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Abstract. We make some observations relating the theory of finite-dimensional differential
algebraic groups (the ∂0-groups of [2]) to the Galois theory of linear differential equations. Given
a differential field (K,∂), we exhibit a surjective functor from (absolutely) split (in the sense
of Buium) ∂0-groups G over K to Picard-Vessiot extensions L of K, such that G is K-split iff
L = K. In fact we give a generalization to “K-good” ∂0-groups. We also point out that the “Katz
group” (a certain linear algebraic group over K) associated to the linear differential equation
∂Y = AY over K, when equipped with its natural connection ∂ − [A,−], is K-split just if it is
commutative.

1. Introduction. Let (K, ∂) be a differential field of characteristic 0 with alge-
braically closed field k of constants. Let

(∗) ∂Y = AY

be a linear differential equation over K. That is, Y is an n by 1 column vector of inde-
terminates and A is a n by n matrix over K. Let (L, ∂) be a Picard-Vessiot extension for
(∗). The differential Galois group Aut∂(L/K) is well-known to have the structure of an
algebraic subgroup of GL(n, k), so the group of k-points of some linear algebraic group
Gk over k. On the other hand, another group G′K , a linear algebraic subgroup now over
K, was defined in [5] via the Tannakian point of view. The current paper was in part
motivated by an informal question of Daniel Bertrand regarding the differential algebraic
meaning of G′K . In fact the Tannakian theory already equips G′K with a “connection”
∇ : ∂ − [A,−], giving it the structure of a ∂0-group over K (see section 2 for the defini-
tions). The group of L-points (or even K̂-points for K̂ a differential closure of K) of this
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∂0-group (G′K ,∇) (see Definition 2.4) acts on the solution space of (∗) in L and should
be viewed as the real “intrinsic” differential Galois group of (∗). (G′K ,∇) is isomorphic
over L to Gk equipped with the trivial connection, so is (absolutely) split in the sense of
Buium [2]. We will point out that (G′K ,∇) is K-split (that is, isomorphic over K to an
algebraic group over k equipped with the trivial connection) just if G′K is commutative.
In particular ((G′K)0,∇) is Kalg-split iff (G′K)0 is commutative.

On the other hand we will point out that any ∂0-group (G,∇) which is defined over
K and absolutely split, gives rise in a natural way to a Picard-Vessiot extension L of K:
essentially L will be generated over K by a canonical parameter for an isomorphism of
(G,∇) with an algebraic group over k equipped with the trivial connection. Moreover
any Picard-Vessiot extension of K arises in this way: given the equation (∗) above, a
fundamental matrix U of solutions of (∗) will be a canonical parameter for an isomorphism
between (Gna , ∂ −A) and Gna equipped with the trivial connection.

The observations in this paper are not too difficult. In fact the paper should be seen as
an introduction to the Kolchin-Cassidy-Buium (and model-theoretic) theory of ∂0-groups,
for those familiar with the Picard-Vessiot theory (Galois theory of linear differential
equations). Concerning the general theory of ∂0-groups our only innovation is to bring
into the picture rationality issues, the notion of being split over K, whereK is an arbitrary
(not necessarily differentially closed) differential field.

The rest of the paper is devoted to filling in the details of the above observations. At
some point in section 3 some model-theoretic notation is used. The reader is referred to
[11] for explanations.

I would like to thank Daniel Bertrand for his original questions, his interest in the
answers, as well as for his beautifully concise and informative review [1] of Magid’s ex-
cellent book “Lectures on differential Galois theory”. Thanks also to Wai-Yan Pong for
several helpful discussions.

2. ∂0-groups. The differential algebraic groups (of Kolchin [7]) are essentially just
the group objects in Kolchin’s category of differential algebraic varieties. From the model-
theoretic point of view they are definable groups in a differentially closed field (see [11]).
Such a group is said to be “finite-dimensional” if the differential function field of its
connected component has finite transcendence degree (over the universal domain say).
Finite-dimensional differential algebraic groups were exhaustively studied by Buium [2].

It will be convenient to introduce finite-dimensional differential algebraic groups (∂0-
groups) via a different formalism, that of Buium’s “algebraic D-groups”: a ∂0-group
will be an algebraic group equipped with what I will loosely refer to as a “connec-
tion”. Let (K, ∂) be a differential field (of characteristic 0), with field CK = k of con-
stants.

Definition 2.1. A ∂0-group over K is a pair (G,∇) where G is an algebraic group
over K and ∇ is an extension of ∂ to a derivation of the structure sheaf OK(G) of G,
commuting with co-multiplication. A homomorphism (over K) between (G1,∇1) and
(G2,∇2) is the obvious thing (a K-homomorphism f of algebraic groups such that the
corresponding map f∗ between structure sheaves respects the respective derivations).
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Rather quickly we will replace the derivation ∇ by a more accessible object. Given an
algebraic group G over K, T (G) will denote the tangent bundle of G, another algebraic
group over K. τ(G) is a twisted version of T (G) taking into account the derivation ∂

of K: working locally, if G is defined by polynomial equations Pj(X1, . . . , Xn) = 0, then
τ(G) is defined by the equations

∑n
i=1 ∂Pj/∂Xi(X1, . . . , Xn)Yi + P ∂j (X1, . . . , Xn) = 0,

where P ∂ is the result of applying ∂ to the coefficients of P . τ(G) has naturally the
structure of an algebraic group over K with a surjective homomomorphism π to G (see
[8]). If G is defined over k (the constants of K) then τ(G) identifies with T (G) and π is as
usual. A K-rational homomorphism f from G1 to G2 yields a K-rational homomorphism
τ(f) : τ(G1)→ τ(G2) commuting with π.

Remark 2.2. If G is an algebraic group over K, then a ∂0-group structure on G (that
is, a derivation ∇ as in Definition 2.1) is equivalent to a K-rational homomorphic section
s : G→ τ(G) of π : τ(G)→ G.

Proof. This is immediate: given a point a of G, ∇ determines a derivation of the local
ring at a, yielding a point s(a) in the fibre τ(G)a. ∇ commuting with co-multiplication
is equivalent to s being a homomorphism.

Thus a ∂0-group over K can be identified with a pair (G, s) where G is an algebraic
group over K and the “connection” s : G → τ(G) is a K-rational homomorphic section
of π. A K-homomorphism f between such (G1, s1) and (G2, s2) is then a K-rational
homomorphism f of algebraic groups such that τ(f).s1 = s2.f . If G happens to be
defined over the constants k of K then as mentioned above τ(G) = T (G), and we have
at our disposal the “trivial connection” s0, namely s0 is the 0-section of T (G).

Definition 2.3. Let (G, s) be a ∂0-group over K. We say that (G, s) is K-split if it
is isomorphic over K to some (G0, s0) where G0 is defined over k and s0 is the trivial
connection.

Note that if X is a variety defined over K and a ∈ X(U) is a U-rational point of X
then the expression ∂(a) makes sense: working in an affine neighbourhood of a, defined
over K, just apply ∂ to the coordinates of a. Moreover ∂(a) is in τ(X)a.

Definition 2.4. Let (G, s) be a ∂0-group over K. Let (L, ∂) be a differential field ex-
tension ofK. The group (G, s)(L) of L-rational points of (G, s) is {g ∈ G(L) : ∂(g)=s(g)}.

Let (U , ∂) be a universal domain, that is, a differentially closed field containing K, of
cardinality κ > the cardinality of K, with the following properties: (i) any isomorphism
between small (of cardinality < κ) differential subfields of U extends to a (differential)
automorphism of U , and (ii) if K1 < K2 are small differential fields then any embedding
of K1 in U extends to an embedding of K2 in U .

If (G, s) is a ∂0-group over K, then (G, s)(U), the set of points of (G, s) in U , is a
finite-dimensional differential algebraic group, defined over K, in the sense of Kolchin.
Moreover any finite-dimensional differential algebraic group arises in this way (see [2]).
We will often identify (G, s) with its group of U points, or sometimes with its group of
K̂-points where K̂ is a differential closure of K. Also any ∂0-group over K can naturally
be also considered as a ∂0-group over U (or over any differential field extending K).
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Definition 2.5. The ∂0-group (G, s) over K is said to be (absolutely) split if it is
U-split, equivalently if it is L-split for some differential field L > K.

Note that (G, s) (over K) is absolutely split iff it is K̂-split. In [2], Buium begins (and
almost completes) the classification of (connected) ∂0-groups over U : the issue being
to first determine which (connected) algebraic groups G over U have some “D-group”
structure, that is, can be equipped with a suitable s, and secondly, to note that the space
of D-group structures on G is, if nonempty, a principal homogeneous space for the set of
rational homomorphic sections of the tangent bundle of G. It would be of interest to try
to classify the ∂0-groups over a given (say algebraically closed) differential field K, up to
K-isomorphism, although possibly this is already implicit in Buium’s work. In any case,
one of the points of the current paper is that split but non-K-split ∂0-groups over K
are closely bound up with Picard-Vessiot extensions of K. This will be discussed in the
next section. For the rest of this section I will give some examples and elementary facts
about D-group structures on commutative algebraic groups over the constants, working
over U . C denotes the field of constants of U . Note first that for such G any section
s : G → T (G) can be identified with a homomorphism from G into its Lie algebra.
(Canonically T (G) = L(G)×G, so s = (f, id) for a unique f : G→ L(G).)

Example 2.6 (D-group structures on commutative unipotent groups). LetG = Gna .
A rational homomorphism from G to L(G) is precisely a linear map from G to itself. Thus
each D-group structure on G has the form (G, sA) for some n by n matrix A over U , where
sA is left matrix multiplication by A. Each such ∂0-group is split (over U): The set of
U-points of (G, sA) is an n-dimensional vector space over C. Let b1, . . . , bn (thought of as
column vectors) be a C-basis. Matrix multiplication by (b1, . . . , bn) yields an isomorphism
between (G, s0) and (G, sA). This isomorphism need not be defined over the differential
field generated by the coordinates of A.

Example 2.7 (D-group structures on semiabelian varieties over the constants). Let
A be a semiabelian variety over C. As above, D-group structures s on A are given by
rational homomorphisms from A to the Lie algebra of A, of which there is only one, the
0 map. So the 0-section is the unique D-group structure on A.

Example 2.8 (D-group structures on commutative algebraic groups over the con-
stants). Let G be a connected commutative algebraic group defined over C. We will
prove a special and easy case of a result from [2]: Let (G, s) be a D-group structure (over
U) on G. Then (G, s) is split if and only if the unipotent radical U of G (which note is
also defined over C) is a D-subgroup of G (that is, s(U) is contained in L(U)). Right to
left is clear. Suppose now that s takes U into L(U).

Claim. s(G) = s(U).

Proof. Otherwise s induces a nonconstant homomorphism from the semiabelian variety
G/U into L(G)/L(U) which is impossible.

Let H < G be the kernel of s. Using Example 2.6 we can write U as a direct sum of
H ∩U and a D-subgroup U1 of U . By the claim G is the direct sum of H and U1. As U1

is split (by Example 2.6), G is split.
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Example 2.9 (A nonsplit D-group structure on Gm ×Ga.). Let G = Gm × Ga.
T (G) = τ(G) consists of the set of (x, y, u, v) where x 6= 0, and has group struc-
ture given by: (x1, y1, u1, v1) · (x2, y2, u2, v2) = (x1x2, y1 + y2, u1x2 + u2x1, v1 + v2).
π : T (G) → G is projection on the first two coordinates. Let s : G → T (G) be:
s(x, y) = (x, y, xy, 0). Then s is a section of π as well as being a homomorphism. (G, s)(U)
= {(x, y) ∈ G : ∂x = xy, ∂y = 0}, which is isomorphic to the differential algebraic sub-
group {x ∈ Gm : ∂(∂x/x) = 0} of Gm.

Rather deeper results concern D-group structures on algebraic groups which cannot
be defined over the constants. For example, an abelian variety A over U which is not
isomorphic to an abelian variety over C has no D-group structure. A will nevertheless
have finite-dimensional differential algebraic subgroups (defined by differential equations
of order > 1) which correspond to D-group structures on extensions of A by unipotent
groups. (See [2] and [8].) Such examples will not concern us too much in this paper.
Moreover, the further away from the constants an algebraic group G is, the more rigid
will be the space of D-group structures on G.

3. Relations with the Picard-Vessiot theory. We will take as our basic reference
Bertrand’s review [1]. Recall the basic set-up: K is a differential field (considered as a
small subfield of U) with algebraically closed field k of constants.

(∗) ∂Y = AY

is a linear ODE over K. V ∂ denotes the solution space of (∗) in U , an n-dimensional vector
space over C (the constants of U). V ∂(K̂) denotes the vectors in V ∂ whose coordinates
are in K̂. V ∂(K̂) is an n-dimensional vector space over k. The Picard-Vessiot extension
L/K for (∗) is the (differential) field generated over K by the coordinates of elements
of V ∂(K̂). (As K̂ has the same constants as K, L has the same constants as K.) Let
us fix a fundamental solution matrix U for (∗), namely the columns of U form a basis
for V ∂(K̂) over k (and so also for V ∂ over C). Via U we obtain an isomorphism ρU
between Aut∂(L/K) and an (algebraic) subgroup of GL(n, k): σ(U) = UρU (σ). Write
this subgroup as Gk(k), the group of k-rational points of a linear algebraic group Gk over
k. Note that Gk(k) is precisely the set of K̂-points of the ∂0-group (Gk, s0) where s0 is
the trivial connection.

In [5], a somewhat different definition of the Galois group of (∗) was given, but now
as an algebraic group G′K over K. This was defined via the Tannakian theory. The usual
notion of a connection on a vector space over the differential field (K, ∂) is an additive
endomorphism D : V → V such that for any λ ∈ K, and v ∈ V , D(λv) = ∂(λ)v+λD(v).
Let V = Kn. From the equation (∗) we obtain a connection DV : ∂−A on V . DV induces,
on each K-vector space E constructed from V by iterating direct sums, tensor products,
and duals, a connection DE . GL(n,K) acts on each of these vector spaces, and G′K is
defined to be {g ∈ GL(n,K) : g(W ) = W , for every K-subpace W of any construction
E over V for which DE(W ) ⊆W}.

Note that GL(n,K) acts on itself and thus on its own coordinate ring R over K. As
remarked in [1], G′K is precisely the stabilizer of the ideal I ⊂ R consisting of polynomials
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which vanish on the fundamental matrix U of solutions of (∗). (And this does not depend
on the choice of U .) In any case we obtain an algebraic group over K, and one can ask
in what sense G′K is the Galois group of (∗). Note that G′K ⊆ End(V ) = V ⊗ V ∗ and
the latter K-vector space, itself a construction over V , is equipped with the connection
DEnd(V ) : ∂ − [A,−] (that is, for X ∈ End(V ), DEnd(V )(X) = ∂X − [A,X]). (This
connection is also implicit in [3]). In any case this connection equips G′K with the structure
of a ∂0-group (G′K , s) where s(g) = [A, g]. It is this ∂0-group (or rather its group of K̂-
points), which should be considered as the canonical (or intrinsic) Galois group of (∗).
At this point we make use of model-theoretic/differential algebraic language. Working in
U , tp(−/K) means type over K in the sense of differential fields, and tpf (−/K) means
type over K in the sense of fields. Let G1 = (G′K , s)(U).

Remark 3.1. G1 = {g ∈ GL(n,U) : ∂g = [A, g] and for any U1 ∈ GL(n,U) real-
ising tpf (U/K) and independent (in the sense of fields) from g over K, tpf (gU1/K) =
tpf (U1/K)}.

Proof. Clear.

Lemma 3.2. G1 acts faithfully (by left matrix multiplication) on V ∂ . Moreover this
action is precisely the group of permutations of V ∂ induced by automorphisms of the
differential field U which fix K ∪ C pointwise.

Proof. We start with

Claim. Let g ∈ GL(n,U). Then g ∈ G1 if and only if tp(gU/K ∪C) = tp(U/K ∪C).

Proof. Note first that tp(U/K) = r(x) say is determined by (i) tpf (U/K) = rf (x),
and (ii) ∂x = Ax. Note also that r(x) has a unique extension to a complete type r′(x) say,
over K ∪C (otherwise there would be new constants in L = K(U), which there are not).

Suppose first that tp(gU/K) = r. Let U1 realise r independently from g over K in
the sense of differential fields. As U and U1 are bases for V ∂ over C, U1 = UB for
some B ∈ GL(n,C). Now U, gU and U1 each realise r′ (over K ∪ C). It follows that
gU1 = g(UB) = (gU)(B) also realizes r′, in particular r. As U1 is independent from g

over K in the sense of fields, and (as ∂(U1) = AU1 and ∂(gU1) = A(gU1)) ∂(g) = [A, g],
we see from Remark 3.1 that g ∈ G1.

The other direction of the Claim follows by reversing the argument.

The claim gives us a bijection between the set of permutations σ of V ∂ induced by
Aut∂(U/K ∪ C) and G1: σ goes to g where σ(U) = gU . In fact the action of σ on V ∂

is identical to the action of g by left matrix multiplication: if v ∈ V ∂ (a column vector),
then v = Uc for some column vector of constants, and σ(v) = σ(Uc) = σ(U)c = (gU)c =
g(Uc) = gv). The map (σ to g) is clearly a group isomorphism.

Corollary 3.3. G1(K̂) (= (G′K , s)(K̂)) acts on V ∂(K̂) (by left matrix multiplica-
tion) inducing an isomorphism with Aut∂(L/K).

Proof. The first part is immediate from the lemma, using the fact that K̂ is homo-
geneous over K in the model-theoretic sense. As L is generated over K by the points of
V ∂(K̂) the second part also follows.
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Remark 3.4. G1 as above is also the intrinsic definable automorphism group of V ∂

over C in the model-theoretic sense.

Explanation. If P and Q are ∅-definable sets in a saturated model M of a stable
theory and P is Q-internal, then the group (G,P ) of permutations of P induced by
automorphisms of M which fix Q pointwise, is isomorphic to some definable (in M) group
action on P . This is due in full generality to Hrushovski [4], and an exposition appears
in chapter 7 of [10]. The Picard-Vessiot theory is a special case, as (working over K), V ∂

is C-internal. (In fact Poizat [12] was the first to give a model-theoretic explication of
the Picard-Vessiot theory and Kolchin’s more general strongly normal theory.) However,
even in the general model-theoretic context, there are various incarnations of the definable
automorphism group and its action on P : the intrinsic case is where G and its action are
∅-definable and G lives in P eq. The other case depends on the choice of a “fundamental set
of solutions” u from P : G lives in Qeq, is defined over the canonical base of tp(u/Q) and
in general requires the parameter u to define its action on P . In any case, transplanted
to the Picard-Vessiot situation, it is (GK′ , s) which is the intrinsic group, and (Gk, s0)
(s0 being the trivial connection) which is the non-canonical group.

Note that the ∂0-group (G′K , s) (where s(−) = [A,−]) is L-split. It is isomorphic to
(Gk, s0) by the map ρU : gU = UρU (g). Note also that we obtain easily a simple definition
of Gk as an algebraic group over k: Let U1, . . . , Us realize the distinct nonforking exten-
sions of tp(U/K) over K(U). Let Ui = UBi for Bi ∈ GL(n,C). Let pi = tpf (Bi/k).Then
Gk is precisely the stabilizer of {p1, . . . , ps} in GL(n).

Note that the set X of realizations of tp(U/K) is a left principal homogeneous space
for G1 (= (G′K , s)(U)), and a right principal homogeneous space for G2 = Gk(C) (=
(Gk, s0)(U)) (and likewise working with K̂-rational points), where the actions commute
(g(xh) = (gx)h for g ∈ G1, x ∈ X,h ∈ G2). That is, X is a (differential algebraic)
bi-torsor for (G1, G2) defined over K. It follows that G1 is isomorphic over K to G2 just
if G1 (so also G2) is commutative. This kind of thing (in the general model-theoretic
framework of definable automorphism groups) was already observed in passing in [4]. In
any case we will give some details.

Let us start with a general lemma:

Lemma 3.5. Let (H1, X,H2) be an abstract bi-torsor. That is, X is an (abstract) left
principal homogeneous space for the (abstract) group H1, an (abstract) right principal
homogeneous space for the (abstract) group H2 and the left and right actions commute.
For x ∈ X, let ρx be the isomorphism between H1 and H2 defined by hx = xρx(h). Let
h ∈ H1. The following are equivalent:

(i) h is in the centre of H1.
(ii) for all x ∈ X, ρx = ρhx.
(iii) for some x ∈ X, ρx = ρhx.

Proof. (i) implies (ii). Assume h ∈ Z(H1). Let g ∈ H1 and x ∈ X. Then ghx =
xρx(g)ρx(h) and hgx = xρx(h)ρ(g). But also ghx = (hx)ρhx(g) = xρx(h)ρhx(g). So as
gh = hg we see that ρhx(g) = ρx(g). As g ∈ H1 was arbitrary, we see that ρhx = ρx.

(ii) implies (iii) is immediate.
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(iii) implies (i) follows by reversing the proof of (i) implies (ii).

Let us now return to the differential situation: L is the Picard-Vessiot extension of
K for the equation ∂Y = AY over K, G′K is the Katz group and s(−) is [A,−]. U is a
fundamental matrix of solutions of (∗) (and L = K(U)).

Corollary 3.6. (G′K , s) is K-split if and only if G′K is commutative.

Proof. Recall the notation: G1 = (G′K , s)(U), G2 = Gk(C), and let X be the space of
realisations of tp(U). ρU is the isomorphism between G1 and G2: gU = UρU (g).

Firstly, let us suppose that G′K is commutative. Then so is G1 and by the previous
lemma, ρU = ρgU for all g ∈ G1. But X is precisely the set of such gU (g ∈ G1), so ρU
is fixed by K-automorphisms of the differential field U so is defined over K: (G′K , s) is
K-split.

Conversely, suppose (G′K , s) is K-split. So there is a K-definable isomorphism f be-
tween G1 and some ∂0-group G3 of the form (H, s0) where H is an algebraic group over
C and s0 is the trivial connection. Then H must be defined over k. ρU .f−1 is then an
isomorphism between G3 and G2 defined over K̂. As both G3 and G2 are the groups of
C-points of algebraic groups defined over the algebraically closed field k, and k is the
constants of K̂, it follows that ρU .f−1 is defined over k (and is actually an isomorphism
of algebraic groups). Thus (the differential algebraic isomorphism) ρU is defined over K.
So for each g ∈ G1, ρU = ρgU . By Lemma 3.5, G1 is commutative. But easily G1 is
Zariski-dense in G′K , whereby G′K is commutative.

With the same notation:

Corollary 3.7. ((G′K)0, s) is Kalg split iff (G′K)0 is commutative.

Proof. Let L1 be the compositum KalgL. Then L1 is the Picard-Vessiot extension of
Kalg for the equation (∗), with Katz group (G′K)0. Now apply the previous corollary.

These results give a cheap way of producing split but non-K-split D-group structures
on noncommutative connected algebraic groups over C (for suitable G and algebraically
closed K).

Corollary 3.8. Let G be a connected noncommutative algebraic subgroup of
GL(n,U), defined over some field k of constants. Let A be a generic (in the sense of
differential fields) point over k of the Lie algebra L(G) < Mn(U) of G. Let K be the
algebraic closure of the differential field generated over k by the coordinates of A, and let
s(−) = [A,−]. Then (G, s) is defined over K, and is absolutely split but not K-split.

Proof. We may assume that A = (∂g)g−1 for g a generic point over k of G (in the
sense of differential fields). Then L = K(g) is a Picard-Vessiot extension of K for the
equation ∂Y = AY with Katz group G.

So we have established one way of obtaining split but non-K-split ∂0-groups from
Picard-Vessiot extensions of K.

Finally we will give another relationship between these two classes of objects. Our
notation (K, k, ∂Y = AY , U , L = K(U)) is as before. Let us first note that the solution
space V ∂ of ∂Y = AY is (the set of U-points of) (Gna , sA) (see Example 2.6). Moreover
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the fundamental matrix of solutions U is a “canonical parameter” for a (differential
algebraic) isomorphism of (Gna , sA) with (Gna , s0) (multiplication by U). (To say that U is
a canonical parameter means that moving U moves the isomorphism). It easily follows as
in above arguments that (Gna , sA) is K-split iff U has its coordinates in K. More generally
we have:

Proposition 3.9. Let K be a differential subfield of U with algebraically closed field
k of constants. Let (G, s) be an absolutely split (not necessarily linear) ∂0-group defined
over K. Let u ∈ K̂ be a canonical parameter (over K) for some differential algebraic
isomorphism between G1 and some (H, s0) where H is an algebraic group over k and s0

is the trivial connection. Then

(i) L = K < u > (the differential field generated over K by u) is a Picard-Vessiot
extension of K whose Katz group is an algebraic subgroup of Aut(G).
(ii) (G, s) is K-split iff L = K.
(iii) The “map” taking (G, s) to L establishes a functor from the class of absolutely split
∂0-groups over K (up to K-isomorphism) to the class of Picard-Vessiot extensions of K
(inside K̂ or equivalently up to isomorphism over K).
(iv) The functor in (iii) is surjective.

Proof. (i) Let G1 = (G, s)(U). As G1 is absolutely split there is an isomorphism f

defined over K̂ between G2 = (H, s0)(U) (for some algebraic group H defined over k)
and G1. By elimination of imaginaries in differentially closed fields, there is some tuple
u from K̂ such that f = fu is defined over K < u > and such that for any u′ realising
tp(u/K), fu′ = fu iff u = u′. (This is what we mean by u being a canonical parameter
over K for f .) In any case we may identify u with fu, and similarly for any realisation
u1 of r(x) = tp(u/K). For each such u1, u−1.u1 is a (definable) automorphism g of G2.
u1 = u.g, so clearly u1 ∈ K < u,C >. As L = K < u > has the same constants as
K, it follows that L is a strongly normal extension of K in the sense of Kolchin [6]. To
see that L is a Picard-Vessiot extension of K it is enough to show that the (extrinsic)
Galois group of L over K is linear. Working in U , this extrinsic Galois group G3 say,
is the set of C-points of an algebraic group defined over k. Clearly G3 acts definably
(over k) and faithfully on G2 as (group) automorphisms. As all this is going on inside
the constants C, the action is rational. Thus the connected component of G3 embeds
(rationally) over k into (the group of C-points of) GL(L) where L is the Lie algebra
of G2. Thus the connected component of G3,and so G3 itself, is definably the group of
C-points of a linear algebraic group over k. So L is a Picard-Vessiot extension of K. The
element u gives an isomorphism between G3 and a K-definable subgroup G4 of Aut(G1).
G4 (or rather its group of K̂-points) is the intrinsic Galois group of L over K. It is not
hard to see that the Katz group is a K-algebraic subgroup G′ of Aut(G). (That is, G4 is
the ∂0-group (G′1, s) for a suitable connection s.)

(ii) Note that L depends only on G1 (not on G2 or the isomorphism fu): if gw were
an isomorphism of G1 with another ∂0 group G′2 of the form (H ′, s0) (H ′ defined over k),
where w ∈ K̂ is a canonical parameter for gw, then the induced isomorphism between G2

andG′2 “lives in” k, whenceK < w >= K < u >= L. SoG1 isK-split iff u ∈ K iff L = K.
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(iii) If G′1 is another absolutely split ∂0-group over K which is isomorphic over K to
G1, and w ∈ K̂ is a canonical parameter for an isomorphism witnessing the splitting, then
as in (ii) but using also the isomorphism between G1 and G′1, we see that K(w) = K(u).
So we get a map F from K-isomorphism types of absolutely split ∂0-groups over K
to Picard-Vessiot extensions of K. To say that this is a functor means that if f is an
embedding of G1 into G2 defined over K then the P-V extension of K corresponding to
G1 is a subfield of that corresponding to G′1. This is clear from the construction of L and
above remarks.

(iv) Finally by the remarks preceding the proposition, any Picard-Vessiot extension
of K is in the image of F .

Corollary 3.10. Let (K, ∂) be a differential field with algebraically closed field of
constants. Then the following are equivalent:

(i) K has no proper Picard-Vessiot extensions.
(ii) Any ∂0-group defined over K which is absolutely split is already K-split.

I will end with some remarks about general ∂0-groups (not necessarily absolutely
split). Let K be an algebraically closed differential field. Let G be a ∂0-group defined
over K. Call G K-good if G(K) = G(K̂). A K-form of G is a ∂0-group over K which is
isomorphic (but not necessarily over K) to G. We then have the following strengthening
of Corollary 3.10:

Proposition 3.11. The following are equivalent:

(i) K has no proper Picard-Vessiot extensions.
(ii) Any K-good ∂0-group has a unique K-form up to K-isomorphism.

Explanation. We work with definability in the differentially closed field U . Let G be a
K-good connected ∂0-group (so also K-definable). Let G1 be a K-form of G. So G1 is a
∂0-group over K which is definably isomorphic to G. Let u ∈ K̂ be a canonical parameter
for a definable isomorphism (which we also call u) between G and G1. All we have to do
is show that L = K < u > is a Picard-Vessiot extension of K. First note that as K is
algebraically closed and K < L < K̂,

(a) K < u > has the same constants as K.

Next we want to show that L is a differential Galois extension of K in the sense of
[9]. By that paper it suffices to see that the set X of realizations of tp(u/K) is a principal
homogeneous space for a ∂0-group H defined over K such that H(K̂) = H(K). Well, for
any w realizing tp(u/K), clearly w = u ◦ f for a unique definable automorphism f of
G. Let H be the (definable) group of automorphisms of G obtained this way. H can be
considered as a ∂0-group defined over K, and as G(K̂) = G(K), also H(K̂) = H(K). So
we see

(b) L is a differential Galois extension of K (in the sense of [9]) and moreover
Aut(L/K) is isomorphic to H(K̂).

Finally (by [9]) we need to see that the ∂0-group H is definably isomorphic to the
group of C-points of a linear algebraic group defined over C. We use the differential Lie
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algebra L∂(G) as introduced by Kolchin in Chapter VIII of [7]. As G is a ∂0-group,
L∂(G) is a finite-dimensional vector space over C. The ∂0-group H (a group of definable
automorphisms of G) embeds in GL(L∂(G)) giving us what we want. (We have just
observed here that ifG is any connected ∂0-group andH is a ∂0-group which acts definably
on G as a group of automorphisms, then H definably embeds in GLn(C) for some n.)
Thus L is a Picard-Vessiot extension of K, and is a proper extension of K just if G1 is
not definably isomorphic over K to G.
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[12] B. Poizat, Une théorie de Galois imaginaire, J. Symbolic Logic 48 (1983), 1151–1170.


