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Žitná 25, 11567 Prague, Czech Republic

and

Institut für Analysis, Johannes Kepler Universität, A-4040 Linz, Austria

E-mail: eva@bayou.uni-linz.ac.at

SIMEON REICH

Department of Mathematics, The Technion–Israel Institute of Technology

32000 Haifa, Israel

E-mail: sreich@tx.technion.ac.il

Abstract.We study various aspects of nonexpansive retracts and retractions in certain Ba-

nach and metric spaces, with special emphasis on the compact nonexpansive envelope property.

1. Introduction. Let X and Y be two (real) Banach spaces, A a closed subset of X,

and f : A → Y continuous. According to a special case of Dugundji’s generalization of

Tietze’s classical extension theorem [D, p. 357] (see also [BP, p. 58]), the mapping f

has a continuous extension f̃ : X → Y to all of X such that f̃(X) is contained in the

convex hull of f(A). It immediately follows that any closed convex subset C of X is a

retract of X. That is, there is a continuous mapping R : X → C such that Rx = x for

each x ∈ C. If X happens to be a Hilbert space H, then the nearest point projection

P : H → C shows that C is, in fact, a nonexpansive retract of X. In other words, there

exists a nonexpansive (that is, 1-Lipschitz) mapping R : X → C which coincides with

the identity on C. However, it is known [P, p. 795] that if nearest point projections are

nonexpansive whenever they exist for closed convex subsets C of a Banach space X with

dimension at least three, then X must be a Hilbert space. Moreover, it is also known

[R2, p. 381] that if every closed convex subset of a Banach space X with dim(X) ≥ 3 is

a nonexpansive retract of X, then X is necessarily a Hilbert space.
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Thus it is of interest to determine, given a Banach space, what its (convex) non-

expansive retracts are. Indeed, the (convex) nonexpansive retracts of two-dimensional

spaces [G], ℓp spaces, 1 < p < ∞, p 6= 2 [H], [DE], L1(0, 1) [E1], ℓ1 [W], L
p(0, 1),

1 < p < ∞, p 6= 2 [E2], and of certain Köthe sequence spaces [KL], have all been

characterized. At this point we mention only the following two results.

Recall that a retraction R : X → C is said to be sunny (a projection in [B2]) if for

each x ∈ X, Rx = v implies that

R
(
v + r(x− v)

)
= v for all r ≥ 0

[R1, p. 64]. If there exists a retraction R : X → C which is both sunny and nonexpansive,

then we say that C is a sunny nonexpansive retract of X.

Theorem 1.1 ([K]). Every closed convex subset of a two-dimensional Banach space X

is a sunny nonexpansive retract of X.

Theorem 1.2 ([B3]). In any non-Hilbert Banach space X of dimension greater than or

equal to three, no bounded, smooth, closed and convex subset of X with a nonempty

interior is a nonexpansive retract of X.

Nonexpansive retracts have been studied in several contexts; we mention, for instance,

fixed point theory [B1], optimal sets [Be], extension problems [R2], and nonlinear semi-

group theory [R3].

Another interesting motivation comes from the Plateau problem in the calculus of

variations which is concerned with finding minimal surfaces with a given boundary. It

follows from [AK, Theorem 10.6] and [We, Corollary 1.3] that if X is a dual Banach

space with a separable predual, then the generalized Plateau problem can be solved

in X. That is, for every boundary B with compact support, there is a minimal surface

with this given boundary. One of the crucial ingredients in the proof is that of finding a

minimizing sequence of “surfaces”, called metric integral currents, with this boundary B,

such that all of them remain inside a compact set. In [AK] this compact set is the closed

unit ball of X with the weak-star topology, which in the case of a separable predual is

strong enough to ensure that limit currents are also nice (rectifiable). Another possibility

is to “push”, so to speak, the minimizing sequence of “surfaces” inside a norm compact

set by means of a nonexpansive retraction if such a retraction is available; in [AK] the

authors proceed in this way when the Banach space X is a C(K) space, where K is any

compact metric space.

We say that a Banach space X has the compact nonexpansive envelope property (ab-

breviation: CNEP) if every compact subset of X is contained in a compact nonexpansive

retract of X.

Since the Plateau problem has a solution in any Banach space with the CNEP, it

is of interest to determine which Banach spaces have this property. We address this

problem in the next section of this note, where we also examine the Hilbert ball with

its hyperbolic metric. In this connection we observe that although Theorem 10.6 in [AK]

has recently been extended to all dual Banach spaces [We, Theorem 1.5], the Plateau

problem is still unsolved for general Banach spaces. We also remark in passing that

certain nonexpansive retractions are used to solve the Plateau problem in L1(Rm) [AK],
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dual Banach spaces [We] and Hadamard spaces [We]. In Section 3 we show that X = ℓ1
lacks the CNEP and that its closed unit ball is not a nonexpansive retract of X. In

Section 4 we briefly discuss the relations between the optimal sets introduced in [BM]

and nonexpansive retracts. The last section of our paper is devoted to sunny nonexpansive

retractions.

In the sequel we will sometimes use the abbreviation NR to refer to both nonexpansive

retractions and nonexpansive retracts.

2. Envelopes. In this section we study the CNEP in various Banach spaces. We also

consider the Hilbert ball and its powers.

Recall that a norm ‖ · ‖ on R
d is said to be absolute if

∥∥(x1, x2, . . . , xd)
∥∥ =
∥∥(|x1|, |x2|, . . . , |xd|

)∥∥

for all (x1, x2, . . . , xd) ∈ R
d. It is called monotone if whenever 0 ≤ x ≤ y coordinatewise,

it follows that ‖x‖ ≤ ‖y‖.

Proposition 2.1. Let the Banach space X be R
d with a norm ‖ · ‖ that is both absolute

and monotone. Then X has the CNEP.

Proof. For a positive number a, let qa : R→ R be defined by qa(x) = x if |x| ≤ a and by

qa(x) = (sgnx)a if |x| ≥ a. Then qa is nonexpansive. Now let a1, a2, . . . , ad be d positive

numbers and consider the parallelepiped

C :=
{
(x1, x2, . . . , xd) ∈ R

d : |xj | ≤ aj , 1 ≤ j ≤ d
}
.

It is not difficult to see that the mapping Q : X → C defined by

Q(x1, x2, . . . , xd) =
(
qa1(x1), qa2(x2), . . . , qad(xd)

)

is a nonexpansive retraction. Since any compact subset of X is obviously contained in

such a compact parallelepiped, we see that X does indeed have the CNEP.

As usual, we denote by c0 the Banach space of all real sequences tending to zero,

endowed with the supremum norm.

Proposition 2.2. The space c0 has the CNEP.

Proof. Let K be a compact subset of c0. Then it is not difficult to see that there is a se-

quence of positive numbers (a1, a2, . . . , an, . . . ) ∈ c0 such that if (x1, x2, . . . , xn, . . . ) ∈ K,

then |xj | ≤ aj for all j = 1, 2, . . . .

The set C ⊂ c0, defined by

C :=
{
(x1, x2, . . . , xn, . . . ) ∈ c0 : |xj | ≤ aj , j = 1, 2, . . .

}
,

contains K and is also compact. Since the mapping Q : c0 → C defined by

Q(x1, x2, . . . , xn, . . . ) =
(
qa1(x1), qa2(x2), . . . , qan(xn), . . .

)

is a nonexpansive retraction onto C, the result follows.

Essentially the same proof provides us with more examples of spaces with the CNEP.

If (E, | · |) is a Banach space, we denote by c0(E) the space of all E-valued null sequences,

endowed with the norm
∥∥(x1, x2, . . . , xn, . . . )

∥∥ := sup
{
|xn| : n = 1, 2, . . .

}
.
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Proposition 2.3. Let E be a finite-dimensional Banach space. If the closed unit ball

of E is a nonexpansive retract of E, then c0(E) has the CNEP.

Proof. In the proof of Proposition 2.2 we replace the mapping qa : R → [−a, a] with the

mapping q̃a : E → B(0, a), defined by q̃a(x) := aq̃(x/a), where q̃ : E → B(0, 1) is an

NR of E onto the closed unit ball B(0, 1) of E, and B(0, a) is the closed ball of radius a

centered at the origin.

This proposition applies, for example, to two-dimensional spaces (Theorem 1.1), ℓd2
and ℓd

∞
. A similar proof shows that the finite power Ed, when equipped with a norm

that is both absolute and monotone, also has the CNEP. This is also true for any finite

Cartesian product of spaces with the CNEP. We also note that since the closed convex

hull of a compact subset of a Banach space is also compact, every Hilbert space clearly

has the CNEP.

On the other hand, we are now going to show that no ℓp space, 1 < p < ∞, p 6= 2,

has the CNEP [Ko].

To this end, we first recall a characterization of the NR’s in ℓdp, d ≥ 3 [H], and ℓp,

1 < p <∞, p 6= 2 [DE, E2].

Theorem 2.4. Let X be either ℓdp, d ≥ 3, or ℓp, 1 < p < ∞, p 6= 2. A proper subset

of X is an NR of X if and only if it is the intersection of a family of closed half-spaces

of the form {
x ∈ X : axi + bxj ≤ c

}
, i 6= j.

For a subset D of a Banach space
(
X, ‖ · ‖

)
, we denote sup

{
‖x‖ : x ∈ D

}
by rad(D).

Lemma 2.5. Let X be the d-dimensional Banach space ℓdp, where d ≥ 3 and 1 < p <∞,

p 6= 2, and let B(0, r) ⊂ X be the closed ball of radius r > 0 centered at the origin. If

A ⊂ X is an NR that contains B(0, r), then rad(A) ≥ (r/2)d1/p.

Proof. Consider the points zt = t(1, 1, . . . ) ∈ X, where t ∈ R. If such a point does not

belong to A, then by Theorem 2.4, neither does it belong to a closed half-space of the

form
{
x ∈ X : axi + bxj ≤ c

}
, i 6= j, which, however, does contain B(0, r). Therefore

axi + bxj ≤ c < t(a + b) for all xi and xj such that |xi|
p + |xj |

p ≤ rp. Choosing

xi = xj = r sgn(a+b)2−1/p, we obtain r|a+b| < t(a+b)21/p < 2t(a+b). Hence |t| > r/2.

Thus all the points zt with |t| ≤ r/2 belong to A and the result follows.

We now recall a consequence of Theorem 2 in [B1].

Theorem 2.6. Let C be a closed convex subset of a reflexive Banach space every bounded,

closed and convex subset of which has the fixed point property for nonexpansive mappings.

If T : C → C is nonexpansive, then its fixed point set is an NR of C.

We denote the set of natural numbers by N.

Theorem 2.7. The spaces ℓp, 1 < p <∞, p 6= 2, do not have the CNEP.

Proof. Choose a positive sequence {rn : n ∈ N} and a sequence {dn : n ∈ N} ⊂ N, dn ≥ 3,

so that
∞∑
n=1

rpn <∞, but rnd
1/p
n →∞ as n→∞. Let {en : n ∈ N} be the standard basis

in ℓp. For each n ∈ N, let Pn : ℓp → ℓ
dn
p be the linear operator of norm one which assigns
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to each x = (x1, x2, . . . ) ∈ ℓp the point
(
xsn−1+1, xsn−1+2, . . . , xsn−1+dn

)
∈ ℓdnp , where

sn :=
n∑
j=1

dj . Consider the set

K :=
{
x ∈ ℓp : Pnx ∈ Bn(0, rn) for all n ∈ N

}
,

where Bn(0, rn) ⊂ ℓ
dn
p is the closed ball of radius rn centered at the origin of ℓ

dn
p . This

set is compact because
∞∑
n=1

rpn < ∞. Suppose that K ⊂ D ⊂ ℓp is an NR of ℓp and let

R : ℓp → D be a nonexpansive retraction. Let the nonexpansive mapping Tn : ℓdnp → ℓ
dn
p

be defined as follows: if x ∈ ℓdnp , then

Tnx := PnR

( dn∑

j=1

xje
sn−1+j

)
∈ ℓdnp .

If y ∈ Bn(0, rn), then
dn∑
j=1

yje
sn−1+j belongs to K ⊂ D and therefore Tny = y. Thus the

fixed point set F (Tn) of Tn contains Bn(0, rn). Since it is an NR of ℓ
dn
p by Theorem 2.6,

it follows from Lemma 2.5 that rad
(
F (Tn)

)
≥ (rn/2)d

1/p
n . Since F (Tn) ⊂ Pn(D), we see

that

rad(D) ≥ rad
(
Pn(D)

)
≥ (rn/2)d1/pn .

Thus D cannot be even bounded.

This proof of Theorem 2.7 is somewhat different from the original one [Ko], where

no use is made of Theorem 2.6; instead, the characterization of Theorem 2.4 is applied

directly to ℓp and not just to ℓ
d
p.

We will soon present more examples of spaces without the CNEP. However, at this

point we show how the argument employed in the proof of Theorem 2.7 can also be used

to construct new such examples out of old ones.

Theorem 2.8. Let E be a reflexive Banach space every bounded, closed and convex subset

of which has the fixed point property for nonexpansive mappings. If E does not have the

CNEP, then neither does c0(E).

Proof. Let B ⊂ E be a compact subset of E which is not contained in any compact

NR of E. Denote c0(E) by X, and for each n ∈ N, let Pn : X → E be the linear

operator of norm one which assigns to each x ∈ c0(E) its n-th coordinate. Consider the

compact subset K of X defined by K :=
{
x ∈ X : P1x ∈ B, Pnx = 0, n ≥ 2

}
and

suppose K ⊂ D ⊂ X is an NR. Let R : X → D be a nonexpansive retraction and

define a mapping T : E → E as follows: given x ∈ E, let Tx := P1R(x, 0, . . . , 0, . . . ). If

x ∈ B, then (x, 0, . . . , 0, . . . ) ∈ K ⊂ D and Tx = x. Thus the fixed point set F (T ) of T

contains B. Since T is nonexpansive, F (T ) is an NR of E by Theorem 2.6. Hence it is

not compact. Since F (T ) ⊂ P1(D), neither are P1(D) and D itself.

Note that the same argument shows that in Theorem 2.8, c0(E) may be replaced with

ℓp(E).

It follows from the Hahn–Banach theorem that any one-dimensional subspace of any

Banach space is the range of a norm one linear projection. There exist, however, finite-
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dimensional, strictly convex spaces, of dimension greater than or equal to three, in which

the only norm one linear projections are the identity and the projections onto lines [Bo].

We now observe that all such spaces lack the CNEP. To see this, let B denote the

closed unit ball of such a space E, and suppose C is a compact NR of E which contains B.

Then C is bounded, closed, convex and has a nonempty interior. Since its Minkowski

functional is Gâteaux differentiable on a dense subset of E, it follows that the boundary

of C contains points of smoothness. Let y0 be such a point and let H + y0 be the unique

supporting hyperplane at y0. By assumption, the subspace H is not the range of a linear

projection of norm one. Therefore C is not, after all, an NR of E by Theorem 2 of [FK],

which asserts that if the Banach space E is reflexive and a convex NR of E with a

nonempty interior has at one of its boundary points y0 a unique supporting hyperplane

H + y0, then the subspace H is the range of a linear projection of norm one.

Instead of invoking Theorem 2 of [FK], one could also argue as follows: if C were an

NR of E, then the supporting hyperplane H+ y0 would be the common boundary of two

closed half-spaces which would also be NR’s of E by [B1, Lemma 5]. It would then follow

from [B1, Theorem 5] that the subspace H is an NR too, and hence, in fact, the range

of a linear projection of norm one, a contradiction.

Another class of examples of spaces without the CNEP can be obtained, as pointed

out by S. Wenger, by recalling the following special case of a theorem of L. Veselý [V].

Theorem 2.9. If X is a nonreflexive Banach space, then it has an equivalent norm | · |

and contains a three point set K = {y1, y2, y3} such that the functional f : (X, | · |)→ R
+

defined by

f(x) := |x− y1|+ |x− y2|+ |x− y3|

does not attain its infimum on (X, | · |).

Since it is clear that the compact set K ⊂ X cannot be contained in a compact NR

of (X, | · |), it follows that (X, | · |) lacks the CNEP.

Returning to reflexive spaces, we recall [B1, Theorem 5] that if X is reflexive and

strictly convex, then the class of nonexpansive retracts is closed under arbitrary intersec-

tions. Therefore we can define, for each nonempty subset D of X, its nonexpansive hull

N(D) as the intersection of all the NR’s containing it. Thus we see that a reflexive and

strictly convex Banach space X has the CNEP if and only if N(K) is compact for each

compact subset of X.

The definition of the CNEP can be extended to all metric spaces in an obvious way.

To present examples of nonlinear metric spaces with the CNEP, we first consider the

Hilbert ball B equipped with the hyperbolic metric ρ : B × B → R
+ [GR, pp. 108–110].

Given a subset D of B, we define its ρ-closed convex hull, ρ-clco(D), to be the intersection

of all the ρ-closed and ρ-convex subsets of B which contain D.

Since each ρ-ball is ρ-convex, it is clear that if D is ρ-bounded, so is ρ-clco(D). There-

fore it is obvious that if K ⊂ B is compact and B is finite-dimensional, then ρ-clco(K) is

also compact. Since ρ-convexity in the real Hilbert ball (B̃, ρ) [GR, p. 148] coincides with

linear convexity, this is also true for compact subsets of (B̃, ρ). Finally, since every ρ-closed

and ρ-convex subset of (B, ρ) is a ρ-Chebyshev set, and the nearest point projection of B
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onto it is ρ-nonexpansive [GR, pp. 108–110], we conclude that each finite-dimensional

Hilbert ball, as well as any real Hilbert ball, all have the CNEP. As a matter of fact, this

turns out to be true for any Hilbert ball whatsoever.

Theorem 2.10. Every Hilbert ball (B, ρ) has the CNEP.

Proof. For each subset D of B, we define C1(D) to be the union of all the metric segments

[x, y] ⊂ B with endpoints x and y in D. It is clear that D is ρ-convex if and only if

D = C1(D). It is also not difficult to see that ρ-clco(D) is the closure of the union⋃{
Cn(D) : n = 0, 1, 2, . . .

}
, where C0(D) := D and Cn+1(D) := C1

(
Cn(D)

)
, n ≥ 1.

Now suppose D = K is compact. To show that ρ-clco(K) is also compact, we need to

show that it is totally bounded. This means that for each ε > 0, we have to find a finite

ε-net for ρ-clco(K). To this end, we first find a finite (ε/2)-net D = {k1, k2, . . . , kN} ⊂ K

and consider ρ-clco(D). This last set is compact because it is contained in a finite-

dimensional Hilbert ball. Next we compare
⋃{
Cn(K) : n = 0, 1, 2, . . .

}
with

⋃{
Cn(D) :

n = 0, 1, 2, . . .
}
. We claim that for each n = 0, 1, 2, . . . , each point in Cn(K) is within

ε/2 of a point in Cn(D). Indeed, this is obviously true for n = 0 by the definition of D.

If this is true for Cn(K) and Cn(D), then the inequality

ρ
(
(1− t)x⊕ ty, (1− t)z ⊕ tw

)
≤ (1− t)ρ(x, z) + tρ(y, w),

where 0 ≤ t ≤ 1 and x, y, z, w are all in B [GR, p. 104], implies that it is also true for

Cn+1(K) = C1

(
Cn(K)

)
and Cn+1(D) = C1

(
Cn(D)

)
. So each point in ρ-clco(K) is within

ε/2 of a point in ρ-clco(D). Thus any (ε/2)-net in ρ-clco(D) is an ε-net for ρ-clco(K).

This proof of Theorem 2.10 works equally well in any Hadamard space in which the

ρ-closed convex hull of a finite number of points is compact. It follows then that the

Plateau problem can be solved in such spaces. Unfortunately, it is not known which

Hadamard spaces have this property. However, it is shown in [We, Theorem 1.6] that

Plateau’s problem can be solved in every Hadamard space (regardless of whether it has

this property or not).

For each d ∈ N, let (Hd, | · |∞) denote the d-th power of a complex Hilbert space H,

endowed with the maximum norm, and let (X, ρ∞) be the open unit ball of Hd, equipped

with its Kobayashi metric. Then X = B
d, and

ρ∞(x, y) = max{ρ(xj , yj) : 1 ≤ j ≤ d},

where B is the Hilbert ball and ρ is its hyperbolic metric. We also note that the discussion

on p. 91 of [GR] implies that if D is a bounded domain in a complex Banach space (E, | · |)

and ρ is any metric assigned to it by a Schwarz–Pick system of pseudometrics, then a

subset K of (D, ρ) is compact if and only if it is a compact subset of (E, | · |).

Proposition 2.11. The metric space (Bd, ρ∞) has the CNEP for each d ∈ N.

Proof. Let K ⊂ B
d be a compact subset of B

d. For each 1 ≤ j ≤ d, let Pj : Hd → H

assign to each x ∈ Hd its j-th coordinate, set Cj := ρ-clco(Pj(K)), and let Rj : B→ Cj
be the nearest point projection of B onto Cj . Then each Cj is compact by the proof of

Theorem 2.10 and the Cartesian product C = C1 × C2 × . . . × Cd is a compact subset

of Bd which contains K. Since the mapping R : B
d → C defined by R(x1, x2, . . . , xd) :=

(R1x1, R2x2, . . . , Rdxd) is a ρ-nonexpansive retraction of B
d onto C, the result follows.
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Let B
∞

H be the open unit ball of ℓ∞(H). It is known that the Kobayashi metric ρ∞
on B

∞

H × B
∞

H is given by

ρ∞(x, y) = sup{ρ(xj , yj) : j ∈ N},

where ρ : B × B → R
+ is again the hyperbolic metric on B × B. Similar arguments to

those used in the proofs of Proposition 2.3 and Proposition 2.11 show that the metric

space (B∞H ∩ c0(H), ρ∞) also has the CNEP.

3. Balls. Consider the closed unit balls Bp(0, 1) = Bp of the ℓp spaces, 1 ≤ p ≤ ∞. It

follows from Theorem 1.2 that no Bp, 1 < p < ∞, p 6= 2, is an NR of ℓp. On the other

hand, the arguments of the proofs of Propositions 2.1 and 2.2 show that B∞ is an NR

of ℓ∞. Thus it is natural to ask (as did Y. Gordon) if B1 is an NR of ℓ1. In this section

we answer this question in the negative.

We begin with Westphal’s characterization of the nonexpansive retracts of ℓ1 [W].

Recall that a nonempty subset C of ℓ1 is called a cylinder set with base B in the plane

[ei, ej ] spanned by the unit vectors ei and ej , i < j, if there is a subset B of [ei, ej ]

such that C is the direct sum of B and Dij =
{
x ∈ ℓ1 : xi = xj = 0

}
. A subset E

of a Banach space (X, | · |) is said to be metrically convex if for each pair of distinct

points x1, x2 of E, there exists a point x3 of E, distinct from x1 and x2, such that

|x1 − x2| = |x1 − x3|+ |x3 − x2|.

Theorem 3.1 ([W]). Let X be either ℓd1, d ≥ 3, or ℓ1. A proper subset of X is an NR

of X if and only if it is metrically convex and the intersection of a family of closed

cylinder sets.

Theorem 3.2. Let X be either ℓd1, d ≥ 3, or ℓ1. Then the closed unit ball of X is not an

NR of X.

Proof. Suppose the closed unit ball B1 of X is contained in an NR A of X. If the point

z ∈ X is not in A, then by Theorem 3.1, there is a cylinder set C, which contains B1,

to which z does not belong either. Let C be the direct sum of a base B ⊂ [ei, ej ], i < j,

and Dij . Since C contains B1, it follows that |zi| + |zj | > 1. Thus A contains all those

points x ∈ X for which |xm| + |xn| ≤ 1 for all m,n ∈ N. Choosing x = 1

2
(1, 1, . . . ), we

see that rad(A) ≥ 1

2
d ≥ 3

2
> 1. Hence A 6= B1, as claimed.

The proof of Theorem 3.2 also yields the following analog of Lemma 2.5.

Lemma 3.3. Let X be the d-dimensional Banach space ℓd1, d ≥ 3, and let B(0, r) ⊂ X be

the closed ball of radius r > 0 centered at the origin. If A ⊂ X is an NR that contains

B(0, r), then rad(A) ≥ (r/2)d.

This last lemma, when combined with the construction and arguments used in the

proof of Theorem 2.7, yields, in its turn, the following analog of that theorem.

Theorem 3.4. The space ℓ1 lacks the CNEP.

As a matter of fact, the arguments used in the proofs of Lemma 2.5 and Theorem 3.2

can also be employed to show that no closed unit ball Bp of ℓp, 1 < p < ∞, p 6= 2, is

an NR of ℓp. Indeed, if Bp is contained in an NR A of ℓp, then these arguments show
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that all the points of the form t
( d∑
j=1

ej
)
, where |t| ≤ 1

2
and d ∈ N, belong to A. Thus

rad(A) ≥ (1/2)d1/p > 1 when d > 2p, and so A 6= Bp, as asserted.

To show that the closed unit balls of ℓdp, where 1 < p < ∞, p 6= 2, and d ≥ 3, are

not NR’s, one can also make use of the following fact [FK, Proposition 1] (see also [R6,

Proposition 3.4]): if E is a non-Hilbert, strictly convex Banach space of (finite or infinite)

dimension d ≥ 3, then there exist subspaces of all finite dimensions 2 ≤ k ≤ d− 1, which

are not the ranges of linear projections of norm one.

4. Optimal sets. In this section we briefly discuss the connections between the optimal

sets introduced by Beauzamy and Maurey in [BM] and nonexpansive retracts.

Let D be a nonempty subset of the Banach space X. A point x ∈ X is said to be

minimal with respect to D if the condition

|y − z| ≤ |x− z| for all z ∈ D

implies that y = x. We denote by Min(D) the set of all those points in X which are

minimal with respect to D. It is clear that D ⊂ Min(D) and that if D1 ⊂ D2, then

Min(D1) ⊂ Min(D2). The set D is said to be optimal if Min(D) = D. Given an arbitrary

nonempty subset D of X, we define M1(D) to be Min(D) and then set Mn+1(D) :=

M1

(
Mn(D)

)
, n ≥ 1. The saturate S(D) of D [BM] is defined to be the closure of the

union
⋃{
Mn(D) : n = 1, 2, . . .

}
. We also define O(D), the optimal hull of D, to be the

intersection of all the closed optimal sets containing D. Note that O(D) itself is both

optimal [BM, Proposition III.2] and closed.

Proposition 4.1. If the Banach space X is reflexive and strictly convex, then

S(D) = O(D) for all nonempty D ⊂ X.

Proof. Let D be a nonempty subset of X. Since S(D) is both optimal by Proposition III.4

on p. 121 of [BM] and closed by definition, it is clear that O(D) ⊂ S(D). Conversely, we

first note that obviously D ⊂ O(D). Therefore M1(D) = Min(D) ⊂ Min(O(D)) = O(D).

If Mn(D) ⊂ O(D) for some n ≥ 1, then we also have Mn+1(D) = M1

(
Mn(D)

)
⊂

M1

(
O(D)

)
= O(D). Hence

⋃{
Mn(D) : n = 1, 2, . . .

}
and S(D) are contained in O(D).

Thus S(D) = O(D), as claimed.

It is clear that the fixed point set of any nonexpansive self-mapping of X and, in

particular, any nonexpansive retract of X are optimal. Here is a result in the converse

direction.

Theorem 4.2 ([Be]). If the Banach space X is separable, reflexive, strictly convex and

smooth, and C ⊂ X is an optimal set with a nonempty interior, then C is a nonexpansive

retract of X.

Corollary 4.3. If the Banach space X is separable, reflexive, strictly convex and

smooth, and D ⊂ X has a nonempty interior, then the nonexpansive hull N(D) of D

coincides with O(D), its optimal hull.
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This corollary yields another proof of Lemma 2.5. Indeed, it follows from the results

of [BM] that in the setting of that lemma,

S
(
B(0, r)

)
= r
{
x ∈ R

d : sup{|xi|
p + |xj |

p : i 6= j} ≤ 1
}
.

Since S
(
B(0, r)

)
= N
(
B(0, r)

)
by Corollary 4.3 and Proposition 4.1, we see that if A ⊂ X

is an NR which contains B(0, r), then
(

1

2
r
)
(1, 1, . . . , 1) ∈ A. Hence rad(A) ≥

(
r
2

)
d1/p, as

asserted.

Corollary 4.3 is also obviously true whenever the Banach space X has the following

property: a subset of X is optimal if and only if it is an NR. This is indeed known to be

the case for the ℓp ([DE, E2]) and L
p[0, 1] ([E2]) spaces, 1 < p <∞, as well as for strictly

convex, smooth and reflexive Köthe sequence spaces ([KL, Theorem 3.8]).

5. Sunny nonexpansive retracts. It is obvious that if C is a nonexpansive retract of

the Banach space X and T : C →M is a Lipschitz mapping of C into a metric space M ,

then T can be extended to all ofX without increasing its Lipschitz constant. If C happens

to be a sunny nonexpansive retract of X, then the extension is much easier because it is

constant along certain rays emanating from C. Other applications of sunny nonexpansive

retracts (for instance, to extension problems for accretive operators, iterative methods

for solving variational inequalities, and the convex feasibility problem) can be found, for

example, in [R2, R3, MR] and the references therein. In this section we show that in many

cases, nonexpansive retracts are, in fact, sunny nonexpansive retracts. We will sometimes

use the abbreviation SNR to refer to both sunny nonexpansive retractions and sunny

nonexpansive retracts.

We first observe that if a smooth Banach space X has the CNEP, then every compact

subset of X is contained in a compact SNR of X.

Proposition 5.1. If C is a compact NR of a smooth Banach space X, then C is, in

fact, an SNR of X.

Proof. Let R : X → C be an NR and let x be any point inX. Banach’s fixed point theorem

provides us, for each 0 ≤ t < 1, a unique point xt ∈ X such that xt = (1− t)x+ tRxt. Let

{tn} ⊂ [0, 1) be a sequence which converges to 1, and denote the corresponding point xtn
by xn. Since C is compact, we may assume that the sequence {xn} converges strongly to

z ∈ C. Let J : X → X∗ be the normalized duality mapping of X. Since

(1− tn)
(
x−Rxn, J(xn − y)

)
=
(
xn −Rxn, J(xn − y)

)
≥ 0

for all y ∈ C and n ∈ N, we see that (x − z, J(y − z)) ≤ 0 for all y ∈ C. Denoting z by

Qx and invoking either [R1, p. 64] or [B2, p. 348], we now conclude that Q : X → C is

the unique SNR of X onto C.

Our next result was deduced in [R3] from a general theorem regarding the equivalence

of resolvent consistency and convergence for nonlinear contractive algorithms. Here we

present a somewhat simpler proof, which is also a variant of the so-called optimization

method [R7].

Proposition 5.2. If C is an NR of a reflexive Banach space X with a uniformly

Gâteaux differentiable norm, then it is, in fact, an SNR of X.
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Proof. Let R : X → C be an NR, x a point in X, and {tn} ⊂ [0, 1) a sequence which

converges to 1. For each n ∈ N, denote by xn ∈ X the unique solution to the equation

w = (1− tn)x+ tnRw.

Fix a point y in C. Since |xn−y| ≤ |x−y| for all n ∈ N, the sequence {xn} is bounded.

Let LIM be a Banach limit and define f : X → [0,∞) by

f(z) := LIM
(
{|xn − z|

2}
)
, z ∈ X.

Since the functional f is continuous and convex, f(z)→∞ as |z| → ∞, andX is reflexive,

f attains its minimum over X, say at u ∈ X. Since xn −Rxn → 0 as n→∞, we have

f(Rz) = LIM
(
{|xn −Rz|

2}
)

= LIM
(
{|Rxn −Rz|

2}
)
≤ LIM

(
{|xn − z|

2}
)

= f(z)

for all z ∈ X, and therefore we may as well assume that u belongs to C. Hence(
xn −Rxn, J(xn − u)

)
≥ 0 and

(
xn − x, J(xn − u)

)
≤ 0

for all n ∈ N. On the other hand,

|xn − u|
2 =
∣∣xn − (1− t)u− ty + t(y − u)

∣∣2

≥
∣∣xn − (1− t)u− ty

∣∣2 + 2t
(
y − u, J(xn − (1− t)u− ty)

)

for all 0 < t < 1 and each y ∈ X. Given ε > 0, the weak-star uniform continuity of

the normalized duality mapping J on bounded subsets of Banach spaces with uniformly

Gâteaux differentiable norms [R5, Lemma 2.2] implies that
∣∣∣
(
y − u, J(xn − u)− J

(
xn − (1− t)u− ty

))∣∣∣ < ε

for all small enough t. Hence

(
y − u, J(xn − u)

)
< ε+

(
y − u, J

(
xn − (1− t)u− ty

))

≤ ε+
(
|xn − u|

2 −
∣∣xn − (1− t)u− ty

∣∣2)/(2t).
Since f attains its minimum at u, it follows that

LIM
({(
y − u, J(xn − u)

)})
≤ 0

for each y ∈ X. Choosing y = x and recalling that
(
xn − x, J(xn − u)

)
≤ 0 for all n ∈ N,

we conclude that LIM
(
{|xn − u|

2}
)
≤ 0. Therefore there exists a subsequence of {xn}

which converges strongly to u. Denoting u by Qx, we obtain
(
x−Qx, J(y−Qx)

)
≤ 0 for

all x ∈ X and y ∈ C. Thus Q : X → C is the unique SNR of X onto C.

Let C be a nonempty, closed and convex subset of a two-dimensional Banach space

(X, |·|). Suppose we already know (cf. [K, Theorem 2]) that C is an NR ofX whenever the

norm |·| is smooth. Then Proposition 5.2 shows that C is, in fact, an SNR of X even when

| · | is not smooth (cf. [B2, p. 353] and Theorem 1.1). To see this, let {εn : n = 1, 2, . . . }

be a positive sequence which converges to zero. For each n ∈ N, let | · |n be a smooth

norm on X which satisfies |x| ≤ |x|n ≤ (1 + εn)|x| for all x ∈ X. By Proposition 5.2, for

each n ∈ N, there is an SNR Qn : (X, | · |n)→ C. Since |Qnx−Qny| ≤ |Qnx−Qny|n ≤

|x − y|n ≤ (1 + εn)|x − y| for all x and y in X, and for a fixed y0 ∈ C, |Qnx − y0| =
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|Qnx−Qny0| ≤ |Qnx−Qny0|n ≤ |x− y0|n ≤ (1+ εn)|x− y0|, we can invoke the Arzelà–

Ascoli theorem and find a subsequence of {Qn} which converges uniformly on bounded

subsets of X to a mapping Q : (X, | · |)→ C. It is not difficult to check that Q is indeed

an SNR of (X, | · |) onto C, as asserted.

Now let (X, ρ,M) be a hyperbolic metric space in the sense of [RS]. Given any two

distinct points x and y in X, there is a unique metric line in M which passes through x

and y. This metric line determines a unique metric segment joining x and y. We denote

this segment by [x, y]. For each 0 ≤ t ≤ 1, there is a unique point z ∈ [x, y] such that

ρ(x, z) = tρ(x, y) and ρ(z, y) = (1− t)ρ(x, z). This point will be denoted by (1− t)x⊕ ty.

Also, for each r ≥ 0, we let (1 + r)x⊖ ry stand for the unique point w on this metric line

satisfying ρ(w, x) = rρ(x, y) and ρ(w, y) = (1 + r)ρ(x, y).

Lemma 5.3. Let C be a Chebyshev subset of a hyperbolic metric space (X, ρ,M) and let

P : X → C be the nearest point projection of X onto C. Then P (tx ⊕ (1− t)Px) = Px

for all x ∈ X and 0 ≤ t ≤ 1.

Proof. Denote tx⊕(1−t)Px by z. Since ρ(x, Pz) ≤ ρ(x, z)+ρ(z, Pz) ≤ ρ(x, z)+ρ(z, Px) =

(1− t)ρ(x, Px) + tρ(x, Px) = ρ(x, Px), we see that Pz = Px, as claimed.

If C is a retract of a hyperbolic metric space X and R : X → C is a retraction of X

onto C, then we say that R is sunny if R((1− t)Rx⊕ tx) = R((1 + r)x⊖ rRx) = Rx for

all x ∈ X, 0 ≤ t ≤ 1, and r ≥ 0.

Proposition 5.4. If C is a Chebyshev subset of a hyperbolic metric space (X, ρ,M) and

the nearest point projection P : X → C is nonexpansive, then it is also sunny.

Proof. Fix a point x ∈ X. For 0 ≤ t ≤ 1 and r ≥ 0, denote (1 − t)Px ⊕ tx and

(1 + r)x ⊖ rPx by z and w, respectively. Let s = 1/(1 + r). Then x = (1 − s)Px ⊕ sw.

Consider y = (1 − s)Pw ⊕ sw. Since P is the nearest point projection of X onto C, we

know by Lemma 5.3 that Pz = Px and Py = Pw. Since P is nonexpansive, we also have

ρ(Pw,Px) = ρ(Py, Px) ≤ ρ(y, x) = ρ((1−s)Pw⊕sw, (1−s)Px⊕sw) ≤ (1−s)ρ(Pw,Px).

The result now follows because s > 0.

Proposition 5.4 applies, in particular, to Hilbert space and to the Hilbert ball. It shows

that all the (ρ)-closed and (ρ)-convex subsets of these spaces are SNR’s.

It is known [B1, Example 1] that Theorem 2.6 is no longer true if T is not a self-

mapping of C. It is, however, valid for weakly inward mappings. We also note the following

improvement of Theorems 1 and 2 in [X]. It provides an affirmative answer to a question

raised on p. 155 there.

Let C be a nonempty, closed and convex subset of a Banach space X. For x ∈ C, let

IC(x) := {z ∈ X : z = x+ a(y − x) for some y ∈ C and a ≥ 0}

be the inward set of C at x. Recall that a mapping T : C → X is said to be weakly inward

if Tx belongs to the closure of IC(x) for each x in C. Suppose now that a weakly inward

T : C → X is also nonexpansive, and fix a point x in C. Then for each 0 ≤ t < 1, the

strict contraction S : C → X, defined by Sy := tTy + (1 − t)x for each y ∈ C, is also

weakly inward and therefore has a unique fixed point, which we denote by xt.
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Proposition 5.5. Let C be a nonempty, closed and convex subset of a reflexive Banach

space X with a uniformly Gâteaux differentiable norm. Assume that every weakly compact

and convex subset of X has the fixed point property for nonexpansive mappings. Let the

nonexpansive and weakly inward mapping T : C → X have a fixed point. Given x ∈ C

and 0 ≤ t < 1, let xt ∈ C be the unique solution to the equation w = tTw + (1 − t)x.

Then the strong limt→1− xt = Qx, where Q : C → F (T ) is the unique SNR of C onto

the fixed point set of T .

Proof. Consider the accretive operator A = I − T , where I denotes the identity operator

on C. Since the strict contraction S : C → X defined above has a unique fixed point for

each x ∈ C, the resolvent Jr := (I+rA)−1 is seen to be defined on all of C for each r > 0.

In other words, the accretive operator A satisfies the range condition R(I + rA) ⊃ C for

all positive r. The result now follows from Theorem 1 and Remark 1 in [R4] because

xt = Jrx, where r = t/(1− t).

Finally, we remark in passing that if, in the setting of Proposition 5.5, C itself happens

to be an SNR of X and R : X → C is the unique sunny nonexpansive retraction of X

onto C, then the iterative scheme of Corollary 2 in [R4] can be applied to RT : C → C

to yield a fixed point of T . This is because any fixed point of RT is, in fact, a fixed point

of T itself.
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[H] L. Hetzelt, Über die beste Coapproximation in R
n, dissertation, University of Erlangen–

Nürnberg, 1981.

[KL] A. Kamińska, G. Lewicki, Contractive and optimal sets in modular spaces, Math. Nachr.

268 (2004), 74–95.

[K] L. A. Karlovitz, The construction and application of contractive retractions in two-

dimensional normed linear spaces, Indiana Univ. Math. J. 22 (1972), 473–481.
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