of π . A K-homomorphism f between such (G_1, s_1) and (G_2, s_2) is then a K-rational homomorphism f of algebraic groups such that $\tau(f).s_1 = s_2.f$. If G happens to be defined over the constants k of K then as mentioned above $\tau(G) = T(G)$, and we have at our disposal the "trivial connection" s_0 , namely s_0 is the 0-section of T(G).

DEFINITION 2.3. Let (G, s) be a ∂_0 -group over K. We say that (G, s) is K-split if it is isomorphic over K to some (G_0, s_0) where G_0 is defined over k and s_0 is the trivial connection.

Note that if X is a variety defined over K and $a \in X(\mathcal{U})$ is a \mathcal{U} -rational point of X then the expression $\partial(a)$ makes sense: working in an affine neighbourhood of a, defined over K, just apply ∂ to the coordinates of a. Moreover $\partial(a)$ is in $\tau(X)_a$.

DEFINITION 2.4. Let (G, s) be a ∂_0 -group over K. Let (L, ∂) be a differential field extension of K. The group (G, s)(L) of L-rational points of (G, s) is $\{g \in G(L) : \partial(g) = s(g)\}$.

Let (\mathcal{U}, ∂) be a universal domain, that is, a differentially closed field containing K, of cardinality $\kappa >$ the cardinality of K, with the following properties: (i) any isomorphism between small (of cardinality $< \kappa$) differential subfields of \mathcal{U} extends to a (differential) automorphism of \mathcal{U} , and (ii) if $K_1 < K_2$ are small differential fields then any embedding of K_1 in \mathcal{U} extends to an embedding of K_2 in \mathcal{U} .

If (G, s) is a ∂_0 -group over K, then $(G, s)(\mathcal{U})$, the set of points of (G, s) in \mathcal{U} , is a finite-dimensional differential algebraic group, defined over K, in the sense of Kolchin. Moreover any finite-dimensional differential algebraic group arises in this way (see [2]). We will often identify (G, s) with its group of \mathcal{U} points, or sometimes with its group of \hat{K} -points where \hat{K} is a differential closure of K. Also any ∂_0 -group over K can naturally be also considered as a ∂_0 -group over \mathcal{U} (or over any differential field extending K). DEFINITION 2.5. The ∂_0 -group (G, s) over K is said to be (absolutely) split if it is \mathcal{U} -split, equivalently if it is L-split for some differential field L > K.

Note that (G, s) (over K) is absolutely split iff it is \hat{K} -split. In [2], Buium begins (and almost completes) the classification of (connected) ∂_0 -groups over \mathcal{U} : the issue being to first determine which (connected) algebraic groups G over \mathcal{U} have some "D-group" structure, that is, can be equipped with a suitable s, and secondly, to note that the space of D-group structures on G is, if nonempty, a principal homogeneous space for the set of rational homomorphic sections of the tangent bundle of G. It would be of interest to try to classify the ∂_0 -groups over a given (say algebraically closed) differential field K, up to K-isomorphism, although possibly this is already implicit in Buium's work. In any case, one of the points of the current paper is that split but non-K-split ∂_0 -groups over Kare closely bound up with Picard-Vessiot extensions of K. This will be discussed in the next section. For the rest of this section I will give some examples and elementary facts about D-group structures on commutative algebraic groups over the constants, working over \mathcal{U} . C denotes the field of constants of \mathcal{U} . Note first that for such G any section $s : G \to T(G)$ can be identified with a homomorphism from G into its Lie algebra. (Canonically $T(G) = L(G) \times G$, so s = (f, id) for a unique $f : G \to L(G)$.)

EXAMPLE 2.6 (*D*-group structures on commutative unipotent groups). Let $G = G_a^n$. A rational homomorphism from G to L(G) is precisely a linear map from G to itself. Thus each *D*-group structure on G has the form (G, s_A) for some n by n matrix A over \mathcal{U} , where s_A is left matrix multiplication by A. Each such ∂_0 -group is split (over \mathcal{U}): The set of \mathcal{U} -points of (G, s_A) is an n-dimensional vector space over C. Let b_1, \ldots, b_n (thought of as column vectors) be a C-basis. Matrix multiplication by (b_1, \ldots, b_n) yields an isomorphism between (G, s_0) and (G, s_A) . This isomorphism need not be defined over the differential field generated by the coordinates of A.

EXAMPLE 2.7 (*D*-group structures on semiabelian varieties over the constants). Let A be a semiabelian variety over C. As above, *D*-group structures s on A are given by rational homomorphisms from A to the Lie algebra of A, of which there is only one, the 0 map. So the 0-section is the unique *D*-group structure on A.

EXAMPLE 2.8 (*D*-group structures on commutative algebraic groups over the constants). Let *G* be a connected commutative algebraic group defined over *C*. We will prove a special and easy case of a result from [2]: Let (G, s) be a *D*-group structure (over \mathcal{U}) on *G*. Then (G, s) is split if and only if the unipotent radical *U* of *G* (which note is also defined over *C*) is a *D*-subgroup of *G* (that is, s(U) is contained in L(U)). Right to left is clear. Suppose now that *s* takes *U* into L(U).

CLAIM. s(G) = s(U).

Proof. Otherwise s induces a nonconstant homomorphism from the semiabelian variety G/U into L(G)/L(U) which is impossible.

Let H < G be the kernel of s. Using Example 2.6 we can write U as a direct sum of $H \cap U$ and a D-subgroup U_1 of U. By the claim G is the direct sum of H and U_1 . As U_1 is split (by Example 2.6), G is split.

EXAMPLE 2.9 (A nonsplit *D*-group structure on $G_m \times G_a$.). Let $G = G_m \times G_a$. $T(G) = \tau(G)$ consists of the set of (x, y, u, v) where $x \neq 0$, and has group structure given by: $(x_1, y_1, u_1, v_1) \cdot (x_2, y_2, u_2, v_2) = (x_1 x_2, y_1 + y_2, u_1 x_2 + u_2 x_1, v_1 + v_2)$. $\pi : T(G) \to G$ is projection on the first two coordinates. Let $s : G \to T(G)$ be: s(x, y) = (x, y, xy, 0). Then s is a section of π as well as being a homomorphism. $(G, s)(\mathcal{U})$ $= \{(x, y) \in G : \partial x = xy, \partial y = 0\}$, which is isomorphic to the differential algebraic subgroup $\{x \in G_m : \partial(\partial x/x) = 0\}$ of G_m .

Rather deeper results concern D-group structures on algebraic groups which cannot be defined over the constants. For example, an abelian variety A over \mathcal{U} which is not isomorphic to an abelian variety over C has no D-group structure. A will nevertheless have finite-dimensional differential algebraic subgroups (defined by differential equations of order > 1) which correspond to D-group structures on extensions of A by unipotent groups. (See [2] and [8].) Such examples will not concern us too much in this paper. Moreover, the further away from the constants an algebraic group G is, the more rigid will be the space of D-group structures on G.

3. Relations with the Picard-Vessiot theory. We will take as our basic reference Bertrand's review [1]. Recall the basic set-up: K is a differential field (considered as a small subfield of \mathcal{U}) with algebraically closed field k of constants.

$$(*) \qquad \qquad \partial Y = AY$$

is a linear ODE over K. V^{∂} denotes the solution space of (*) in \mathcal{U} , an *n*-dimensional vector space over C (the constants of \mathcal{U}). $V^{\partial}(\hat{K})$ denotes the vectors in V^{∂} whose coordinates are in \hat{K} . $V^{\partial}(\hat{K})$ is an *n*-dimensional vector space over k. The Picard-Vessiot extension L/K for (*) is the (differential) field generated over K by the coordinates of elements of $V^{\partial}(\hat{K})$. (As \hat{K} has the same constants as K, L has the same constants as K.) Let us fix a fundamental solution matrix U for (*), namely the columns of U form a basis for $V^{\partial}(\hat{K})$ over k (and so also for V^{∂} over C). Via U we obtain an isomorphism ρ_U between $Aut_{\partial}(L/K)$ and an (algebraic) subgroup of GL(n,k): $\sigma(U) = U\rho_U(\sigma)$. Write this subgroup as $G_k(k)$, the group of k-rational points of a linear algebraic group G_k over k. Note that $G_k(k)$ is precisely the set of \hat{K} -points of the ∂_0 -group (G_k, s_0) where s_0 is the trivial connection.

In [5], a somewhat different definition of the Galois group of (*) was given, but now as an algebraic group G'_K over K. This was defined via the Tannakian theory. The usual notion of a connection on a vector space over the differential field (K, ∂) is an additive endomorphism $D: V \to V$ such that for any $\lambda \in K$, and $v \in V$, $D(\lambda v) = \partial(\lambda)v + \lambda D(v)$. Let $V = K^n$. From the equation (*) we obtain a connection $D_V: \partial - A$ on V. D_V induces, on each K-vector space E constructed from V by iterating direct sums, tensor products, and duals, a connection D_E . GL(n, K) acts on each of these vector spaces, and G'_K is defined to be $\{g \in GL(n, K) : g(W) = W$, for every K-subpace W of any construction E over V for which $D_E(W) \subseteq W\}$.

Note that GL(n, K) acts on itself and thus on its own coordinate ring R over K. As remarked in [1], G'_K is precisely the stabilizer of the ideal $I \subset R$ consisting of polynomials

which vanish on the fundamental matrix U of solutions of (*). (And this does not depend on the choice of U.) In any case we obtain an algebraic group over K, and one can ask in what sense G'_K is the Galois group of (*). Note that $G'_K \subseteq End(V) = V \otimes V^*$ and the latter K-vector space, itself a construction over V, is equipped with the connection $D_{End(V)}$: $\partial - [A, -]$ (that is, for $X \in End(V), D_{End(V)}(X) = \partial X - [A, X]$). (This connection is also implicit in [3]). In any case this connection equips G'_K with the structure of a ∂_0 -group (G'_K , s) where s(g) = [A, g]. It is this ∂_0 -group (or rather its group of \hat{K} points), which should be considered as the canonical (or intrinsic) Galois group of (*). At this point we make use of model-theoretic/differential algebraic language. Working in $\mathcal{U}, tp(-/K)$ means type over K in the sense of differential fields, and $tp_f(-/K)$ means type over K in the sense of fields. Let $G_1 = (G'_K, s)(\mathcal{U})$.

REMARK 3.1. $G_1 = \{g \in GL(n, \mathcal{U}) : \partial g = [A, g] \text{ and for any } U_1 \in GL(n, \mathcal{U}) \text{ real-ising } tp_f(U/K) \text{ and independent (in the sense of fields) from g over } K, tp_f(gU_1/K) = tp_f(U_1/K)\}.$

Proof. Clear.

LEMMA 3.2. G_1 acts faithfully (by left matrix multiplication) on V^{∂} . Moreover this action is precisely the group of permutations of V^{∂} induced by automorphisms of the differential field \mathcal{U} which fix $K \cup C$ pointwise.

Proof. We start with

CLAIM. Let $g \in GL(n, \mathcal{U})$. Then $g \in G_1$ if and only if $tp(gU/K \cup C) = tp(U/K \cup C)$.

Proof. Note first that tp(U/K) = r(x) say is determined by (i) $tp_f(U/K) = r_f(x)$, and (ii) $\partial x = Ax$. Note also that r(x) has a unique extension to a complete type r'(x) say, over $K \cup C$ (otherwise there would be new constants in L = K(U), which there are not).

Suppose first that tp(gU/K) = r. Let U_1 realise r independently from g over K in the sense of differential fields. As U and U_1 are bases for V^{∂} over C, $U_1 = UB$ for some $B \in GL(n, C)$. Now U, gU and U_1 each realise r' (over $K \cup C$). It follows that $gU_1 = g(UB) = (gU)(B)$ also realizes r', in particular r. As U_1 is independent from g over K in the sense of fields, and (as $\partial(U_1) = AU_1$ and $\partial(gU_1) = A(gU_1)$) $\partial(g) = [A, g]$, we see from Remark 3.1 that $g \in G_1$.

The other direction of the Claim follows by reversing the argument.

The claim gives us a bijection between the set of permutations σ of V^{∂} induced by $Aut_{\partial}(\mathcal{U}/K \cup C)$ and $G_1: \sigma$ goes to g where $\sigma(U) = gU$. In fact the action of σ on V^{∂} is identical to the action of g by left matrix multiplication: if $v \in V^{\partial}$ (a column vector), then v = Uc for some column vector of constants, and $\sigma(v) = \sigma(Uc) = \sigma(U)c = (gU)c = g(Uc) = gv$). The map (σ to g) is clearly a group isomorphism.

COROLLARY 3.3. $G_1(\hat{K})$ (= $(G'_K, s)(\hat{K})$) acts on $V^{\partial}(\hat{K})$ (by left matrix multiplication) inducing an isomorphism with $Aut_{\partial}(L/K)$.

Proof. The first part is immediate from the lemma, using the fact that \hat{K} is homogeneous over K in the model-theoretic sense. As L is generated over K by the points of $V^{\partial}(\hat{K})$ the second part also follows. REMARK 3.4. G_1 as above is also the intrinsic definable automorphism group of V^{∂} over C in the model-theoretic sense.

Explanation. If P and Q are \emptyset -definable sets in a saturated model M of a stable theory and P is Q-internal, then the group (G, P) of permutations of P induced by automorphisms of M which fix Q pointwise, is isomorphic to some definable (in M) group action on P. This is due in full generality to Hrushovski [4], and an exposition appears in chapter 7 of [10]. The Picard-Vessiot theory is a special case, as (working over K), V^{∂} is C-internal. (In fact Poizat [12] was the first to give a model-theoretic explication of the Picard-Vessiot theory and Kolchin's more general strongly normal theory.) However, even in the general model-theoretic context, there are various incarnations of the definable automorphism group and its action on P: the intrinsic case is where G and its action are \emptyset -definable and G lives in P^{eq} . The other case depends on the choice of a "fundamental set of solutions" u from P: G lives in Q^{eq} , is defined over the canonical base of tp(u/Q) and in general requires the parameter u to define its action on P. In any case, transplanted to the Picard-Vessiot situation, it is $(G_{K'}, s)$ which is the intrinsic group, and (G_k, s_0) $(s_0$ being the trivial connection) which is the non-canonical group.

Note that the ∂_0 -group (G'_K, s) (where s(-) = [A, -]) is L-split. It is isomorphic to (G_k, s_0) by the map ρ_U : $gU = U\rho_U(g)$. Note also that we obtain easily a simple definition of G_k as an algebraic group over k: Let U_1, \ldots, U_s realize the distinct nonforking extensions of tp(U/K) over K(U). Let $U_i = UB_i$ for $B_i \in GL(n, C)$. Let $p_i = tp_f(B_i/k)$. Then G_k is precisely the stabilizer of $\{p_1, \ldots, p_s\}$ in GL(n).

Note that the set X of realizations of tp(U/K) is a left principal homogeneous space for $G_1 (= (G'_K, s)(\mathcal{U}))$, and a right principal homogeneous space for $G_2 = G_k(C)$ (= $(G_k, s_0)(\mathcal{U})$) (and likewise working with \hat{K} -rational points), where the actions commute (g(xh) = (gx)h for $g \in G_1, x \in X, h \in G_2$). That is, X is a (differential algebraic) bi-torsor for (G_1, G_2) defined over K. It follows that G_1 is isomorphic over K to G_2 just if G_1 (so also G_2) is commutative. This kind of thing (in the general model-theoretic framework of definable automorphism groups) was already observed in passing in [4]. In any case we will give some details.

Let us start with a general lemma:

LEMMA 3.5. Let (H_1, X, H_2) be an abstract bi-torsor. That is, X is an (abstract) left principal homogeneous space for the (abstract) group H_1 , an (abstract) right principal homogeneous space for the (abstract) group H_2 and the left and right actions commute. For $x \in X$, let ρ_x be the isomorphism between H_1 and H_2 defined by $hx = x\rho_x(h)$. Let $h \in H_1$. The following are equivalent:

- (i) h is in the centre of H_1 .
- (ii) for all $x \in X$, $\rho_x = \rho_{hx}$.
- (iii) for some $x \in X$, $\rho_x = \rho_{hx}$.

Proof. (i) implies (ii). Assume $h \in Z(H_1)$. Let $g \in H_1$ and $x \in X$. Then $ghx = x\rho_x(g)\rho_x(h)$ and $hgx = x\rho_x(h)\rho(g)$. But also $ghx = (hx)\rho_{hx}(g) = x\rho_x(h)\rho_{hx}(g)$. So as gh = hg we see that $\rho_{hx}(g) = \rho_x(g)$. As $g \in H_1$ was arbitrary, we see that $\rho_{hx} = \rho_x$.

(ii) implies (iii) is immediate.

(iii) implies (i) follows by reversing the proof of (i) implies (ii).

Let us now return to the differential situation: L is the Picard-Vessiot extension of K for the equation $\partial Y = AY$ over K, G'_K is the Katz group and s(-) is [A, -]. U is a fundamental matrix of solutions of (*) (and L = K(U)).

COROLLARY 3.6. (G'_K, s) is K-split if and only if G'_K is commutative.

Proof. Recall the notation: $G_1 = (G'_K, s)(\mathcal{U}), G_2 = G_k(C)$, and let X be the space of realisations of tp(U). ρ_U is the isomorphism between G_1 and G_2 : $gU = U\rho_U(g)$.

Firstly, let us suppose that G'_K is commutative. Then so is G_1 and by the previous lemma, $\rho_U = \rho_{gU}$ for all $g \in G_1$. But X is precisely the set of such gU ($g \in G_1$), so ρ_U is fixed by K-automorphisms of the differential field \mathcal{U} so is defined over K: (G'_K, s) is K-split.

Conversely, suppose (G'_K, s) is K-split. So there is a K-definable isomorphism f between G_1 and some ∂_0 -group G_3 of the form (H, s_0) where H is an algebraic group over C and s_0 is the trivial connection. Then H must be defined over k. $\rho_U.f^{-1}$ is then an isomorphism between G_3 and G_2 defined over \hat{K} . As both G_3 and G_2 are the groups of C-points of algebraic groups defined over the algebraically closed field k, and k is the constants of \hat{K} , it follows that $\rho_U.f^{-1}$ is defined over k (and is actually an isomorphism of algebraic groups). Thus (the differential algebraic isomorphism) ρ_U is defined over K. So for each $g \in G_1$, $\rho_U = \rho_{gU}$. By Lemma 3.5, G_1 is commutative. But easily G_1 is Zariski-dense in G'_K , whereby G'_K is commutative.

With the same notation:

COROLLARY 3.7. $((G'_K)^0, s)$ is K^{alg} split iff $(G'_K)^0$ is commutative.

Proof. Let L_1 be the compositum $K^{alg}L$. Then L_1 is the Picard-Vessiot extension of K^{alg} for the equation (*), with Katz group $(G'_K)^0$. Now apply the previous corollary.

These results give a cheap way of producing split but non-K-split D-group structures on noncommutative connected algebraic groups over C (for suitable G and algebraically closed K).

COROLLARY 3.8. Let G be a connected noncommutative algebraic subgroup of $GL(n, \mathcal{U})$, defined over some field k of constants. Let A be a generic (in the sense of differential fields) point over k of the Lie algebra $L(G) < M_n(\mathcal{U})$ of G. Let K be the algebraic closure of the differential field generated over k by the coordinates of A, and let s(-) = [A, -]. Then (G, s) is defined over K, and is absolutely split but not K-split.

Proof. We may assume that $A = (\partial g)g^{-1}$ for g a generic point over k of G (in the sense of differential fields). Then L = K(g) is a Picard-Vessiot extension of K for the equation $\partial Y = AY$ with Katz group G.

So we have established one way of obtaining split but non-K-split ∂_0 -groups from Picard-Vessiot extensions of K.

Finally we will give another relationship between these two classes of objects. Our notation $(K, k, \partial Y = AY, U, L = K(U))$ is as before. Let us first note that the solution space V^{∂} of $\partial Y = AY$ is (the set of \mathcal{U} -points of) (G_a^n, s_A) (see Example 2.6). Moreover

the fundamental matrix of solutions U is a "canonical parameter" for a (differential algebraic) isomorphism of (G_a^n, s_A) with (G_a^n, s_0) (multiplication by U). (To say that U is a canonical parameter means that moving U moves the isomorphism). It easily follows as in above arguments that (G_a^n, s_A) is K-split iff U has its coordinates in K. More generally we have:

PROPOSITION 3.9. Let K be a differential subfield of \mathcal{U} with algebraically closed field k of constants. Let (G, s) be an absolutely split (not necessarily linear) ∂_0 -group defined over K. Let $u \in \hat{K}$ be a canonical parameter (over K) for some differential algebraic isomorphism between G_1 and some (H, s_0) where H is an algebraic group over k and s_0 is the trivial connection. Then

(i) L = K < u > (the differential field generated over K by u) is a Picard-Vessiot extension of K whose Katz group is an algebraic subgroup of Aut(G).
(ii) (G, s) is K-split iff L = K.

(iii) The "map" taking (G, s) to L establishes a functor from the class of absolutely split ∂_0 -groups over K (up to K-isomorphism) to the class of Picard-Vessiot extensions of K (inside \hat{K} or equivalently up to isomorphism over K). (iv) The functor in (iii) is surjective.

Proof. (i) Let $G_1 = (G, s)(\mathcal{U})$. As G_1 is absolutely split there is an isomorphism f defined over K between $G_2 = (H, s_0)(\mathcal{U})$ (for some algebraic group H defined over k) and G_1 . By elimination of imaginaries in differentially closed fields, there is some tuple u from K such that $f = f_u$ is defined over K < u > and such that for any u' realising $tp(u/K), f_{u'} = f_u$ iff u = u'. (This is what we mean by u being a canonical parameter over K for f.) In any case we may identify u with f_u , and similarly for any realisation u_1 of r(x) = tp(u/K). For each such $u_1, u^{-1}.u_1$ is a (definable) automorphism g of G_2 . $u_1 = u.g$, so clearly $u_1 \in K < u, C >$. As L = K < u > has the same constants as K, it follows that L is a strongly normal extension of K in the sense of Kolchin [6]. To see that L is a Picard-Vessiot extension of K it is enough to show that the (extrinsic) Galois group of L over K is linear. Working in \mathcal{U} , this extrinsic Galois group G_3 say, is the set of C-points of an algebraic group defined over k. Clearly G_3 acts definably (over k) and faithfully on G_2 as (group) automorphisms. As all this is going on inside the constants C, the action is rational. Thus the connected component of G_3 embeds (rationally) over k into (the group of C-points of) GL(L) where L is the Lie algebra of G_2 . Thus the connected component of G_3 , and so G_3 itself, is definably the group of C-points of a linear algebraic group over k. So L is a Picard-Vessiot extension of K. The element u gives an isomorphism between G_3 and a K-definable subgroup G_4 of $Aut(G_1)$. G_4 (or rather its group of \hat{K} -points) is the intrinsic Galois group of L over K. It is not hard to see that the Katz group is a K-algebraic subgroup G' of Aut(G). (That is, G_4 is the ∂_0 -group (G'_1, s) for a suitable connection s.)

(ii) Note that L depends only on G_1 (not on G_2 or the isomorphism f_u): if g_w were an isomorphism of G_1 with another ∂_0 group G'_2 of the form (H', s_0) (H' defined over k), where $w \in \hat{K}$ is a canonical parameter for g_w , then the induced isomorphism between G_2 and G'_2 "lives in" k, whence K < w >= K < u >= L. So G_1 is K-split iff $u \in K$ iff L = K. (iii) If G'_1 is another absolutely split ∂_0 -group over K which is isomorphic over K to G_1 , and $w \in \hat{K}$ is a canonical parameter for an isomorphism witnessing the splitting, then as in (ii) but using also the isomorphism between G_1 and G'_1 , we see that K(w) = K(u). So we get a map F from K-isomorphism types of absolutely split ∂_0 -groups over K to Picard-Vessiot extensions of K. To say that this is a functor means that if f is an embedding of G_1 into G_2 defined over K then the P-V extension of K corresponding to G_1 is a subfield of that corresponding to G'_1 . This is clear from the construction of L and above remarks.

(iv) Finally by the remarks preceding the proposition, any Picard-Vessiot extension of K is in the image of F.

COROLLARY 3.10. Let (K, ∂) be a differential field with algebraically closed field of constants. Then the following are equivalent:

(i) K has no proper Picard-Vessiot extensions.

(ii) Any ∂_0 -group defined over K which is absolutely split is already K-split.

I will end with some remarks about general ∂_0 -groups (not necessarily absolutely split). Let K be an algebraically closed differential field. Let G be a ∂_0 -group defined over K. Call G K-good if $G(K) = G(\hat{K})$. A K-form of G is a ∂_0 -group over K which is isomorphic (but not necessarily over K) to G. We then have the following strengthening of Corollary 3.10:

PROPOSITION 3.11. The following are equivalent:

(i) K has no proper Picard-Vessiot extensions.

(ii) Any K-good ∂_0 -group has a unique K-form up to K-isomorphism.

Explanation. We work with definability in the differentially closed field \mathcal{U} . Let G be a K-good connected ∂_0 -group (so also K-definable). Let G_1 be a K-form of G. So G_1 is a ∂_0 -group over K which is definably isomorphic to G. Let $u \in \hat{K}$ be a canonical parameter for a definable isomorphism (which we also call u) between G and G_1 . All we have to do is show that L = K < u > is a Picard-Vessiot extension of K. First note that as K is algebraically closed and $K < L < \hat{K}$,

(a) K < u > has the same constants as K.

Next we want to show that L is a differential Galois extension of K in the sense of [9]. By that paper it suffices to see that the set X of realizations of tp(u/K) is a principal homogeneous space for a ∂_0 -group H defined over K such that $H(\hat{K}) = H(K)$. Well, for any w realizing tp(u/K), clearly $w = u \circ f$ for a unique definable automorphism f of G. Let H be the (definable) group of automorphisms of G obtained this way. H can be considered as a ∂_0 -group defined over K, and as $G(\hat{K}) = G(K)$, also $H(\hat{K}) = H(K)$. So we see

(b) L is a differential Galois extension of K (in the sense of [9]) and moreover Aut(L/K) is isomorphic to $H(\hat{K})$.

Finally (by [9]) we need to see that the ∂_0 -group H is definably isomorphic to the group of \mathcal{C} -points of a linear algebraic group defined over \mathcal{C} . We use the differential Lie

algebra $L^{\partial}(G)$ as introduced by Kolchin in Chapter VIII of [7]. As G is a ∂_0 -group, $L^{\partial}(G)$ is a finite-dimensional vector space over C. The ∂_0 -group H (a group of definable automorphisms of G) embeds in $GL(L^{\partial}(G))$ giving us what we want. (We have just observed here that if G is any connected ∂_0 -group and H is a ∂_0 -group which acts definably on G as a group of automorphisms, then H definably embeds in $GL_n(C)$ for some n.) Thus L is a Picard-Vessiot extension of K, and is a proper extension of K just if G_1 is not definably isomorphic over K to G.

References

- D. Bertrand, Review of "Lectures on differential Galois theory" by A. Magid, Bull. AMS 33 (1996), 289–94.
- [2] A. Buium, Differential Algebraic Groups of Finite Dimension, Lecture Notes in Math. 1509, Springer-Verlag, 1992.
- P. Deligne, Catégories tannakiennes, in: Grothendieck Festschrift, vol. II, P. Cartier et al. (eds.), Birkhäuser, 1990, 111–195.
- [4] E. Hrushovski, Contributions to stable model theory, Ph.D. thesis, Berkeley, 1986.
- [5] N. Katz, A conjecture in the arithmetic theory of differential equations, Bull. Soc. Math. France 110 (1982), 203–239.
- [6] E. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, 1973.
- [7] E. Kolchin, Differential Algebraic Groups, Academic Press, 1985.
- [8] D. Marker, Manin kernels, in: Connections between Model Theory and Algebraic and Analytic Geometry, A. Macintyre (ed.), Quaderni di matematica, vol. 6, Università di Napoli, 2000.
- [9] A. Pillay, Differential Galois theory I, Illinois J. Math. 42 (1998), 678–699.
- [10] A. Pillay, Geometric Stability Theory, Oxford University Press, 1996.
- [11] A. Pillay, Some foundational questions concerning differential algebraic groups, Pacific J. Math. 179 (1997), 181-192.
- [12] B. Poizat, Une théorie de Galois imaginaire, J. Symbolic Logic 48 (1983), 1151–1170.