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1. Introdution. Given a C0-semigroup (T (t))t≥0 on a Banah spae X we all an orbit
T (·)x (x ∈ X) stable if(1.1) lim

t→∞
‖T (t)x‖ = 0.If (1.1) holds for every x ∈ X then we all (T (t))t≥0 stable. For single boundedoperators, i.e. for disrete operator semigroups, on a Banah spae the onept of stabilityis de�ned similarly.It is the purpose of this survey to present a new and uni�ed look on the theory ofstability of operator semigroups. Our emphasis is put on the ideas, methods and tools,both for general and onrete semigroups. We give neither a omplete overview overexisting results nor a historial aount on them.Sine the birth of semigroup theory and general operator theory, the theory of stabilityof operator semigroups has attrated a lot of attention due to several reasons.First, the theory of stability is important sine stable C0-semigroups orrespond one-to-one to asymptotially stable (in the sense of Lyapunov) well-posed abstrat linear2000 Mathematis Subjet Classi�ation: Primary 47D03; Seondary 34D05, 47A10.The seond author was partially supported by a KBN grant.The paper is in �nal form and no version of it will be published elsewhere.[71℄ © Instytut Matematyzny PAN, 2007



72 R. CHILL AND Yu. TOMILOVCauhy problems. The onept of asymptoti stability is fundamental in the theory ofordinary and partial di�erential equations. This puts stability theory on the ground of(real world) appliations.The theory of stability is also important sine stability plays a entral role in thestrutural theory of operators; as examples, we mention the lassi�ation of ontrationsemigroups, invariant subspae theory, similarity and quasisimilarity problems, dilationsand funtional aluli; see [SNF70℄, [Bea88℄, [Kub97℄, [Atz84℄, [Kér94℄, [AE98℄, [ARS04a℄,[ARS04b℄, [AM04℄.Seond, the theory of stability is rih in what onerns the methods and ideas, andthis shall be a main point of this survey. The reent advanes deeply interat with moderntopis from omplex funtion theory, harmoni analysis, the geometry of Banah spaes,and spetral theory. These interations lead sometimes to unexpeted byproduts: newstruture theorems for the invariant subspaes of a Bergman shift [ARS04a℄, [ARS04b℄,new maximum priniples for harmoni funtions [BCT05℄ or new tauberian theorems[Kor02℄, [ABHN01℄, [Chi98℄, [BNR98b℄. This point shows that the theory deserves atten-tion not only from the applied point of view.Third, the theory of stability is interesting sine it has unovered intimate relationsbetween seemingly unrelated areas and highlighted existing links between di�erent math-ematial subjets; see also above.Finally, the theory of stability is hallenging. Despite the de�nite progress whihhas been made sine the breakthrough papers [AB88℄ and [LV88℄, in our opinion themajor advanes in the theory of stability and the understanding of their plae amongother mathematial theories (omplex funtion theory, operator theory, partial di�erentialequations) still await their development.During the last deade, the two surveys [Bat94℄, [V�u97℄ and the two monographs[Nee96℄, [ABHN01℄ on the subjet have appeared. However, these mainly disuss spetralonditions for stability (see Setions 4 and 5) while we in addition onentrate on on-ditions involving the boundary behaviour of the resolvent of the generator (Setions 6, 8and 9). Moreover, we disuss speial but important lasses of semigroups suh as positivesemigroups (Setion 7), semigroups on Hilbert spaes (Setion 8), semigroups on Banahspaes with Fourier type (Setion 9), and evolution semigroups (Setion 10). We hope thatthose who already bene�ted from reading the above mentioned aounts will �nd quite afew new attrations in this survey. In addition to new aspets in the theory we sometimesgive new proofs, interpretations and examples regarding older results. Certainly, all thepriorities we set and all the omments re�et our personal point of view. Due to ourbakground most of the results in the survey are formulated for C0-semigroups. But witha few exeptions, there are always disrete ounterparts. We believe that there should beno di�ulty in �nding the orresponding statements for disrete semigroups.Also in order to limit the size of the survey, omissions of several topis were un-avoidable. In partiular, we do not disuss other types of asymptoti behaviour (e.g.asymptoti almost periodiity) whih are from the point of view of appliations andtehniques of proofs strongly onneted to stability. We also do not disuss individualstability and appliations of the stability theory to PDEs or to abstrat operator theory.



STABILITY OF OPERATOR SEMIGROUPS 73We have omitted the stability theory of Markov operators (with appliations to PDEs),the Katznelson-Tzafriri theory for positive operators (inluding the 0 − 2 law), and non-linear aspets of stability. We hope to disuss these topis in the future also in onnetionwith the theory presented here.2. Tools for stability. We need to de�ne or to introdue some onepts or tools whihare frequently used in the study of stability of operator semigroups and whih will appearthroughout this survey.2.1. Basi notation. Throughout, X will be a (omplex) Banah spae and L(X) thespae of bounded operators onX. A C0-semigroup onX is denoted by T or (T (t))t≥0, and
A is its generator. If T ∈ L(X), then (Tn)n≥0 is the orresponding disrete semigroup.Sometimes, T will be alled the generator of this disrete semigroup.By X∗ we denote the dual spae of X, and by A∗, T (t)∗, and T ∗ adjoint operators onthe dual spae. Given some operator A, we let ̺(A), σ(A), σp(A) and σap(A) denote theresolvent set, the spetrum, the point spetrum, and the approximative point spetrum,respetively. For every λ ∈ ̺(A), we let R(λ,A) := (λ−A)−1 be the resolvent of A. Thekernel and the range of an operator A will be denoted by KerA and RgA, respetively.2.2. Laplae, Fourier and Carleman transform. For every weakly measurable (weak*measurable, if X is a dual spae) funtion f : R+ → X of exponential growth we de�nethe Laplae transform f̂ by

f̂(λ) :=

∫ ∞

0

e−λtf(t) dtfor all λ ∈ C for whih the integral above exists in the weak sense (resp. weak* sense).The Laplae transform f̂ is analyti in some right half plane of C.If f is bounded, then f̂ is at least analyti in the open right half plane C+ := {λ ∈
C : Reλ > 0}. It is well known that if A generates a C0-semigroup (T (t))t≥0, then
T̂ (λ)x = R(λ,A)x, i.e. the resolvent is the Laplae transform of the semigroup.For a funtion f ∈ L∞(R;X) (or any vetor-valued tempered distribution) we denoteby Ff the distributional Fourier transform, i.e. Ff is the element of the spae S ′(R;X) :=

L(S(R), X) of all vetor-valued Shwartz distributions whih is given by
〈Ff, ϕ〉 := 〈f,Fϕ〉, ϕ ∈ S(R).Note that for Shwartz test funtions or L1 funtions ϕ, we de�ne the Fourier transform

Fϕ by
Fϕ(β) :=

∫

R

e−iβtϕ(t) dt, β ∈ R.For every weakly measurable (weak* measurable, if X is a dual spae) funtion f :

R → X of subexponential growth (i.e. supt∈R e
−ω|t|‖f(t)‖ <∞ for every ω > 0) we de�nethe Carleman transform f̂ by

f̂(λ) :=

{
∫ ∞

0
e−λtf(t) dt, Reλ > 0,

−
∫ 0

−∞
e−λtf(t) dt, Reλ < 0.



74 R. CHILL AND Yu. TOMILOVThe Carleman transform f̂ is analyti in C\iR. The set of singular points of f̂ on iRwill be alled the Carleman spetrum of f. There will be no ambiguity in the notationof the Laplae and the Carleman transform. For the theory of Laplae and Carlemantransforms we refer to [ABHN01℄ and [Prü93℄, for that of Fourier transforms to [Sh57,Sh58℄.2.3. Frational powers of setorial operators. We all a losed, densely de�ned operator
A setorial if there exists θ ∈ (0, π) suh that the spetrum of A is ontained in the losureof the setor Σθ := {λ ∈ C : | argλ| < θ} and suh that λR(λ,A) is uniformly boundedoutside every larger setor Σθ′ . For every setorial operator A and every holomorphifuntion f : Σθ′ → C satisfying |f(λ)| ≤ M | 1+λ2

λ
|s (s > 0) one an de�ne a losedoperator f(A) by the formula

f(A) := (fϕk)(A)(A(I +A)−2)−k,where ϕ(λ) = λ
(1+λ)2 and k ∈ N is hosen large enough so that the integral

(fϕk)(A) :=
1

2πi

∫

∂Σθ′

f(λ)ϕk(λ)R(λ,A)x dλonverges absolutely. Using this funtional alulus, one obtains for f(λ) = λγ the fra-tional power Aγ (γ ∈ R), and it is lear that AγAν = Aγ+ν when suitably interpreted;see [MI86℄, [Haa06℄. This de�nition of frational powers is onsistent with the lassialde�nitions from [Bal60℄, [Kom66℄, or [MS01, De�nition 3.1.1℄.If A generates a bounded C0-semigroup, then for every β ∈ R the operator iβ − Ais setorial, and therefore the frational powers (iβ − A)γ are well de�ned. Note that
Rg (iβ −A)γ ⊃ Rg (iβ −A)ν whenever ν > γ. This inlusion is strit in general.If λ ∈ C+ and γ > 0, then, by [MS01, Lemma 6.1.5℄, we also have the representation

R(λ,A)γx =
1

Γ(γ)

∫ ∞

0

e−λttγ−1T (t)x dt, Reλ > 0, x ∈ X,By this representation, (Reλ)γR(λ,A)γ is a frational Abel mean of the semigroup
(e−iImλtT (t))t≥0 for �xed Imλ (see also the mean ergodi theorem below).Frational powers will play a ruial role in relating stability onditions for semigroupson Banah spaes to the Fourier type of these spaes; see Setions 8 and 9 below.2.4. Ergodi theory. Given f ∈L∞(R+;X), we all (λγ/Γ(γ))

∫ ∞

0
e−λttγ−1f(t) dt, λ> 0,the (frational) Abel mean of order γ > 0. It is well known (see [ABHN01, Chapter 4℄)that if limt→∞ f(t) = f∞ exists, then the Abel means of any order onverge to the samelimit f∞ as λ tends to 0+.Consequently, if a C0-semigroup is stable, then the Abel means onverge to zero. Sinethe Laplae transform of the semigroup is the resolvent of the generator, the onvergeneof Abel means an be expressed in terms of properties of the resolvent or of spetralproperties of the generator. This gives simple neessary stability onditions and showslose ties between stability and mean ergodiity of semigroups.These neessary stability onditions are expressed in the following mean ergodi the-orem whih deals also with frational Abel means. The general ase (γ 6= 1) has been



STABILITY OF OPERATOR SEMIGROUPS 75proved in [Kom69, Proposition 2.3, Theorem 2.4℄, [Wes98, Theorem 2.4℄. For the lassialase γ = 1, see for example [Yos78, Setion VIII.4℄ or [ABHN01, Corollary 4.3.2℄.Theorem 2.1 (Mean Ergodi Theorem). Let A be the generator of a bounded C0-semi-group on a Banah spae X, and let γ > 0. Then:
(1) The following assertions are equivalent.(i) limλ→0 λ

γR(λ,A)γ =: P exists strongly.(ii) X = KerA⊕ RgA.If (i) and (ii) hold, then P is the projetion onto KerA along RgA.If X is re�exive, then (i) and (ii) are always true.
(2) limλ→0R(λ,A)γx =: y exists if and only if x ∈ Rg (−A)γ, and in this ase y ∈

D((−A)γ) ∩ Rg (A) and x = (−A)γy.A semigroup (T (t))t≥0 satisfying either of the equivalent onditions (1)(i) or (1)(ii)will be alled mean ergodi. We note that the relations between frational powers of(bounded) operators and ergodi properties of their orresponding disrete semigroupswere reently thoroughly investigated in [DL01℄.Sine a semigroup (T (t))t≥0 is stable if and only if (eiβtT (t))t≥0 is stable for all β ∈ R,the mean ergodi theorem (or a simple diret reasoning) implies the following.Corollary 2.2. Let A be the generator of a stable C0-semigroup on X. Then Rg (iβ−A)is dense in X for every β ∈ R or, equivalently, σp(A
∗) ∩ iR is empty.Note that for bounded C0-semigroups, σp(A)∩ iR ⊂ σp(A

∗)∩ iR [AB88, Lemma 2.3℄,and the two sets are equal if X is re�exive.2.5. Edge-of-the wedge theorems. It has been shown reently in several artiles how ri-teria for the analyti extendability of analyti funtions aross a linear boundary an beapplied in order to obtain stability. Suh riteria are provided by so-alled edge-of-the-wedge theorems. In the lassial edge-of-the-wedge theorem the equality of distributionalboundary values of analyti funtions de�ned on the two sides of a linear boundary suf-�es for obtaining analyti extendability. However, for the study of stability, more subtleedge-of-the-wedge theorems dealing only with pointwise boundary values are needed.First theorems of this kind have been proved in [Wol47, Theorem D℄ and [Car44℄; seealso [Tom01, Theorem 4.4℄ for a orreted version of [Wol47, Theorem D℄ with a di�erentproof. These results were extended in [CT04, Theorem 3.1℄ and �nally improved to thefollowing version from [BCT05, Theorem 5.4℄. It is of independent interest for omplexfuntion theory.In order to formulate the theorem, we de�ne the retangle(2.1) R := {z ∈ C : −1 ≤ Re z ≤ 1, −1 ≤ Im z ≤ 1},and for θ ∈ (0, π
2 ) we let

Σθ := {z ∈ C : θ < arg z < π − θ}.Theorem 2.3 (Edge-of-the-wedge). Let f : R\R → C be analyti, and de�ne F : R\R →
C by F (z) = f(z) − f(z̄) (z ∈ R\R). Assume that



76 R. CHILL AND Yu. TOMILOV

(1) there exists a onstant m ≥ 0 suh that
sup

α∈(−1,1)

|f(α+ iβ)| = O(|β|−m), β → 0,

(2) there exist a measurable funtion G : R\R → R+ and a ontinuous funtion
H : R\R → R+ suh that |F | ≤ G ·H,(2.2) sup

β∈(0,1)

‖G(· + iβ)‖L1 <∞,and there exists θ0 ∈ (0, π
2 ) suh that(2.3) lim

z→α

z∈α+Σθ0

H(z) = 0 for every α ∈ (−1, 1).Then the funtion f admits an analyti extension to R.2.6. Two examples. Throughout this survey most of the statements will be illustratedon the following two basi examples of stable semigroups. The examples were used forthe study of stability in [BNR98a℄, [dLVW02℄ and [CT03℄. Choosing appropriate weightsallows one to hek for optimality of the theorems presented below.Example 2.4. In the �rst example, hoose ω : R+ → (0,∞) a ontinuous and noninre-asing funtion suh that(i) limt→+∞ ω(t) = 0, and(ii) the funtion 1/ω is of subexponential growth on R+.Let Xp = Lp(R+;ω(t)dt) (1 ≤ p < ∞), and onsider the right-shift C0-semigroup
(S(t))t≥0 de�ned by(2.4) (S(t)f)(s) :=

{

f(s− t), s ≥ t ≥ 0,

0, 0 ≤ s < t,
f ∈ Xp.An easy alulation shows that the semigroup (S(t))t≥0 is stable.Example 2.5. In the seond example, hoose the weight ω : R+ → (0,∞) as in Exam-ple 2.4 and extend it by ω(0) on R−. Let Xp := Lp(R;ω(t)dt) (1 ≤ p < ∞). We de�nethe right-shift C0-group (S(t))t∈R on Xp:(2.5) (S(t)f)(s) := f(s− t), s, t ∈ R, f ∈ Xp.As in Example 2.4, the operators S(t) are ontrative for every t ∈ R+, and the semigroup

(S(t))t≥0 is stable. Note that the group (S(t))t∈R is of subexponential growth. If 1/ωis polynomially bounded, then (S(t))t∈R will also be polynomially bounded, and thegenerator D is then a generalised salar in view of the estimate ‖R(λ,D)‖ ≤ C/|Reλ|mfor some m ∈ N and λ ∈ C \ iR.3. Orbits and stability. In general, we are interested in onditions on the generator
A whih imply stability of the orresponding semigroup. This interest is motivated bythe appliations to Cauhy problems in whih the generator A is given but in generalnot the semigroup. Nevertheless, there are some other important and equally interesting



STABILITY OF OPERATOR SEMIGROUPS 77stability onditions in terms of the semigroup itself. This setion is devoted to presentthese (nonspetral and nonalgebrai) stability onditions.3.1. Limit isometri group. A bounded semigroup (T (t))t≥0 is stable if and only if thealgebrai fator spae X/X0 is trivial, where X0 := {x ∈ X : T (·)x is stable}. This veryobvious remark provides a way of proving stability whih has indeed often been usedin the literature. The idea behind it, i.e. fatoring out a good part of a given set andshowing that the fator is zero, is in fat a frequent idea in mathematis. In the speialase here, this idea leads to the so-alled limit isometri group, an e�ient devie forproving stability of operator semigroups.The origin of this operator-theoretial onstrution an be traed bak to Dixmier[Dix50℄, Sz.-Nagy [SN47℄ and Sz.-Nagy & Foia³ [SNF70℄; see also [Gha75℄. It has beenmodi�ed by Sklyar & Shirman [SS82℄, and it was extended and re�ned by many authorssine then. The following formulation is due to Berovii [Ber93, Theorem 2 and p. 64℄although it was surely known before to other researhers in the domain.Theorem 3.1. Let (T (t))t≥0 be a bounded C0-semigroup on a Banah (resp. Hilbert)spae X. Then there exist a Banah (resp. Hilbert) spae Y, an isometri (resp. unitary)

C0-group (S(t))t∈R on Y and a bounded linear operator π : X → Y suh that(i) S(t)π = πT (t), t ≥ 0;(ii) π(x) = 0 if and only if limt→∞ ‖T (t)x‖ = 0;(iii) Y =
⋃

t≥0 S(−t)π(X).The group (S(t))t∈R is unique up to similarity.In the literature devoted to stability, Theorem 3.1 was used mostly in the Banah spaeontext and in a version when (S(t))t≥0 is just an isometri semigroup. The important fatthat (S(t))t≥0 an always be hosen as a group (with some additional spetral properties)was observed in [BG94, Proposition 2.1℄. It follows from Douglas' extension theorem[Dou69, Theorem 1℄.If A is the generator of (T (t))t≥0 and B the generator of (S(t))t∈R then one an showthat σ(B) ⊂ σ(A) ∩ iR, so that information about the boundary spetrum of A yieldsinformation about the spetrum of B. This spetral inlusion allows one to apply thewell-developed loal spetral theory for isometries in order to prove that Y is trivial, i.e.that the semigroup (T (t))t≥0 is stable. The latest developments of this idea an be foundin [BNR98a℄, [BNR98b℄, [Bat96℄.The above spetral approah an be put in a more general framework. A method ofloal resolvent estimates of B in terms of those of A and their appliation to stabilitywas reently developed in [Tom01℄. It is most e�ient when X is a Hilbert spae.3.2. Complete trajetories. Besides the approah via limit isometri groups or semi-groups, there is another but very similar approah to proving stability of a given semi-group. This approah even allows us to study stability of operator families more generalthan semigroups, e.g. evolution families.We all a funtion F : R → X a omplete trajetory for a C0-semigroup (T (t))t≥0 iffor all t ≥ 0 and all s ∈ R: F (t + s) = T (t)F (s). The following theorem haraterises



78 R. CHILL AND Yu. TOMILOVstability in terms of nonexistene of bounded, nontrivial omplete trajetories for theadjoint semigroup. A proof an be found in [Lin71, Theorem 4.3℄ or [Der76, Théorème 2℄for the disrete ase, and in [BBG96, Theorem 3.1℄ or [V�u93℄ for the ontinuous ase. Asimilar result is even true for bounded evolution families (see [BCT02℄ or Theorem 10.1below).Theorem 3.2. For a bounded C0-semigroup (T (t))t≥0 on a Banah spae X the followingstatements are equivalent:(i) The semigroup (T (t))t≥0 is stable,(ii) The adjoint semigroup (T (t)∗)t≥0 does not admit a bounded, nontrivial ompletetrajetory.(iii) If B∗ denotes the unit ball in X∗, then ⋂

t≥0 T (t)∗B∗ = {0}.The following statement is analogous to Theorem 3.2 and haraterises onvergentsemigroups in terms of mean ergodiity and omplete trajetories.Theorem 3.3. For a bounded C0-semigroup (T (t))t≥0 on a Banah spae X the followingstatements are equivalent:(i) (T (t))t≥0 is onvergent,(ii) (T (t))t≥0 is mean ergodi, and the only bounded, nontrivial omplete trajetoriesfor the adjoint semigroup (T (t)∗)t≥0 are onstants.(iii) (T (t))t≥0 is mean ergodi, and ⋂

t≥0 T (t)∗B∗ = KerA∗.The proof of Theorem 3.3 is a simple adaptation of the proof of Theorem 3.2 from[Lin71, Theorem 4.3℄. Clearly, if X is re�exive then the assumption of mean ergodiityan be omitted from (ii) and (iii). A statement related to Theorem 3.3 was proved in[Rub77, Theorem 10℄.Remark 3.4. Note that stable semigroups may have nontrivial bounded omplete traje-tories, and that non-stable semigroups may have no suh trajetories. One may take forexamples the (stable) left-shift semigroup on L2(R+) and its (nonstable) adjoint right-shiftsemigroup. Thus the use of the adjoint semigroup in Theorem 3.2 is essential.We ollet some basi properties of bounded omplete trajetories for (T (t)∗)t≥0 inthe following proposition.Proposition 3.5. Let (T (t))t≥0 be a bounded C0-semigroup on a Banah spae X withgenerator A, let F be a bounded omplete trajetory for (T (t)∗)t≥0, and let F̂ be itsCarleman transform. Then:(i) For every λ ∈ C+ and every µ ∈ C\iR, the following identity holds:(3.1) F̂ (µ) = R(λ,A∗)F (0) + (λ− µ)R(λ,A∗)F̂ (µ).(ii) If σC(F ) is the Carleman spetrum of F, then(3.2) σC(F ) ⊂ −iσ(A) ∩ R.



STABILITY OF OPERATOR SEMIGROUPS 79The proof of the property (i) an be found in [BCT02, Lemma 6.1℄, while the property(ii) follows diretly from an argument given in [BCT02, p. 133℄; see also [V�u93, Proposi-tion 3.7℄ where (ii) was proved in a partiular ase.The Carleman transform of a bounded omplete trajetory for the adjoint semigroupand the Carleman spetrum play the roles of the resolvent and the spetrum of thegenerator of the limit isometri group assoiated with a bounded semigroup. The fatthat also the Carleman spetrum of the omplete trajetory annot be larger than theboundary spetrum of the generator (ompare with the orresponding property of thelimit isometri group) beomes espeially useful when dealing with spetral stabilityriteria. Observe that the inlusion (3.2) is strit, in general.Sine the Carleman spetrum of a bounded nonzero funtion is nonempty, the equiva-lene (i)⇔(ii) of Theorem 3.2 allows one to prove stability by funtion-theoreti methods.That is, a semigroup is stable if and only if for every bounded omplete trajetory F ofthe adjoint semigroup the Carleman transform F̂ extends to an entire funtion (whih iseventually zero). This observation links the study of stability with the theory of analytiontinuation of funtions aross a linear boundary, and lies at the heart of many resultspresented here.3.3. Deay rates of orbits. In general, the struture of the orbits of a stable semigroupan be very ompliated. For example, the orbits may deay arbitrarily slowly, [Mül88℄.Theorem 3.6 (Müller). Let (Tn)n≥0 be a stable semigroup on a Banah spae X suhthat σ(T ) ∩ T 6= ∅. Then, for every positive sequene (an)n∈N ∈ c0 there exists an x ∈ Xsuh that ‖Tnx‖ ≥ an for every n ≥ 0.For variants of this statement for weak orbits and with large sets of slowly deayingorbits see [Mül01℄, [Mül03℄. For a ontinuous version of Theorem 3.6, i.e. a version forstable but not exponentially stable C0-semigroups, see [Nee96, Lemma 3.1.7℄.3.4. Superyliity. We all a vetor x ∈ X superyli for an operator T ∈ L(X) if theset {cTnx : n ≥ 0, c ∈ C} is dense in X. An operator T is, by de�nition, superyli if ithas at least one superyli vetor.Note that T is superyli if and only if λT is superyli for every λ ∈ C \ {0}. Thefollowing surprising theorem has been proved in [AB97, Theorem 2.3℄.Theorem 3.7 (Ansari-Bourdon). If T is power bounded and superyli, then (Tn)n≥0is stable.Superyliity of bounded semigroups seems to be a muh stronger property thanstability. It was shown reently in [GM04℄ and [LSPL03℄ that the Volterra operator
(V f)(t) =

∫ t

0
f(t) dt is not superyli on L2(0, 1). At the same time, σ(V ) = {0},and so the powers of V tend to zero exponentially. In general, superyliity imposesstrong restritions on the spetral and geometri properties of an operator. In partiular,normal operators annot be superyli, and also the point spetrum of the adjoint of asuperyli operator may ontain at most one point.A variant of Theorem 3.7 in the ontext of C0-semigroups was reently obtained in[Kér05℄: if (T (t))t≥0 is bounded and admits a superyli vetor (i.e. a vetor x ∈ X



80 R. CHILL AND Yu. TOMILOVsuh that {cT (t)x : t ≥ 0, c ∈ C} is dense in X), then (T (t))t≥0 is stable under theadditional assumption that Rg T (t) = X, t ≥ 0. The question whether this assumptionan be removed remains open.3.5. Real integrability onditions. The Datko-Pazy theorem haraterising exponentialstability of semigroups ([Dat72℄) admits the following version for stability of individualorbits. Note that there is no growth restrition on the semigroup. The result is an im-mediate onsequene of the inequality ‖T (t+ s)x‖ ≤ C‖T (t)x‖, s ∈ [0, 1], following fromthe semigroup property.Theorem 3.8 (Datko, Pazy). Let (T (t))t≥0 be a C0-semigroup, and let x ∈ X. If(3.3) ∫ ∞

0

‖T (t)x‖p dt <∞ for some p ∈ [1,∞)then the orbit T (·)x is stable.By onsidering the semigroup from Example 2.4 with an appropriate weight w onean see that there are stable semigroups for whih (3.3) does not hold for any x ∈ X. Formore general onditions of type (3.3) see [Nee02℄.The following integrability ondition, however, haraterises stable orbits of boundedsemigroups.Proposition 3.9. If (T (t))t≥0 is a bounded C0-semigroup on a Banah spae X and
p ∈ [1,∞) , then T (·)x is stable if and only if(3.4) lim

t→∞

∫ at

t

‖T (s)x‖p

s
ds = 0 for every a > 0.While the forward impliation follows from [Dra70, Theorem B℄, the bakward im-pliation is a simple onsequene of the semigroup property as in the above Datko-Pazyresult. Proposition 3.9 was stated in [CT03, p. 509℄ with the di�erene that only the ex-istene of the limit in (3.4) for every a > 0 was required; but then the statement beomesfalse unless the limit is independent of a > 0.Finally we give a real integrability ondition pertaining to improper integrability ofsemigroup orbits.Proposition 3.10. Let (T (t))t≥0 be a bounded C0-semigroup on a Banah spae X, andlet x ∈ X. If(3.5) ∫ ∞

0

T (t)x dt existsthen T (·)x is stable.Proof. Observe that for every s > 0 and every x ∈ X
∫ ∞

0

T (t)x dt =

∞
∑

n=0

∫ (n+1)s

ns

T (t)x dt =

∞
∑

n=0

T (s)n

∫ s

0

T (t)x dt.Hene, ∫ s

0
T (t)x dt ∈ X0 := {y ∈ X : T (·)y is stable} for every s > 0, and sine X0 is alosed subspae, we obtain that x = lims→0+

1
s

∫ s

0
T (t)x dt ∈ X0.



STABILITY OF OPERATOR SEMIGROUPS 81The onverse impliations in Theorem 3.8 and Proposition 3.10 learly do not hold;onsider the left shift semigroup on C0(R+) for a ounterexample.4. Countable spetrum onditions and stability. In this setion we turn to spe-tral onditions for stability. They are the easiest to hek and thus perhaps the mostinteresting for appliations to Cauhy problems.By the mean ergodi theorem, it is the boundary spetrum of the generator, i.e. thespetrum on the imaginary axis (resp. on the unit irle in the disrete ase) whihplays a entral role when studying stability. The main question in this setion is whetherthe spetrum alone (nature of the spetrum, size of the spetrum) already determinesstability.We will see that if A generates a bounded C0-semigroup and if
• the boundary spetrum σ(A) ∩ iR is empty, or
• the boundary spetrum is ountable and ontains no residual spetrum (Arendt-Batty-Lyubih-Vu Theorem),then the semigroup is stable. In many appliations, the ountable spetrum ondition issatis�ed with only one point in the boundary spetrum, e.g. when A generates a boundedholomorphi or positive eventually norm-ontinuous semigroup.4.1. Empty boundary spetrum. We present the speial ase of empty boundary spetrumseparately. It is an immediate onsequene of Ingham's tauberian theorem for whihwe present a short and instrutive proof. Later we will indiate how this proof an beadapted in order to prove also the ABLV theorem or the Katznelson-Tzafriri theorem (seeCorollary 4.4 and Theorem 5.2 below), thus unifying the proofs of these major results inthe theory of stability.Theorem 4.1 (Ingham). Let f ∈ BUC(R+;X) (the spae of bounded, uniformly on-tinuous, X-valued funtions on R+) be suh that its Laplae transform f̂ has a loallyintegrable extension on the imaginary axis in the sense that (f̂(α+ i·))αց0 onverges in

L1
loc(R;X) to some funtion f̂(i·). Then f ∈ C0(R+;X).Proof. Let ϕ ∈ S(R) be suh that Fϕ ∈ D(R). Then, by Planherel's theorem,

f ∗ ϕ(t) =

∫ ∞

0

f(s)ϕ(t− s) ds = lim
α→0+

∫ ∞

0

e−αsf(s)ϕ(t− s) ds

= lim
α→0+

∫

R

f̂(α+ iβ)eiβtF−1ϕ(β) dβ =

∫

R

f̂(iβ)eiβtF−1ϕ(β) dβ.By the Lemma of Riemann-Lebesgue,
lim

|t|→∞
f ∗ ϕ(t) = 0.Choosing an approximate unit of appropriate test funtions and using that f is boundedand uniformly ontinuous, one obtains the laim.Applying Ingham's theorem to eah orbit T (·)x, the following orollary is immediate.However, note that this orollary also easily follows from Proposition 3.5 and Theorem 3.2.



82 R. CHILL AND Yu. TOMILOVCorollary 4.2. If A generates a bounded C0-semigroup and if the boundary spetrum
σ(A) ∩ iR is empty, then the semigroup is stable.4.2. Countable boundary spetrum. The ase of ountable boundary spetrum (theABLV theorem) an also be proved using a tauberian theorem. The orresponding taube-rian theorem is a generalisation of Ingham's theorem. One allows for some singularities ofthe Laplae transform f̂ on the imaginary axis, but imposes an additional ergodi ondi-tion on f , and obtains the same onlusion. The following formulation of the theorem anbe �rst found in [BNR98b℄, but the proof we give is taken from [Chi98℄. It uses Loomis'theorem on almost periodi funtions; a relatively short proof of Loomis' theorem anbe found in Katznelson [Kat68, Theorem 5.21℄. In more abstrat forms, a proof of thefollowing theorem an also be found in [Bas95℄, [Bas79℄, [CP01℄, [CF02℄.Theorem 4.3. Let f ∈ BUC(R+;X) be suh that its Laplae transform f̂ has a on-tinuous extension to i(R \ E), where E ⊂ R is a losed and ountable set. If, for every
β ∈ E,(4.1) lim

α→0+
αf̂s(α+ iβ) = 0 uniformly in s ∈ R+,where fs(t) = f(s+ t), then f ∈ C0(R+;X).Proof. We de�ne the operator

K : L1(R) → BUC(R;X)/C0(R;X) =: Z, ϕ 7→ f ∗ ϕ+ C0(R;X),in whih we have extended the funtion f by 0 for negative reals. Similarly as in theproof of Ingham's theorem, one shows that for every ϕ ∈ S(R) suh that Fϕ ∈ D(R)and suppF−1ϕ ∩ E = ∅, f ∗ ϕ ∈ C0(R;X), i.e. Kϕ = 0. Hene, for every z∗ ∈ Z∗ thefuntion K∗z∗ ∈ L∞(R) has spetrum ontained in −E, i.e. its Fourier transform hassupport ontained in −E.Sine E is ountable, for every ψ ∈ L1(R) the funtion K∗z∗ ∗ψ is almost periodi byLoomis' theorem [Kat68℄. From the ergodi ondition (4.1) one easily dedues that theAbel means αK̂∗z∗(α− iβ) onverge to zero as α→ 0+ for all β ∈ E. By the uniquenesstheorem for almost periodi funtions [LZ82, Setion 2.3℄, K∗z∗ = 0 for every z∗ ∈ Z∗.Hene, K = 0, i.e. f ∗ ϕ ∈ C0(R;X) for every ϕ ∈ L1(R). Choosing an approximate unitof L1 funtions and using that f is bounded and uniformly ontinuous, one obtains thelaim.Applying Theorem 4.3 to eah orbit T (·)x and noting that the spetral ondition
Rg (iβ −A) = X implies the ergodiity ondition (4.1), we obtain as a orollary the ABLVtheorem. This theorem has been proved independently in [AB88℄ and [LV88℄. While in[LV88℄ the ABLV theorem was proved by a pure semigroup method, the artile [AB88℄already emphasises the tauberian harater. However, the proof of the orrespondingtauberian statement was quite ompliated using an argument of trans�nite indution.It is remarkable that the ABLV theoem an be also dedued from results in [Bas79℄ and[Atz84℄. The ABLV theorem is also a orollary to the Katznelson-Tzafriri theorem belowand to a reent stability result involving resolvent onditions (see Theorem 6.2 below).Besides the present proof based on Theorem 4.3 we will thus indiate two more proofs ofthe ABLV theorem.



STABILITY OF OPERATOR SEMIGROUPS 83Corollary 4.4 (ABLV). If A generates a bounded C0-semigroup on a Banah spae X,if the boundary spetrum σ(A) ∩ iR is ountable, and if Rg (iβ − A) is dense in X forevery β ∈ R, then the semigroup is stable.The ountable spetrum ondition is the best possible ondition among the spetralonditions if no other than spetral assumptions are made. A standard ounterexampleis the unitary group U(t)f(s) = etsf(s) on L2(E; dµ), where E ⊂ iR is losed andunountable and µ is a nonatomi measure on E.Note on the other hand that for any given losed set E ⊂ R there exists a stablesemigroup whose generator has boundary spetrum iE. One may, for instane, onsidermultipliation semigroups on appropriate L2 spaes in order to see this. In Examples 2.4and 2.5, the boundary spetrum is the whole imaginary axis. This shows that spetralonditions as onsidered above are on the one hand best possible, but on the other handfar from haraterising stable semigroups.5. The Katznelson-Tzafriri theorem and stability5.1. The Katznelson-Tzafriri theorem. Motivated by studies of di�erenes of powers ofpositive operators, Katznelson & Tzafriri disovered in [KT86℄ a new kind of tauberiantheorem for power series. We only formulate the orresponding result in the operatorontext.Denoting by A(T) and A+(T) the spaes of Fourier transforms of sequenes in l1(Z)and l1(N), respetively, we say that a funtion f ∈ A+(T) is of spetral synthesis withrespet to a losed set E ⊂ T, if there exists a sequene (fn)n∈N ⊂ A(T) suh that eah
fn vanishes in a neighbourhood of E and limn→∞ fn = f in A(T).Given f = Fa ∈ A+(T) with a ∈ l1(N) and given a power bounded T ∈ L(X), wede�ne f(T ) :=

∑∞
n=0 anT

n.Theorem 5.1 (Katznelson-Tzafriri). Let T ∈ L(X) be a power bounded operator. If
f ∈ A+(T) is of spetral synthesis with respet to the boundary spetrum σ(T ) ∩ T then
limn→∞ ‖Tnf(T )‖ = 0.One may interpret the Katznelson-Tzafriri theorem as an individual stability result,i.e. limn→∞ Tnx = 0 for every x ∈ Rg f(T ) and every appropriate f , and at the sametime it gives a uniform estimate for the onvergene to 0. If Rg f(T ) is dense in X, thenthe Katznelson-Tzafriri theorem even implies stability of (Tn)n≥0.The remark by J. Bourgain in [KT86℄ shows that Theorem 5.1 is a haraterisationof f being of spetral synthesis in the following sense: f ∈ A+(T) is of spetral synthesiswith respet to a losed set E ⊂ T if and only if for every ontration T on an arbitraryBanah spae with σ(T ) ⊂ E we have limn→∞ ‖Tnf(T )‖ = 0.Under the assumptions of the Katznelson-Tzafriri theorem, σ(T ) ∩ T ⊂ {λ ∈ T :

f(λ) = 0}, and the latter set is neessarily of measure zero. Thus, the Katznelson-Tzafririassumptions impose already strong restritions on the boundary spetrum of T.The analogue of the Katznelson-Tzafriri theorem for C0-semigroups was obtained in[ESZ92℄ and [V�u92b℄. We say that a funtion f ∈ L1(R+) is of spetral synthesis with



84 R. CHILL AND Yu. TOMILOVrespet to a losed set E ⊂ R if there exists a sequene (fn)n∈N ⊂ L1(R) suh that eahFourier transform Ffn vanishes on a neighbourhood of E and limn→∞ fn = f in L1(R).Given f ∈ L1(R+) and a bounded C0-semigroup (T (t))t≥0, we put f̂(T ) :=
∫ ∞

0
f(t)T (t) dt, the integral being strongly de�ned.Theorem 5.2. Let A be the generator of a bounded C0-semigroup (T (t))t≥0 on a Ba-nah spae X. If f ∈ L1(R+) is of spetral synthesis with respet to (−iσ(A)) ∩ R, then

limt→∞ ‖T (t)f̂(T )‖ = 0.The following proof of Theorem 5.2, using only the simple argument from the proofof Ingham's theorem (Theorem 4.1) and the de�nition of spetral synthesis, shows thetauberian nature of the Katznelson-Tzafriri theorems. From the proof it is straightforwardhow to formulate the orresponding tauberian result for bounded funtions, but we willskip this.First proof of Theorem 5.2. Let f be as in the assumption and hoose (fn)n∈N ⊂ L1(R)as in the de�nition of spetral synthesis. Convolving fn with appropriate test funtions,we an without loss of generality assume that Ffn has ompat support. Extend thesemigroup by zero on the negative reals. As in the proof of Ingham's theorem, Parseval'sidentity implies for every n ∈ N and every t ≥ 0
∫

R

T (t+ s)fn(s) ds = lim
α→0+

∫

R

e−α(t+s)T (t+ s)fn(s) ds

= lim
α→0+

1

2π

∫

R

R(α+ iβ, A)eiβtFfn(β) dβ

=
1

2π

∫

R

R(iβ, A)eiβtFfn(β)dβ.Thus, by the Lemma of Riemann-Lebesgue,
lim

t→∞

∫

R

fn(s)T (t+ s) ds = 0.Sine
lim

n→∞

∫

R

fn(s)T (t+ s) ds =

∫ ∞

0

f(s)T (t+ s) ds = T (t)f̂(T )uniformly in t ∈ R+, one obtains the laim.One may also prove the Katznelson-Tzafriri theorem by using omplete trajetories.First note the following general onvergene property.Lemma 5.3. Let (T (t))t≥0 be a bounded C0-semigroup on a Banah spae X, and let
f ∈ L1(R+). Then limt→∞ T (t)f̂(T ) = 0 strongly if and only if

f̂(T )∗
(

⋂

t≥0

T ∗(t)B∗
)

= {0}.The proof of Lemma 5.3 uses the w∗-ontinuity of f̂(T )∗ and repeats the proof ofTheorem 3.2 in [Lin71, Theorem 4.3℄.Seond proof of Theorem 5.2. It su�es to prove that under the assumptions of Theorem5.2 one has limt→∞ T (t)f̂(T ) = 0 strongly. This result applied to the semigroup de�ned



STABILITY OF OPERATOR SEMIGROUPS 85by T(t)Y := T (t)Y on the spae of all Y ∈ L(X) suh that limt→0+ ‖T (t)Y − Y ‖ = 0yields limt→∞ ‖T (t)f̂(T )‖ = 0; ompare with [V�u92a, p. 79℄.Let f be as in the assumption and hoose (fn)n∈N ⊂ L1(R) as in the de�nition ofspetral synthesis. As above in the �rst proof, we may without loss of generality assumethat Ffn has ompat support.Let F be a bounded omplete trajetory for (T (t)∗)t≥0. By Proposition 3.2, the Car-leman spetrum of F is ontained in −iσ(A) ∩ R. By Parseval's identity,
f̂(T )∗F (0) = lim

n→∞

∫

R

F (t)fn(t) dt = lim
n→∞

lim
α→0+

∫

R

e−α|t|F (t)fn(t) dt

=
1

2π
lim

n→∞
lim

α→0+

∫

R

(F̂ (α− iβ) − F̂ (−α− iβ))Ffn(β) dβ = 0,where F̂ is the Carleman transform of F , and the integrals are understood in the weak∗sense. Sine
⋂

t≥0

T ∗(t)B∗ ⊂ {F (0) : F bounded, omplete trajetory for (T ∗(t))t≥0},the laim follows from Lemma 5.3.In [ESZ90, p. 284�286℄ and [ESZ92, p. 215�216℄ it was shown how the disrete andthe ontinuous version of the ABLV theorem (Theorem 4.4) an be dedued from theKatznelson-Tzafriri theorems. It follows from the Mittag-Le�er theorem in [Est84℄ thatunder the assumptions of the ABLV theorem ⋂

β∈R
Rg (iβ−A) is dense in X. Using thisand the fat that ountable losed sets are of spetral synthesis, it follows that underthe assumptions of the ABLV theorem the span of {Rg f̂(T ) : f ∈ L1(R+) is of spetralsynthesis with respet to −iσ(A) ∩ R} is also dense in X [ESZ92, Theorem 3.7℄.5.2. Extensions of the Katznelson-Tzafriri theorem. Let us reonsider now the disreteKatznelson-Tzafriri theorem and disuss some extensions. First observe that the mapping

f 7→ f(T ) is a funtional alulus from A+(T) into L(X) for the operator T . The formu-lation of the Katznelson-Tzafriri theorem thus suggests that for operators admitting rihfuntional aluli more general statements an be obtained.For example, if T is a ontration on a Hilbert spae, and if A(D) denotes the disalgebra of all holomorphi funtions D → C whih are ontinuous up to the boundary, thenthe von Neumann inequality implies that one an de�ne a funtional alulus f → f(T )from A(D) into L(X) for whih ‖f(T )‖ ≤ ‖f‖∞. Using this funtional alulus, Esterle,Strouse and Zouakia proved the following rami�ation of the Katznelson-Tzafriri theoremin the Hilbert spae setting, [ESZ90, Corollary 2.12℄.Theorem 5.4 (Esterle-Strouse-Zouakia). If T is a ontration on a Hilbert spae and
f ∈ A(D), then limn→∞ ‖Tnf(T )‖ = 0 if and only if f = 0 on σ(T ) ∩ T.Taking the von Neumann inequality as a starting point, it was proved in [KN97,Proposition 1.6℄ that Theorem 5.4 is also true for all polynomially bounded T .On the other hand, it is known that ontrations on Hilbert spaes even admit an
H∞(D) funtional alulus. This advantageous point has been exploited by Berovii



86 R. CHILL AND Yu. TOMILOV[Ber90℄. Reall that for every f ∈ H∞(D) the radial limits f(eiθ) := limr→1 f(reiθ) existalmost everywhere and ‖f‖H∞(D) = ‖f‖L∞(T).Theorem 5.5 (Berovii). Let T be a ompletely nonunitary ontration on a Hilbertspae H, and let f ∈ H∞(D). If limr→1 f(reiθ) = 0 for every eiθ ∈ σ(T ) ∩ T then
limn→∞ ‖Tnf(T )‖ = 0. The onverse impliation is not true.Also Allan and Ransford obtained various generalisations of the Katznelson-Tza-friri theorem, [AR89℄. In partiular, for several speial hoies of f in ase when f isnot of spetral synthesis with respet to σ(T ) ∩ T they obtained sharp estimates of
lim supn→∞ ‖Tnf(T )‖. This line of researh was ontinued in [BBG96℄ where similar(and stronger) estimates for the strongly ontinuous ase and for general f were ob-tained assuming, however, ountability of the boundary spetrum. Very general formsof Katznelson-Tzafriri theorems following from tauberian theorems for the vetor-valuedLaplae-Stieltjes transform an be found in [Bat90℄.5.3. Optimality of the Katznelson-Tzafriri theorem. A natural and interesting questionis whether it is possible to drop the assumption of boundedness of the operator semigroupin the Katznelson-Tzafriri theorem. Consider the speial ase of the disrete version ofKatznelson-Tzafriri theorem with f(z) = z−1. This speial ase was in fat a motivationfor the paper [KT86℄ and beame most popular later probably beause of its simple form.If σ(T ) = {1}, the following result was obtained earlier in [Est83℄, and the general asean be redued to this ase as noted later in [V�u92a℄. Observe that one point sets aresets of spetral synthesis in the algebra A(T).Corollary 5.6 (Katznelson-Tzafriri). Let T ∈ L(X) be a power bounded operator. Then
limn→∞ ‖Tn+1 − Tn‖ = 0 if and only if σ(T ) ∩ T ⊂ {1}.Clearly, if limn→∞ ‖Tn+1 − Tn‖ = 0 then neessarily limn→∞

1
n
‖Tn‖ = 0 and σ(T )∩

T ⊂ {1}. However, are these two onditions already su�ient? If not, an they be om-plemented in order to obtain the same or probably a somewhat weaker onlusion?Allan and Ransford showed that for every α > 0 there exists a Banah spae operator
T suh that σ(T ) ⊂ T, ‖Tn‖ = O(nα) and ‖Tn(I−T )‖ 6= O(nβ) for every β < α, [AR89℄.Moreover, if T is power bounded then ‖Tn+1−Tn‖may onverge to zero arbitrarily slowly.Tomilov and Zemánek provided even stronger examples, [TZ04℄. It was proved thatthere exists a Hilbert spae operator T suh that σ(T ) ∩ T = {1}, limn→∞

1
n
‖Tn‖ = 0,and supn≥0

∥

∥

1
n+1

∑n
k=0 T

k
∥

∥ < ∞ (that is, T is Cesàro bounded), but, at the same time,
limn→∞ ‖Tn(T−I)m‖ = ∞ for everym ≥ 0. Thus, even in a Hilbert spae, the additionalassumption of Cesàro boundedness of T does not help to get a onvergene of Tn restritedto natural subsets of Rg (T − I).Answering a question of Allan, it was also proved in [TZ04℄ that if X = L1(0, 1) ⊕
L1(0, 1) and

T =

(

I − V −V
O I − V

)

,where V f(t) :=
∫ t

0
f(s) ds is the Volterra operator, then σ(T ) = {1} and limn→∞

1
n
‖Tn‖

= 0, but limn→∞ ‖Tn(T−I)‖ = ∞. Therefore, the strongest possible spetral assumption
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σ(T ) = {1} does not lead, in general, to the onvergene of ‖Tn(T − I)‖ to zero. Note,however, that in this example limn→∞ ‖Tn(T − I)5‖ = 0.Hene, the Katznelson-Tzafriri theorem is optimal in several senses. The above exam-ples show also that the orresponding tauberian theorems are optimal. In partiular, thisanswers an open problem posed by Korevaar in [Kor02, Question 20.3℄.Remark 5.7. There is a ontinuous version of Corollary 5.6 due to Arendt & Prüss[AP92, Theorem 3.10℄. It says that if (T (t))t≥0 is a bounded, eventually di�erentiable
C0-semigroup, then σ(A)∩iR ⊂ {0} is equivalent to limt→∞ ‖AT (t)‖ = 0. At the moment,it is not lear, whether one an �nd onterexamples to natural extensions of this theorem,although we strongly suspet that this is possible.6. Resolvent onditions and stability. The boundary behaviour of the resolventof the generator of a bounded C0-semigroup near the imaginary axis gives importantinformation about stability of the semigroup. However, in the previous two setions onlyspetral onditions were onsidered. By the mean ergodi theorem, they re�et some typeof boundary behaviour of the resolvent near the imaginary axis, but they do this in avery rough way if one is interested in a haraterisation of stability or at least moregeneral su�ient onditions for stability. To see how far the spetral onditions and eventhe tauberian theorems are from a haraterisation of stability one may onsider theExamples 2.4 and 2.5 with appropriate weights w. For instane, if w(t) = (log(2 + t))−1,then for every nonzero f ∈ Xp and every β ∈ R, the loal resolvent R(·, D)f does notextend ontinuously near iβ. In partiular, the boundary spetrum is the whole imaginaryaxis, but it is even true that every nonzero orbit S(·)f does not satisfy the onditionsneither of Ingham's tauberian theorem nor of the tauberian Theorem 4.3. Suh examplesshow that �ner resolvent onditions are needed.Very reently, two types of suh resolvent onditions have turned out to be useful:pointwise resolvent onditions re�eting the boundary behaviour of the resolvent horizon-tally near every point of the imaginary axis and (omplex) integral resolvent onditionsre�eting the boundary behaviour of integrals of loal resolvents along vertial lines nearthe imaginary axis. Both types of onditions yield stability of semigroups on general Ba-nah spaes, but they an beome neessary and su�ient in Hilbert spaes or an beimproved substantially in Banah spaes with Fourier type as we will see in Setions 8and 9 below.6.1. Pointwise resolvent onditions. The �rst statement involving pointwise resolventonditions shows that rather mild properties of the boundary behaviour of resolventsmay lead to stability of the orresponding semigroup.Theorem 6.1 (Pointwise resolvent ondition). If A generates a bounded C0-semigroupon a Banah spae X and if there exists a dense set M ⊂ X suh that for every x ∈ Mand every β ∈ R(6.1) lim

α→0+
αR(α+ iβ, A)2x = 0,then the semigroup is stable.



88 R. CHILL AND Yu. TOMILOVIf β ∈ R and if the ondition (6.1) holds for every x ∈ X, then ‖αR(α+ iβ, A)2‖ ≤Mfor all α > 0 by the uniform boundedness priniple. In this ase, iβ does not belong tothe spetrum of A sine iβ ∈ σ(A) implies ‖α2R(α + iβ, A)2‖ ≥ 1 for all α > 0. Thus,the use of a dense set in Theorem 6.1 is essential as soon as the boundary spetrum ofthe generator is not empty.Theorem 6.1 an be proved by using the haraterisation of stability in terms ofnonexistene of nontrivial, bounded, omplete trajetories for the adjoint semigroup (The-orem 3.2) and an edge-of-the-wedge theorem from omplex funtion theory from [Tom01℄;see [BCT02, p. 133℄. For an alternative approah via the limit isometri group see [Tom01,Theorem 4.7℄.The ondition (6.1) holds if for some γ ∈ (0, 1)

lim
α→0+

αγR(α+ iβ, A)1+γx = 0,or, by the mean ergodi theorem, if
lim

α→0+
R(α+ iβ, A)x exists.Moreover, by the mean ergodi theorem again, the latter ondition follows from x ∈

Rg (iβ − A) and Rg (iβ −A) = X. Hene, Theorem 6.1 yields the following orollary,[BCT02, Theorem 2.4℄.Corollary 6.2 (Range ondition). If A generates a bounded C0-semigroup on a Banahspae X and if(6.2) ⋂

β∈R

Rg (iβ −A) is dense in X,then the semigroup is stable.The ondition (6.2) does not, in general, haraterise stability of a bounded C0-semigroup, and even weaker onditions do not; see the omments in Setion 9 below.It is an open problem whether the ondition from Theorem 6.1 haraterises stability ofbounded C0-semigroups, or whether on the other hand the onditions (6.1) and (6.2) areequivalent.If A satis�es the onditions of the ABLV theorem, then the ondition (6.2) is satis�edby the Mittag-Le�er theorem as we saw in Setion 5. Hene, the ABLV theorem is aorollary to Corollary 6.2.We point out that spaes like the intersetion of ranges in ondition (6.2) are notompletely new in operator theory. In fat, these spaes are very similar to so-alledspetral subspaes whih were already known in loal spetral theory.Given an operator (a generator) A, we say that a vetor x ∈ X has its loal spetrumin a losed set F ⊂ C if the loal resolvent R(·, A)x extends analytially outside F.When
A is a normal operator the set of all x ∈ X having their loal spetrum in F ⊂ C, i.e. thespetral subspae orresponding to F, an be desribed algebraially as ⋂

λ∈C\F Rg (λ−A),[LN00℄. This desription an be generalised for some lasses of operators whih are loseto the lass of normal operators. For the latest advanes in this area see [MMN04℄. Appli-ations of stability theory to the study of intersetions of ranges of semigroup generatorsare disussed in [BCT02℄.



STABILITY OF OPERATOR SEMIGROUPS 89For stability, i.e. given a generator A of a bounded C0-semigroup, the spetral sub-spae orresponding to the losed right half plae C̄+ ould be of interest. Observe thatevery vetor x belonging to this spetral subspae has loal spetrum in the open lefthalf plane, i.e. the loal resolvent extends analytially aross the imaginary axis. ByIngham's theorem, the orbit T (·)x is stable for every suh x. Hene, if the spetral sub-spae orresponding to the losed right half plane is dense in X, then the semigroup isstable.So, it is natural to take intersetions of ranges as good substitutes for spetral stabilityonditions. By Corollary 6.2, this strategy appears to be fruitful even when the normalityof A is dropped.6.2. Integral resolvent onditions. We onsider two types of integral onditions: ondi-tions on the behaviour of the integral of loal resolvents along whole vertial lines nearthe imaginary axis ('global integrability riterion') and onditions on the behaviour ofthe integral along bounded intervals of vertial lines near the imaginary axis ('loal inte-grability riterion').One an onsider other types of integral onditions, e.g. when loal resolvents belongto some Bergman spae near the imaginary axis. However, these onditions an be studiedby redution to the two onditions mentioned above [CT03℄.The following two results an be found in [CT03, Theorem 3.1℄ and in [Tom01, The-orem 4.1℄, respetively.Theorem 6.3 (Global integrability riterion). If A generates a bounded C0-semigroupon a Banah spae X, and if for some γ > 1 and for every x from a dense subsetof X(6.3) lim
α→0+

∫

R

‖αγ−1R(α+ iβ, A)γx‖ dβ = 0,then the semigroup is stable.Theorem 6.4 (Loal integrability riterion). Assume that A generates a bounded C0-semigroup on a Banah spae X. Assume also that for every β ∈ R there exists an openneighbourhood U ⊂ R of β and a dense set M ⊂ X suh that(6.4) lim
α→0+

∫

U

‖αR(α+ iβ′, A)2x‖ dβ′ = 0 for every x ∈M.Then the semigroup is stable.It follows from Young's inequality, Planherel's theorem and Theorem 8.1 that theondition (6.4) beomes neessary if X is a Hilbert spae; see the disussion in [CT03,p. 506℄.It is possible to give an integral stability riterion for individual orbits of not ne-essarily bounded C0-semigroups [CT03, Theorem 5.1℄. It is in some sense intermediatebetween the similar stability ondition (6.4) in Banah spaes and the integral stabilityriterion in Hilbert spaes in Setion 8 below.



90 R. CHILL AND Yu. TOMILOVTheorem 6.5. Let A be the generator of a C0-semigroup (T (t))t≥0 on a Banah spae
X. Let p ∈ (1,∞) and q := p

p−1 . Assume that
C+ ⊂ ̺(A), and(6.5)
sup
α>0

α

∫

R

‖R(α+ iβ, A∗)x∗‖q dβ <∞ for every x∗ ∈ X∗.If, for some x ∈ X,(6.6) lim
α→0+

α

∫

R

‖R(α+ iβ, A)x‖p dβ = 0,then
lim

t→∞
‖T (t)x‖ = 0.Note that under the onditions of the above theorem, the semigroup (T (t))t≥0 annotgrow too fast: by [CT03, Proposition 5.3℄ it has a sublinear growth if X has a nontrivialFourier type.7. Stability of positive semigroups. If more struture of the semigroup or the under-lying Banah spae is given, then one may expet better stability results. In this setion westart to disuss suh types of results, turning our attention �rst to positive semigroups onBanah latties or, more generally, on ordered Banah spaes, [MN91℄, [Nag86℄, [Sh74℄.Note that in general, as far as spetral or resolvent onditions for stability are onerned,the stability theory of positive semigroups omprises the same di�ulties as the theoryof general semigroups on Banah spaes. Examples 2.4 and 2.5 whih are positive semi-groups on Lp spaes may serve as a demonstration of this; see also the disussion inSetion 9 below.Nevertheless, an interplay between positivity of a semigroup and geometri propertiesof the underlying Banah lattie leads to some spei� stability results.7.1. Positive semigroups on general Banah latties. Let X be a (omplex) Banah lat-tie. The positive one will be denoted by X+.We start by disussing some resolvent (resp. range) onditions for stability of positivesemigroups on general Banah latties. Reall that a Banah lattie is alled a KB spaeif every norm bounded inreasing sequene onverges. A Banah lattie is a KB spae ifand only if c0 6⊂ X.Proposition 7.1. Let (T (t))t≥0 be a bounded positive C0-semigroup on a Banah lat-tie X.(i) If x ∈ X+ and limα→0+ αR

2(α,A)x = 0, then T (·)x is stable.(ii) If x ∈ X+ and w − limα→0+R(α,A)x exists, then T (·)x is stable.(iii) If x ∈ X+, supα>0 ‖R(α,A)x‖ < ∞, and if X is a KB spae, then T (·)x isstable.(iv) If x ∈ X and limα→0+R(α,A)x± exist, then T (·)x is stable.Proof. (i) By positivity, ‖αR(α+ iβ, A)2x‖ ≤ ‖αR(α,A)2x‖ for every α > 0, β ∈ R andevery x ∈ X+. The laim thus follows from Theorem 6.1 applied to the restrition of the



STABILITY OF OPERATOR SEMIGROUPS 91semigroup (T (t))t≥0 to the losure of the linear span of {T (t)x : t ≥ 0}, taking the linearspan itself as a dense set; see also [Tom01, Corollary 4.9℄.(ii) Sine the net (R(α,A)x)αց0 is inreasing and weakly onvergent, we obtainthat limα→0+R(α,A)x exists by Dini's theorem. By the mean ergodi theorem,
limα→0+ αR(α,A)2x = 0, so that the assertion follows from (i). But one may also argueas follows: sine x is positive, the existene of limα→0+R(α,A)x implies that ∫ ∞

0
T (s)x dsexists by the tauberian theorem [ABHN01, Theorem 4.2.16℄. Now Proposition 3.10 impliesthe laim.(iii) By the KB property, limα→0R(α,A)x exists. Then apply (ii).(iv) follows diretly from (ii).By positivity, ‖R(λ,A)x‖ ≤ ‖R(Reλ,A)x‖ for every λ ∈ C+ and every x ∈ X+, sothat under the onditions of Proposition 7.1 (ii), (iii) or (iv) we have supλ∈C+

‖R(λ,A)x‖
< ∞. Thus, the onditions of Proposition 7.1 onern, in fat, the boundary behaviourof the loal resolvent R(·, A)x in the whole right half-plane.A result similar to Proposition 7.1 (ii) an be found in [Neu86, Proposition 3.5℄ and[Nag86, C-IV, Proposition 1.9℄.Corollary 7.2. Let (T (t))t≥0 be a bounded positive C0-semigroup on a Banah lat-tie X. If limα→0+R(α,A)x exists for every x ∈ C∞(A) :=

⋂∞
n=1D(An), then (T (t))t≥0is stable.For the proof it su�es to observe that C∞(A) ∩ X+ is total in X, [Nag86, C-IV,Remark 1.10℄. Corollary 7.2 has been proved in [Neu86, Proposition 3.5℄ with C∞(A)replaed by D(A), and in [Nag86, C-IV, Proposition 1.9℄ with C∞(A) replaed by sometotal set D ⊂ X+.Note that under the assumptions of Corollary 7.2, muh more is true. By the uni-form boundedness priniple (applied in the Fréhet spae C∞(A)), there exists n ∈ Nsuh that supα>0 ‖R(α,A)R(λ0, A)n‖ < ∞, where λ0 > 0 is hosen large enough. Ap-plying the resolvent identity n times, this implies supα>0 ‖R(α,A)‖ < ∞. Hene, bypositivity of (T (t))t≥0, the spetral bound s(A) < 0. By [EN99, Theorem 6.1.14℄, theondition s(A) < 0 atually implies exponential stability of T (·)x for every x ∈ D(A),and it even implies exponential stability of (T (t))t≥0 itself if X is an Lp spae, [ABHN01,Theorem 5.3.6℄.By the mean ergodi theorem, the stability ondition from Corollary 7.2 is equivalentto saying that C∞(A) ⊂ RgA. Clearly, it annot be replaed by the mere ondition that

RgA is dense in X as the isometri shift semigroup on L2(R) shows. However, in someases, the ondition RgA = X haraterises stability, [Nag86, C-IV Theorem 1.5℄.Theorem 7.3 (Positive, norm ontinuous semigroups). If A generates a positive, even-tually norm-ontinuous and bounded C0-semigroup on a Banah lattie, then the semi-group is stable if and only if RgA is dense.Note that the eventual norm ontinuity of the semigroup implies σ(A)∩ iR ⊂ {0} bye.g. [Nag86, C-III Proposition 2.9, Corollary 2.13℄, so that Theorem 7.3 diretly followsfrom the ABLV theorem.



92 R. CHILL AND Yu. TOMILOVAnother diretion in the researh on stability of positive semigroups is based on theonept of domination. There are three variants of this onept in the literature.Definition 7.4. Let (T (t))t≥0 and (S(t))t≥0 be C0 semigroups on a Banah lattie Xwith generators A and B, respetively. Assume that (S(t))t≥0 is positive.(i) We say that (T (t))t≥0 is dominated by (S(t))t≥0 if |T (t)x| ≤ S(t)|x| for every
x ∈ X.(ii) We say that A is resolvent dominated by B if |R(λ,A)x| ≤ R(λ,B)|x| for every
x ∈ X and every λ > 0 su�iently large.(iii) We say that (T (t))t≥0 is asymptotially dominated by (S(t))t≥0 whenever
limt→∞ ‖(S(t)x − T (t)x)−‖ = 0 for every positive x ∈ X, or, equivalently,
limt→∞ dist(S(t)x− T (t)x,X+) = 0.Clearly, (i) implies (ii), and both onditions are equivalent if X is σ-order omplete,[Nag86, p. 269℄. At the same time, (iii) is stritly weaker than (ii). Indeed, any onvergent(positive) semigroup is asymptotially dominated by the onstant semigroup, but learlyits generator may not be, in general, resolvent dominated by 0, the generator of theonstant semigroup.It is natural to expet that stability properties of dominated semigroups are inheritedby those of the dominating semigroups. This appears to be true even for asymptotidomination, [EKRW01, Theorem 4.5℄.Theorem 7.5. Let X be a Banah lattie with order ontinuous norm, let (T (t))t≥0and (S(t))t≥0 be positive semigroups on X, and assume that (T (t))t≥0 is asymptotiallydominated by (S(t))t≥0. If (S(t))t≥0 is stable, then (T (t))t≥0 is also stable.Atually, Theorem 7.5 was proved in [EKRW01℄ with stability replaed by onver-gene. If one replaes stability by onvergene in Theorem 7.5, then it is shown in[EKRW01, Example 4.7 (a)℄ that the positivity of both semigroups, i.e. also of the domi-nated semigroup, is neessary in general. It is not lear whether the positivity of (T (t))t≥0is also neessary in Theorem 7.5 as we stated it here.Inheritane of stability assuming resolvent domination seems to be more di�ultto establish. However, by [RW00℄ (see also [RW97℄), resolvent domination allows oneto dedue stability of the dominated semigroup from pure spetral onditions on thegenerator of the dominating semigroup.In general, one an also study stability of positive semigroups on ordered Banahspaes with a normal one. Typial examples of ordered Banah spaes with a normalone whih are not Banah latties are C∗-algebras. Stability of positive C0-semigroupson C∗-algebras with unit admits a simple haraterisation, [GN81, Satz 3.2℄.Theorem 7.6 (Groh-Neubrander). Let (T (t))t≥0 be a positive C0-semigroup on a C∗-algebra A with unit. Then (T (t))t≥0 is exponentially stable, i.e. the exponential growthbound ω0(A) < 0, if and only if it is weakly stable, i.e. w − limt→∞ T (t)x = 0 for every

x ∈ A.The proof of Theorem 7.6 is based on the fat that ω0(A) ∈ σp(A
∗) if ω0(A) > −∞.The result is not true for C∗-algebras without unit as the example of the weakly stableleft-shift semigroup on C0(R) shows.



STABILITY OF OPERATOR SEMIGROUPS 937.2. Positive semigroups on L1 or C(K). The L1 spae (or abstratly any AL spae)is distinguished from other Banah latties by the fat that the norm is additive on thepositive one. This helps to estimate integrals of positive funtions. So if a Banah lattie
X is an L1-spae, then Theorem 7.3 an be strengthened, [Sh74, p. 347℄, [Nag86, C-IV,Proposition 1.7℄.Theorem 7.7 (Positive semigroups on L1). If A generates a positive and bounded C0-semigroup on an L1 spae, then the semigroup is stable if and only if RgA is dense.Proof. The neessity part follows from the mean ergodi theorem. To prove the otherdiretion, let f ∈ L1 be positive. By the mean ergodi theorem,

0 = lim
λ→0+

〈λR(λ,A)f, 1〉L1×L∞

= lim
λ→0+

λ

∫ ∞

0

e−λt〈T (t)f, 1〉L1×L∞ dt

= lim
λ→0+

λ

∫ ∞

0

e−λt‖T (t)f‖L1 dt.Passing to an equivalent norm ‖ · ‖ on L1 for whih (T (t))t≥0 is ontrative, we �nd that
limt→∞ ‖T (t)f‖ exists and limλ→0+ λ

∫ ∞

0
e−λt‖T (t)f‖ dt = 0. By the regularity of theAbel summation, this implies that T (·)f is stable for every positive f . Sine the one isgenerating, (T (t))t≥0 is stable.Conrete situations where Theorem 7.7 an be applied one may �nd in [ABB92℄ and[Bat92℄. The interesting relations between domination and stability of C0-semigroups on

L1 spaes are disussed in [Ouh97℄.Stability theory of C0-semigroups on C(K), where K is a ompat Hausdor� spae,has also several spei� features. Sine C(K) is a (ommutative) C∗-algebra with unit,Theorem 7.6 implies that a stable C0-semigroup on C(K) is neessarily exponentiallystable. However, in this partiular situation, more an be said.The following result is due to Choquet & Foia³ [CF75, Théorème 1, Remarque 5℄; see[MT93, Corollaire 2.4℄ for a ontinuous version.Theorem 7.8. Let (T (t))t≥0 be a positive C0-semigroup on C(K), and let f ∈ C(K) bestritly positive. Then (T (t))t≥0 is exponentially stable if and only if w-limt→∞ T (t)f = 0.Note that T (t)f = M−1
f S(t)1, where Mfg := fg and the positive C0-semigroup

(S(t))t≥0 is de�ned by S(t) = MfT (t)M−1
f . Thus it su�es to prove Theorem 7.8 for

f = 1. The statement follows from the speial properties of the orbit (T (t)1)t≥0 and thefat that ‖T (t)‖ = ‖T (t)1‖.As above, Theorem 7.8 fails, if one replaes C(K) by C0(Ω) for some loally ompatHausdor� spae Ω, or if the strit positivity of f is violated [CF75, Remarque 5℄.The above theorem shows that it is of interest to study stability properties of (T (t))t≥0for whih the orbit T (·)1 is not stable, e.g. for Markov semigroups (i.e. T (t)1 = 1,
t ≥ 0). Note that for individual orbits of suh semigroups weak stability and stabilityare in general not equivalent; see [Jam70, p. 369℄ or [CF75, Remarque 5℄ for illustrativeexamples. But these types of stability are equivalent under the additional assumption ofirreduibility of (T (t))t≥0.



94 R. CHILL AND Yu. TOMILOVGiven a C0-semigroup (T (t))t≥0 of ontrations on C(K), we all a set E ⊂ K invari-ant if for every x ∈ E and every t ≥ 0 we have suppT (t)∗δx ⊂ E. The semigroup is alledirreduible on C(K) if the only invariant subsets are K and the empty set. This de�nitionof irreduibility is equivalent to the one for positive semigroups on general Banah latties(see [Sh74, Nag86℄ for that de�nition).The following statement was proved by Jamison in the ontext of Markov operators,[Jam70℄. Its generalisation for nonpositive operators was obtained by Sine in [Sin89,Theorem 2℄. We state the ontinuous version whih an be derived from the disrete oneeasily.Theorem 7.9 (Sine). Let (T (t))t≥0 be an irreduible ontration C0-semigroup on
C(K), and let f ∈ C(K). Then T (·)f is stable if and only if w-limt→∞ T (t)f = 0.The example from [Jam70, p. 369℄ shows that the ondition of irreduibility annot beomitted in Theorem 7.9 even if (T (t))t≥0 is a Markov semigroup. Moreover, the statementfails if C(K) is replaed by C0(Ω). However, weaker notions of irreduibility still allow oneto keep the onlusion of Theorem 7.9; we refer to [Wit88℄ for details. Conerning stabilityand onvergene of irreduible semigroups on L1 spaes see also [Nag86, p. 346�349℄.There is another kind of ondition whih is suitable for the study of onvergene ofMarkov operators [Rub77, Theorem 12℄.Theorem 7.10 (Rubinov). Let T be a Markov operator on C(K). Assume that the �xedpoints of T separate the points of K. Then (Tn)n≥0 is onvergent if and only if it is meanergodi.By means of the abstrat Theorem 3.2, various other stability onditions for Markovoperators were obtained in [Lin74℄. We will not state them here, sine their formulationwould require probabilisti terms going far beyond the sope of the survey. Reently,the onvergene properties of Markov operators were also investigated from a measure-theoreti point of view in [Fog99℄.8. Stability of semigroups on Hilbert spaes. Stability of semigroups on Hilbertspaes is perhaps the niest part of the theory of stability. The speial geometri propertiesof Hilbert spaes, e.g. the validity of Planherel's theorem, and of operators on Hilbertspaes (normal operators, hyponormal operators, ontrations on Hilbert spaes) havelead to a variety of stability results, some of whih are even haraterising stability interms of resolvent onditions.Moreover, the study of stability of semigroups on Hilbert spaes is of independentinterest in operator theory, e.g. for the invariant subspae problem. However, despiteseveral partial positive results it is still not known whether a stable T ∈ L(X) withnonempty boundary spetrum has a nontrivial invariant subspae; see [Mül03℄, [Mül05℄.The invariant subspae problem is also open for the opposite lass of power bounded Tfor whih all orbits are not stable, [Kér89℄, [KV03℄ (if, however, T and T ∗ are non-stable,then it is known that T (and T ∗) has an invariant subspae, [SNF70, Theorem II.5.4℄).This may serve as an indiation that stable operator semigroups are still not fullyunderstood. Note that stability theory and invariant subspae theory have many methods



STABILITY OF OPERATOR SEMIGROUPS 95and tehniques in ommon. As illustrative works we mention [Atz84℄, [Bea88℄, [AE98℄and [Kér99℄.We start with a disussion of resolvent stability onditions. The following statementis a re�nement of the global integrability riterion from Theorem 6.3. Its partiular asewith γ = 1 has been proved in [Tom01, Theorem 3.1℄.Theorem 8.1 (Global integrability riterion). Let A be the generator of a bounded C0-semigroup on a Hilbert spae X. Then the semigroup is stable if and only if for some
γ > 1

2 and every x from a dense subset of X,(8.1) lim
α→0+

∫

R

‖αγ− 1
2R(α+ iβ, A)γx‖2 dβ = 0.Proof. By hanging the norm on X, we may without loss of generality assume that thesemigroup (T (t))t≥0 generated by A is a ontration semigroup. Note that X need notbe a Hilbert spae for the new norm, but it is isomorphi to a Hilbert spae, and theFourier transform is still an isomorphism on L2(R;X) by Planherel's theorem.If (T (t))t≥0 is a ontration semigroup, then limt→∞ ‖T (t)x‖ exists for every x ∈ X.By an abelian theorem and Planherel's theorem,

lim
t→∞

‖T (t)x‖2 = lim
α→0

∫ ∞

0

α2γ−1t2γ−2e−2αt‖T (t)x‖2 dt

≤ C lim
α→0

∫

R

‖αγ− 1
2R(α+ iβ, A)γx‖2 dβ.This proves the neessity part. The su�ieny part is proved similarly.One an use the haraterisation of generators of bounded semigroups on Hilbertspaes due to Gomilko [Gom99, Theorem 1℄ and Shi & Feng [SF00, Theorem 1.1, Theorem4.1℄ in order to drop the boundedness ondition on the semigroup in Theorem 8.1 and toreplae it by a pure resolvent ondition.Theorem 8.2. Let A be a losed, densely de�ned, linear operator on X suh that C+ ⊂

̺(A), and let γ ∈ ( 1
2 , 2). Then A generates a stable semigroup if and only if(8.2) sup

α>0

∫

R

‖α 3
2
−γR(α+ iβ, A∗)2−γx‖2 dβ <∞,and for every x ∈ X(8.3) lim

α→0+

∫

R

‖αγ− 1
2R(α+ iβ, A)γx‖2 dβ = 0.The onditions (8.2) and (8.3) are learly neessary by the Planherel theorem and anargument similar to that of the proof of Theorem 8.1. For the proof of their su�ieny,observe that (8.2) and (8.3) imply

sup
α>0

α

∫

R

|〈R2(α+ iβ, A)x, y〉| dβ <∞, x, y ∈ X,by Young's inequality. Then, by [Gom99℄ or [SF00℄, A generates a bounded semigroup,and we obtain the stability of (T (t))t≥0 from Theorem 8.1.Using Theorem 8.2 with γ = 1, Guo & Zwart have shown that it provides a geomet-ri stability riterion for C0-semigroups with generator A in terms of solvability of the



96 R. CHILL AND Yu. TOMILOVLyapunov equations
(A− sI)∗Q(s) +Q(s)(A− sI) = −I on D(A) and(8.4)
(A− sI)Q̃(s) + Q̃(s)(A− sI)∗ = −I on D(A∗)(8.5)for all s > 0; see [GZ06, Theorem 2.8℄. Their result is somewhat parallel to the well knownharaterisation of exponential stability of semigroups in terms of Lyapunov equations.Theorem 8.3 (Guo-Zwart). Let A be a losed, densely de�ned, linear operator on aHilbert spae X. Then the following statements are equivalent.(i) A generates a stable C0-semigroup.(ii) For every s > 0 there exist positive solutions Q(s), Q̃(s) ∈ L(X) of the Lyapunovequations (8.4) and (8.5), respetively, suh that(a) sup {‖sQ(s)‖, ‖sQ̃(s)‖ : s > 0} <∞ and(b) lims→0+〈sQ(s)x, x〉 = 0 for every x ∈ H.The pointwise resolvent ondition as well as the orresponding range stability on-dition from Setions 6 and 9 an be improved for semigroups on Hilbert spae as thefollowing statement shows.Theorem 8.4 (Pointwise riterion). Let A be the generator of a bounded C0-semigroupon a Hilbert spae X.(i) If there exists a dense set M ⊂ X suh that(8.6) lim

α→0+

√
αR(α+ iβ, A)x = 0 for every x ∈M and every β ∈ R,then the semigroup is stable.(ii) If(8.7) ⋂

β∈R

Rg (iβ −A)
1
2 is dense in X,then the semigroup is stable.Theorem 8.4 (i) was obtained in [Tom01, Theorem 3.4℄ by using the method of limitisometri groups; we give a di�erent proof in Setion 9 below (Theorem 9.1). Theorem8.4 (ii) is a onsequene of part (i) and an be found in [CT03, Proposition 6.1℄. Notethat the range ondition (8.7) is weaker than the range ondition (6.2) from Theorem6.2; this an be seen by onsidering Examples 2.4 and 2.5, [CT03℄. Also the ondition(8.6) is a priori not stronger than the orresponding Banah spae ondition (6.1) by theabstrat Hardy-Landau inequality, [Tom01, Remark 4.11℄. It is an open problem whetherthe stability onditions from Theorem 8.4 (i) or (ii) are also neessary for stability.Contrations on Hilbert spaes have a rih spetral theory based on unitary dila-tions and funtional model approahes. So the results given above an be improved andomplemented for the lass of ontration semigroups.Reall that if (T (t))t≥0 is a C0-semigroup of ontrations on a Hilbert spae H, thenthere is a unitary C0-group (U(t))t∈R on a Hilbert spae K ⊃ H suh that PHU(t) =

T (t), t ≥ 0, where PH is the orthogonal projetion onto H. Any suh group (U(t))t∈R is



STABILITY OF OPERATOR SEMIGROUPS 97alled a dilation of (T (t))t≥0, and among all dilations there exists a minimal one in thesense that K =
∨

t∈R
U(t)H.Foguel expressed stability and onvergene of a C0-semigroup (T (t))t≥0 of ontrationsin geometri terms by means of the orresponding minimal unitary dilation (U(t))t∈R,[Fog71, Corollary 1, Theorem 4℄. His haraterisation of stability and onvergene is verysimilar to the haraterisation in terms of limit isometri groups or omplete trajetories.For a disussion of relations between limit isometri semigroups and minimal unitarydilations see [Kér89℄. Let H∞ :=

⋂

t≥0

∨

t>s U(−s)H.Theorem 8.5. A ontration semigroup on a Hilbert spae H is stable if and only if
H∞ = {0}. Moreover, the semigroup is onvergent if and only if the minimal unitarydilation is onstant on H∞.In [Put75, Theorem 3℄ a stability result for ohyponormal operators is proved, i.e. foroperators T on a Hilbert spae suh that TT ∗−T ∗T ≥ 0. Note that a ohyponormal powerbounded operator is neessarily a ontration. A short proof of the following statementhas been given in [Oku77℄ and [KV94℄.Theorem 8.6 (Putnam). If T is a ompletely nonunitary ohyponormal ontration,then (Tn)n≥0 is stable.Putnam's approah to Theorem 8.6 is of interest here sine it follows ideas similar tothose behind the pointwise resolvent onditions from this survey. We present a variantof his approah using a short argument due to Radjabalipour [Rad76℄. Observe that forevery z ∈ C

(T − z)(T ∗ − z̄) ≥ (T − z)(T ∗ − z̄) − (T ∗ − z̄)(T − z) ≥ TT ∗ − T ∗T := D2 ≥ 0,where the last inequality holds by the ohyponormality of T . By the Douglas majorizationriterion [Dou66℄, for every z ∈ C there exists a ontration C(z) suh that(8.8) (T − z)C(z) = D.The global boundedness of C(·) is used in [Put75℄ to show that RgD ⊂ {x ∈ X :

limn→∞ Tnx = 0}. Sine T is ompletely nonunitary, RgD is dense in X and therefore
(Tn)n≥0 is stable.Note that the equation (8.8) alone together with the density of RgD already su�esto obtain stability of (Tn)n≥0 by, for example, Corollary 6.2.If A is the generator of a semigroup of ompletely nonunitary ontrations, then theondition (8.6) haraterises stability, but even a little bit more is true. This harateri-sation of stability has been proved in [Tom01, p. 75�76℄, but see also [BL95, Theorem 5℄where the haraterisation is proved with a onrete setM . The proof in [Tom01℄ is basedon Theorem 8.5 together with some additional properties of the orthogonal projetiononto H∞ found in [Fog71℄. It is ruial that the generator of the minimal unitary dilationof a semigroup of ompletely nonunitary ontrations has absolutely ontinuous spetralmeasure.Theorem 8.7. Let A be the generator of a C0-semigroup of ompletely nonunitary on-trations on a Hilbert spae X. Then the following are true:



98 R. CHILL AND Yu. TOMILOV(i) The semigroup is stable if and only if there exists a dense set M ⊂ X suh that
lim

α→0+

√
αR(α+ iβ, A)x = 0 for every x ∈M and almost every β ∈ R.(ii) If there exists a set E ⊂ R of measure 0 suh that

⋂

β∈R\E

Rg (iβ −A)
1
2 is dense in X,then the semigroup is stable.(iii) If the boundary spetrum of A has measure 0, then the semigroup is stable.As in Theorem 8.4, part (ii) is a onsequene of part (i) and an be proved along thelines of [CT03, Corollary 6.1℄. The last statement of Theorem 8.7 an already be found in[SNF70, Proposition 6.7, p. 85℄. It an be used to dedue a disrete version of the ABLVtheorem for Hilbert spae ontrations, [Gil70, Proposition 2℄. At the end, we turn to avariational ondition for stability.Theorem 8.8. Let A be densely de�ned, losed linear operator on a Hilbert spae X. If

A is normal, and if(8.9) Re (Ax, x) < 0 for all x ∈ D(A),then A generates a stable C0-semigroup of ontrations.If A is a multipliation operator on an L2 spae, then the above theorem is easy toprove. Thus, the theorem is an immediate onsequene of the spetral theorem for (un-bounded) normal operators on separable Hilbert spaes ([RS80, Theorem VIII.4, p. 260℄)saying that A is unitarily equivalent to a multipliation operator.The normality assumption on A in Theorem 8.8 an be dropped if one knows thatthe semigroup generated by A is asymptotially almost periodi or if A has ompatresolvent. See [ABHN01, p. 360�361℄ for the relevant disussion of these two propertiesof A.In Dja£enko [Dja80℄, Theorem 8.8 is stated without the assumption that A is normal,but then it beomes false as the following example shows.Example 8.9. Consider the shift semigroup (S(t))t≥0 from Example 2.4 on the Hilbertspae X = L2(R+;w(t) dt), but with weight w(t) = 1 + e−t, t ≥ 0. A simple integrationby parts shows that the generator D = −d/dt of this semigroup satis�es the ondition(8.9). However, for every nonzero f ∈ X one has lim supt→∞ ‖S(t)f‖ > 0.Other examples of this kind an be found in [BL95℄. However, if a losed, denselyde�ned linear operator A satis�es (8.9), then there is another Hilbert spae K ontaining
X suh that A generates a stable semigroup on K, [BL95, Theorem 2℄.9. Stability of semigroups on Banah spaes with Fourier type. In many of thestability results up to now, espeially those based on spetral onditions or resolventonditions, the Fourier transform has played a entral role in the proofs. For example, inthe proofs of the tauberian theorems whih we have presented (Ingham's theorem andits variants) Parseval's identity and the Lemma of Riemann-Lebesgue were the ore. Insome of the stability results for semigroups on Hilbert spaes, the validity of Planherel's



STABILITY OF OPERATOR SEMIGROUPS 99theorem for Hilbert spae valued L2 funtions was essential, and sine, by Planherel, theFourier transform is an isomorphism on L2, we even obtained some haraterisations ofstability in terms of resolvent onditions. Heuristially, the reason why all these argumentswork is that the Fourier transform of bounded semigroup orbits is the distributionalboundary value of the orresponding loal resolvents on the imaginary axis or the unitirle, respetively.It is thus not surprising that in Banah spaes in whih the Fourier transform preservesgood geometri properties we are able to obtain better stability results, at least betterthan the pointwise and the integral stability results from Setion 6. Among suh Banahspaes are the Banah spaes with nontrivial Fourier type.We say that a Banah spae X has Fourier type p ∈ [1, 2] if the Fourier transformon S(R;X) (the vetor-valued Shwartz spae) extends to a bounded linear operatorfrom Lp(R;X) into Lq(R;X), i.e. if the Hausdor�-Young inequality holds. By the Lemmaof Riemann-Lebesgue, every Banah spae X has the trivial Fourier type p = 1. Thus,by interpolation, if X has Fourier type p ∈ [1, 2], then it has Fourier type p′ for every
p′ ∈ [1, p]. A Banah spae has Fourier type p = 2 (i.e. Planherel's Theorem holds) ifand only if it is isomorphi to a Hilbert spae. By [Bou82℄, a Banah spae has nontrivialFourier type if and only if it is B-onvex; see also [Bou82℄ for a de�nition of B-onvexity.If a Banah spae X has Fourier type p ∈ [1, 2], then the dual X∗ has the same Fouriertype p. For all these fats we refer to the reent survey [GKKT98℄.9.1. Pointwise resolvent onditions. The �rst result is in the spirit of the pointwise re-solvent onditions from Theorem 6.1 (Banah spae ase) and Theorem 8.4 (i) (Hilbertspae ase), and it has been proved in [BCT05, Theorem 5.7℄. It is an improvement of[CT04, Theorem 4.2℄. Note that Theorem 8.4 (i) is Theorem 9.1 in the ase p = 2.Theorem 9.1 (Pointwise resolvent ondition). Let A be the generator of a bounded C0-semigroup on a Banah spae X having Fourier type p ∈ (1, 2]. Let q := p

p−1 be theonjugate exponent. Assume that there exists a dense set M ⊂ X suh that for every
β ∈ R and every x ∈M(9.1) lim

α→0+
‖α 1

qR(α+ iβ, A)x‖ = 0.Then the semigroup is stable.The proof of Theorem 9.1 presented below is very similar to the proof of [BCT02,Theorem 6.3℄.Proof of Theorem 9.1. Denote the semigroup by T . Let F : R → X∗ be a boundedomplete trajetory for the adjoint semigroup T ∗, let x ∈ M , and let f := 〈F, x〉. Let F̂and f̂ be the Carleman transforms of F and f , respetively.By the resolvent identity (3.1) (Proposition 3.5), for every α > 0 and every β ∈ R,
|f̂(α+ iβ) − f̂(−α+ iβ)| = |2〈α 1

p F̂ (−α+ iβ), α
1
qR(α+ iβ, A)x〉|

≤ G(α+ iβ)H(α+ iβ),where
G(α+ iβ) := ‖2α 1

p F̂ (−α+ iβ)‖
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H(α+ iβ) := ‖α 1

qR(α+ iβ, A)x‖.By the boundedness of F and the Hausdor�-Young inequality,(9.2) sup
α>0

‖G(α+ i·)‖Lq(R) <∞.Moreover, from the assumption (9.1), the resolvent identity and the boundedness ofthe semigroup (T (t))t≥0 we obtain for every θ0 ∈ (0, π
2 ) and every β ∈ I

lim sup
α→0+

|β′−β|≤α tan θ0

H(α+ iβ′)

≤ lim sup
α→0+

|β′−β|≤α tan θ0

‖α 1
q

(

R(α+ iβ′, A) −R(α+ iβ, A)
)

x‖

≤ lim sup
α→0+

|β′−β|≤α tan θ0

‖α tan θ0R(α+ iβ′, A)α
1
qR(α+ iβ, A)x‖

≤ tan θ0 sup
t≥0

‖T (t)‖ lim sup
α→0+

‖α 1
qR(α+ iβ, A)x‖ = 0.It follows from this inequality, the boundedness of F and (9.2) that we an apply Theo-rem 2.3 in order to see that the Carleman transform f̂ extends analytially through theimaginary axis to an entire funtion.By [Prü93, Proposition 0.5 (i)℄ and the uniqueness of the Fourier transform, f =

〈F, x〉 = 0. Sine M is dense in X, this implies F = 0, i.e. there is no nontrivial boundedomplete trajetory for T ∗. By Theorem 3.2, the semigroup T is stable.As a orollary to Theorem 9.1 one obtains the following, [BCT05, Corollary 5.10℄,[CT04, Corollary 4.6℄.Corollary 9.2 (Range ondition). Let A be the generator of a bounded C0-semigroupon a Banah spae X having Fourier type p ∈ (1, 2]. If(9.3) ⋂

β∈R

Rg (iβ −A)
1
p is dense in X,then the semigroup is stable.9.2. Optimality of pointwise resolvent onditions. It has been shown in [CT03, Setion 4℄that the Corollaries 6.2 and 9.2 are optimal in the following senses.If one onsiders the isometri (nonstable) shift group with generator D on X = Lq(R)(1 < q < ∞) or on X = C0(R), then, by [CT03, Proposition 4.10℄, for every 1 < q ≤ ∞and every γ ∈ (0, q−1

q
) the spae

⋂

β∈R

Rg (iβ −A)γ is dense in X.If q ≥ 2, then the spae X has Fourier type p := q
q−1 . This example shows that oneannot expet better exponents (better than the exponent γ = 1

p
) in Corollary 9.2.On the other hand, while the onditions (6.2) and (9.3) annot not be improved,in the sense that the exponent γ = 1

p
annot be hosen smaller, they are in generalalso not neessary for stability. If D is the generator of the stable right-shift semigroup



STABILITY OF OPERATOR SEMIGROUPS 101from Example 2.4 on the spae Xp = Lp(R+;w(t)dt) (1 ≤ p < ∞) with weight w(t) =

(ln(e+ t))−1, then for every γ ∈ (p−1
p
, 1] and every interval J ⊂ R(9.4) ⋂

β∈J

Rg (iβ −D)γ = {0}.Thus, if p ∈ [1, 2), then Xp has Fourier type p and 1
p
> p−1

p
. By (9.4), the ondition (9.3)in Corollary 9.2 is not satis�ed, [CT03, Proposition 4.3℄.Similarly, in Example 2.5, for the same hoie of the weight w and the parameter p,one has

⋂

β∈J

Rg (iβ −D) is not dense in Xp;see [CT03, Proposition 4.7℄. In this example, D generates even a C0-group of sublineargrowth and is a generalized salar.Note that these examples only show that range onditions of the types (6.2) and (9.3)are not neessary for stability if the Fourier type is smaller than 2. As already mentionedabove, these examples do not seem to provide ounterexamples for the possibility thatthe range ondition (8.7) is neessary for stability of semigroups in Hilbert spaes.9.3. Integral resolvent onditions. The integral resolvent onditions from Setion 6 anbe improved in Banah spaes with nontrivial Fourier type [CT03, Theorem 3.1, Theorem3.3℄. The proof of the �rst stability result follows the lines of the proof of the orrespond-ing statement in Theorem 8.1, replaing Planherel's theorem by the Hausdor�-Younginequality or the Lemma of Riemann-Lebesgue. The proof of the seond stability resultis very similar to the proof of Theorem 6.4 and is based on Theorem 3.2.Theorem 9.3 (Global integrability riterion). Let A be the generator of a bounded C0-semigroup on a Banah spae X having Fourier type p ∈ [1, 2]. If, for some γ > 1
p
andfor every x from a dense subset of X,(9.5) lim

α→0+

∫

R

‖αγ− 1
pR(α+ iβ, A)γx‖p dβ = 0,then the semigroup is stable.Theorem 9.4 (Loal integrability riterion). Let A be the generator of a bounded C0-semigroup on a Banah spae X having Fourier type p ∈ (1, 2]. Let q be the onjugateexponent. Assume that for every β ∈ R there exists an open neighbourhood U ⊂ R of βand a dense set M ⊂ X suh that(9.6) lim

α→0+

∫

U

‖α 1
qR(α+ iβ′, A)x‖p dβ′ = 0 for every x ∈M.Then the semigroup is stable.We remark that there are other geometri properties of Banah spaes whih an alsobe of value for stability theory. The relevane of the analyti Radon-Nikodym propertywas shown in [Chi98℄ and [HN99℄, and the more general analyti Riemann-Lebesgueproperty was introdued and applied to the study of stability in [BC02℄. We refer tothese papers for the orresponding de�nitions and preise statements.



102 R. CHILL AND Yu. TOMILOVWe remark at the end of this setion that B-onvex Banah spaes in onnetion withstability of individual orbits of semigroups have also been studied in [HN99℄ and [Wro99℄.10. Stability of evolution semigroups. Partiularly interesting for appliations arethe so-alled evolution semigroups. They help to study qualitative properties of evolutionfamilies whih are usually assoiated with nonautonomous abstrat Cauhy problems ofthe form(10.1) u′(t) = A(t)u(t), t ≥ s ≥ 0, u(s) = x.We all a family (U(t, s))t≥s≥0 ⊂ L(X) an evolution family if U(t, t) = I, U(t, s) =

U(t, r)U(r, s) and if U(·, ·)x is ontinuous for all t ≥ r ≥ s ≥ 0 and all x ∈ X.Wellposedness of the problem (10.1) should atually be equivalent to the existene ofan evolution family the orbits of whih are the unique mild solutions of (10.1). However,we emphasise that the notion of mild solutions of the Cauhy problem (10.1) is notuniquely de�ned in the literature and it is in some ases not satisfatory. We will not gointo details here and will just assume that an evolution family is given.If suh an evolution family (U(t, s))t≥s≥0 on a Banah spae X is exponentiallybounded, then
(Tp(t)f)(s) =

{

U(s, s− t)f(s− t), s ≥ t,

0, s < t,
t, s ≥ 0, f ∈ Ep,de�nes a C0-semigroup on Ep := Lp(R+;X) (1 ≤ p < ∞), and on E∞ := C00(R+;X)(the spae of ontinuous funtions vanishing at 0 and at in�nity). That semigroup is alledthe evolution semigroup assoiated with (U(t, s))t≥s≥0. We denote by Gp its generator.It is known that the evolution semigroups re�et qualitative properties of the orre-sponding evolution family. For example, exponential stability or exponential dihotomy ofan evolution family an be haraterised in terms of exponential stability or exponentialdihotomy of the assoiated evolution semigroup. Sine the spetral mapping theoremholds for evolution semigroups, one an even haraterise exponential stability or expo-nential dihotomy of evolution families in terms of the loation of the spetrum of thegenerator of the assoiated evolution semigroup. For all these results, we refer to [CL99℄.The fat that also mere stability of evolution families an be haraterised by stabilityof the assoiated evolution semigroups has been proved in [BCT02, Theorem 2.2℄. Notethat we say that an evolution family (U(t, s))t≥s≥0 is stable if limt→∞ U(t, s)x = 0 for all

s ∈ R+ and all x ∈ X.In Theorem 10.1 below we all a funtion F : R− → X∗ a omplete trajetory forthe evolution family (U(−s,−t)∗)s≤t≤0 if U(−s,−t)∗F (s) = F (t) for all s ≤ t ≤ 0. Thisde�nition of a omplete trajetory di�ers from the orresponding de�nition in Setion 3.2in that F is only de�ned on the half-line R−. However, in the autonomous ase, i.e.when U(t, s) = T (t − s) for some C0-semigroup (T (t))t≥0, a omplete trajetory for
(U(−s,−t)∗)s≤t≤0 an be uniquely extended to a omplete trajetory for (T (t)∗)t≥0 on
R by de�ning F (t) = T (t)∗F (0) for t ≥ 0.Theorem 10.1. Let (U(t, s))t≥s≥0 be a bounded evolution family on a Banah spae X,and let (Tp(t))t≥0 be the evolution semigroup assoiated with (U(t, s))t≥s≥0 on Ep
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(1 ≤ p ≤ ∞). Then the following assertions are equivalent:
(1) The evolution family (U(t, s))t≥s≥0 is stable.
(2) If B∗ denotes the unit ball in X∗, then the set(10.2) J∗ :=

⋃

s≥0

⋂

t≥s

U(t, s)∗(B∗)is trivial, i.e. J∗ = {0}.
(3) The evolution family (U(−s,−t)∗)s≤t≤0 does not admit a bounded nontrivial ompletetrajetory.
(4) The semigroup (Tp(t))t≥0 is stable for some 1 ≤ p ≤ ∞.
(5) The semigroup (Tp(t))t≥0 is stable for all 1 ≤ p ≤ ∞.
(6) Rg G1 is dense in L1(R+;X).
(7) The set

F := {f ∈ L1(R+;X) : U ∗ f ∈ L1(R+;X)}is dense in L1(R+;X), where (U ∗ f)(t) :=
∫ t

0
U(t, τ )f(τ ) dτ, t ∈ R+.The equivalenes (1)⇔(2)⇔(3) generalise Theorem 3.2 to the ase of bounded evolu-tion families. The equivalene (1)⇔(6) is based on the observation that KerG∗

1 onsistsof bounded omplete trajetories for (U∗(−s,−t))t≥s. Thus stability of (U(t, s))t≥s≥0 isequivalent to the density of Rg G1. It is not too di�ult to show that Rg G1 = F and thenthe equivalene (6)⇔(7) is lear.Note that the equivalene (1)⇔(7) looks similar to Datko's haraterisation of expo-nential stability saying that (U(t, s))t≥s≥0 is exponentially stable if and only if the set
F from (7) is equal to L1(R+;X). However, while in Datko's theorem one may replae
p = 1 by any 1 ≤ p ≤ ∞, one annot do this in Theorem 10.1 (7). For example, if X isre�exive and p ∈ (1,∞), then the set

{f ∈ Lp(R+;X) : U ∗ f ∈ Lp(R+;X)}is always dense in Lp(R+;X), due to the mean ergodi theorem.The other equivalent statements are interesting for the study of stability of evolu-tion families in terms of stability of semigroups. We also point out that the equivalene(5)⇔(6) looks very similar to the stability ondition for positive semigroups on L1 spaes(Theorem 7.7).
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