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Abstract. Let X be a Banach space. Let A(X) be a closed ideal in the algebra L(X) of the

operators acting on X. We say that L(X)/A(X) is a Calkin algebra whenever the Fredholm

operators on X coincide with the operators whose class in L(X)/A(X) is invertible. Among

other examples, we have the cases in which A(X) is the ideal of compact, strictly singular,

strictly cosingular and inessential operators, and some other ideals introduced as perturbation

classes in Fredholm theory.

Our aim is to present some classes of Banach spaces and some concrete examples of Banach

spaces for which some of their Calkin algebras are “small” in some sense: finite dimensional,

commutative, etc. The first example of such a Banach space was constructed around 1990.

However, at this moment there is a great variety of examples of spaces of this kind, which

provides interesting examples and counterexamples of operators. Moreover, the methods and

techniques of operator theory have been found to be useful in the study of these spaces.

1. Introduction. In [GowersM:93], Gowers and Maurey presented an example of an

infinite dimensional Banach space XGM (Example 6.1.1) such that no subspace of XGM

can be written as the direct sum of two infinite dimensional closed subspaces. The ex-

istence of Banach spaces of this kind (which are called hereditarily indecomposable) was

quite unexpected. It provided a negative answer to several long-standing open problems

in Banach space theory. Moreover, for every operator T acting on the complex version

of XGM we can find a complex number λ so that T = λI + S, with S a strictly singular

operator. Afterwards, many examples of hereditarily indecomposable spaces and some

other classes of spaces with unexpected properties were constructed. Now it is common

2000 Mathematics Subject Classification: Primary 47A53, 47L20; Secondary 46B03.

Key words and phrases: Calkin algebra, essential spectrum, semi-Fredholm operator, hered-
itarily indecomposable Banach space.

Research supported in part by DGI (Spain), Grant MTM2005-03831.

The paper is in final form and no version of it will be published elsewhere.

[159] c© Instytut Matematyczny PAN, 2007



160 M. GONZÁLEZ

to refer to these spaces as “exotic” spaces to distinguish them from the previously known

spaces, which are referred to as “classical” spaces. Among other examples, it has been

shown that for each p, 1 < p < ∞, the sequence space ℓp can be obtained as a quo-

tient of a separable, reflexive, hereditarily indecomposable space [ArgyrosF:00]. Many

other examples have been constructed. See for example, [ArgyrosLT:03], [ArgyrosT:04],

[Koszmider:04], [Koszmider:05] and [Koszmider:05a]. We refer to [Maurey:03] for a read-

able paper describing many interesting examples of spaces of this kind.

For a complex, infinite dimensional, hereditarily indecomposable Banach space X,

the quotient algebra L(X)/SS(X) is one-dimensional. Here SS(X) is the ideal of strictly

singular operators acting on X. As a consequence, the essential spectrum of each operator

T ∈ L(X) consists of just one point. This is quite different from what happens for the

classical Banach spaces. So these spaces are a good bench-mark for the development of

Fredholm theory, as well as a source of nontrivial examples of operators. The hereditarily

indecomposable Banach spaces have also found applications in the study of C0-semigroups

of operators. See [RabigerR:96] and [RabigerR:98].

In this paper we deal with closed two-sided ideals A(X) in L(X) for which an operator

T ∈ L(X) is Fredholm if and only if the corresponding class is invertible in L(X)/A(X).

In this case we say that L(X)/A(X) is the Calkin algebra associated to the ideal A(X).

It follows from well-known results that L(X)/A(X) is a Calkin algebra if and only if

A(X) contains the finite range operators and is contained in the inessential operators.

As examples, we mention the compact, the strictly singular, the strictly cosingular and

the inessential operators. Also the perturbation classes in Fredholm theory can be taken

as examples.

We are interested in the spaces which admit a Calkin algebra which is “small” in

some sense: finite dimensional, commutative, etc. For the reader of this paper, it should

become clear that there are plenty of spaces of this kind, even among the C(K) spaces

of continuous functions defined on a compact space K. In the paper we show the main

properties of these spaces, describe some examples and give references for further prop-

erties and examples. Our aim is to show that these spaces are useful and not too exotic.

So it pays out to have them in mind while working in operator theory.

Let us see a more detailed description of the paper. After a preliminary section, we

introduce in Section 3 the concept of Calkin algebra L(X)/A(X) associated to some

ideal A(X) of L(X). We give several examples, show the relations among them and give

information on the Calkin algebras of some classical sequence spaces and function spaces.

Section 4 deals with the “decomposability” properties of a Banach space as the direct

sum of infinite dimensional closed subspaces. We show the relation of these properties

with the number of connected components of the essential spectrum of the operators

T ∈ L(X). We also show that the spaces whose subspaces (quotients) are decomposable

admit characterizations in terms of the classes of operators in Fredholm theory.

Section 5 is dedicated to the Calkin algebra associated to the ideal of inessential

operators L(X)/In(X), which is the smallest Calkin algebra. In the case L(X)/In(X)

is finite dimensional, we obtain some results on the structure of the space X and de-

scribe the essential spectrum of the operators T ∈ L(X). Also, in this case we give a
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description of the Calkin algebra L(X)/In(X) as a finite product of algebras of matrices

Mk(C). This description of L(X)/In(X) allows us to give examples of spaces X for which

L(X)/SS(X) or L(X)/SC(X) can be represented as special subalgebras of Mn(C); for

example, as triangular algebras.

We have chosen to include all the examples in Section 6. In this way we can appreciate

directly the variety of Banach spaces with small Calkin algebras. However, we refer to

these examples in the sections in which they are relevant. In order the paper be useful,

we give a rough description of some of the constructions, and most of the times we give

a reference in which the reader can find more details.

Throughout we refer to other results of the paper by giving the number of the result

and the section in which it is stated. For example, Theorem 4.3 is Theorem 3 in section 4.

2. Preliminaries. This paper is a blend of Fredholm theory and Banach space the-

ory. So we have to consider definitions and results in both theories. In this section we

include definitions and notations for the classes of operators of Fredholm theory. The

corresponding definitions of Banach space theory are introduced when needed.

Let X and Y be Banach spaces. For a subspace M of X we denote by JM the

embedding map from M into X, and by QM the quotient map onto X/M . We denote

by L(X, Y ) the space of continuous operators from X to Y , and K(X, Y ) and F(X, Y )

denote the space of compact and finite dimensional range operators, respectively.

Let T ∈ L(X, Y ).

• T is upper semi-Fredholm, T ∈ Φ+, if R(T ) is closed and dimN(T ) < ∞.

• T is lower semi-Fredholm, T ∈ Φ−, if R(T ) is closed and dimY/R(T ) < ∞.

• T is Fredholm, T ∈ Φ, if T is upper and lower semi-Fredholm.

• For an operator T ∈ L(X) the essential spectrum is defined by

σe(T ) := {λ ∈ C : λI − T /∈ Φ(X)}.

• The index of a semi-Fredholm operator T ∈ Φ+(X, Y ) ∪ Φ−(X, Y ) is defined by

ind(T ) := dimN(T ) − dimY/R(T ).

• T is strictly singular, T ∈ SS, if given a subspace M of X, TJM isomorphism (into)

implies dimM < ∞.

• T is strictly cosingular, T ∈ SC, if given a subspace N of Y , QNT surjective implies

dimY/N < ∞.

• T is inessential, T ∈ In, if I − ST ∈ Φ(X) for all S ∈ L(Y, X).

The perturbation class PC of a class of operators C was defined by Lebow and Schechter

[LebowS:71] as follows. Suppose that C(X, Y ) is a non-empty subset of L(X, Y ). Then

PC(X, Y ) := {K ∈ L(X, Y ) : K + T ∈ C(X, Y ), for all T ∈ C(X, Y )}.

Note that in the case X = Y , Φ(X), Φ+(X) and Φ−(X) are always non-empty.

Proposition 1 ([LebowS:71]). The perturbation classes PΦ(X), PΦ+(X) and PΦ−(X)

are closed, two-sided ideals in L(X).
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3. Calkin algebras. In this section we introduce the concept of Calkin algebra. We also

give several examples of Calkin algebras and describe the relations among them.

Definition 1. Let A(X) be a closed ideal in L(X). We say that L(X)/A(X) is a Calkin

algebra whenever the Fredholm operators on X coincide with the operators whose class

in L(X)/A(X) is invertible.

The following characterization can be easily derived from standard results in Fredholm

theory.

Proposition 1. Let A(X) be a closed ideal in L(X). Then L(X)/A(X) is a Calkin

algebra if and only if F(X) ⊂ A(X) ⊂ In(X).

The existence of spaces X for which F(X) 6= K(X) is related with the approximation

property of Banach spaces. Since this property has no relevance here, K(X) is the smallest

ideal we consider.

Remark 1. Roughly, we are going to consider two kinds of closed ideals in L(X):

1. Intrinsically defined ideals, for which the fact that the operator belongs to the ideal

can be expressed in terms of its action on the spaces in which it is defined, like K,

SS and SC.

2. Perturbation classes in which the definition involves the properties of a large class

of operators.

Remark 2. The spaces K(X, Y ), SS(X, Y ), SC(X, Y ) and In(X, Y ) are defined for all

pairs of Banach spaces X and Y . They form operator ideals in the sense of [Pietsch-

Book:80]. However, the perturbation classes PΦ(X, Y ), PΦ+(X, Y ) and PΦ−(X, Y ) are

defined only when Φ(X, Y ), Φ+(X, Y ) and Φ−(X, Y ) are non-empty, respectively.

Next we describe the relations of containment between the main ideals that we con-

sider in the paper.

Proposition 2. The following results hold whenever the perturbation classes are defined.

• In(X, Y ) = PΦ(X, Y ) [Kleinecke:63].

• PΦ+(X, Y ) ∪ PΦ−(X, Y ) ⊂ PΦ(X, Y ) (Stability of the index).

• SS(X, Y ) ⊂ PΦ+(X, Y ) [Kato:58].

• SC(X, Y ) ⊂ PΦ−(X, Y ) [Vladimirskii:67].

The following diagram shows the relations between the ideals we have introduced before.

SS PΦ+

K ( SS ∩ SC In = PΦ

SC PΦ−

-
(

H
H

Hj

(

�
�
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HHj(
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There are natural operators that show that all the inclusions, except SS ( PΦ+ and

SC ( PΦ−, are proper. Indeed, let us consider the embedding maps

L∞[0, 1]
J2−→ L2[0, 1]

J1−→ L1[0, 1].

Then J1J2 ∈ (SS ∩ SC) \ K, J2 ∈ (SS \ SC), J1 ∈ (SC \ SS) and J1, J2 ∈ In. We refer

to Proposition 2.6 in [Gonzalez:04] for details.

For the remaining inclusions we need exotic spaces. It was shown in [Gonzalez:03]

that there exists a reflexive Banach space X, which can be defined in terms of prod-

ucts of subspaces of XGM , such that SS(X) 6= PΦ+(X) and SC(X∗) 6= PΦ−(X∗). See

[Gonzalez:03] for details.

Remark 3. It follows from the inequalities SS(X) 6= PΦ+(X) and SC(X∗) 6= PΦ−(X∗)

that the perturbation classes PΦ+(X, Y ) and PΦ−(X, Y ) for operators acting between

different spaces do not give operators ideals. See the Remark in section 26.6 of [Pietsch-

Book:80].

Remark 4. It is not known if there exists an infinite dimensional Banach space X for

which dimL(X)/K(X) < ∞. This is a (probably hard) open problem in Banach space

theory.

Remark 5. The definition of the inessential operators is not intrinsic. In order to check

if T ∈ In(X, Y ), we have to consider the properties of the product ST of T with all the

operators S ∈ L(Y, X).

Trying to obtain an intrinsic characterization of the inessential operators, Tarafdar

introduced in [Tarafdar:72] the improjective operators. An operator T ∈ L(X, Y ) is said

to be improjective, T ∈ Imp(X, Y ), if there is no infinite dimensional subspace M of X

such that the restriction TJM is an isomorphism and T (M) is complemented in Y . It is

not difficult to show that In(X, Y ) ⊂ Imp(X, Y ).

The equality In(X, Y ) = Imp(X, Y ) holds for many pairs of spaces (see [AienaG:98]).

However, this inclusion is proper in general: an improjective not inessential operator was

given in [AienaG:00]. The construction is based on the properties of the shift operator

acting in the space described below as Example 6.1.2.

Remark 6. For classical Banach spaces the Calkin algebras are big spaces, in general.

However we can give some interesting facts.

• For X one of the sequence spaces c0 and ℓp, 1 ≤ p < ∞, there is only one Calkin

algebra. Equivalently, F(X) = K(X) = In(X). Moreover, L(X)/K(X) is nonsep-

arable. In [CaradusPY:74] we can find a proof of this result and some additional

details.

• For X a subprojective space, like the function spaces Lp(0, 1); 1 ≤ p < 2, SS(X) =

In(X); and for X a superprojective space, like the function spaces Lp(0, 1); 2 ≤

p < ∞, SC(X) = In(X). See [CaradusPY:74] and [Weis:81].

4. Finitely decomposable spaces. In this section we study the relation between the

decomposability of a Banach space X as a direct sum of closed infinite dimensional

subspaces and the properties of the Calkin algebras L(X)/A(X).



164 M. GONZÁLEZ

Definition 1. Let X be a Banach space.

• X is indecomposable if it cannot be written as the direct sum of two closed infinite

dimensional subspaces.

• X is n-decomposable if n = max{k ∈ N : X = X1 ⊕ · · · ⊕ Xk}, where X1, . . . , Xn

are closed infinite dimensional subspaces of X.

• X is hereditarily indecomposable if all its closed subspaces are indecomposable.

• X is quotient indecomposable if all its quotients are indecomposable.

As an application of the analytic functional calculus for operators (see for example

[TaylorL:80]) we can prove the following characterizations.

Theorem 1 ([GonzalezH:03]). Let X be a complex Banach space. Then X is indecompos-

able if and only if σe(T ) is connected for all T ∈ L(X). Similarly, X is n-decomposable

if and only if n is the maximum of the number of connected components of σe(T ) for

T ∈ L(X).

The first part of the following characterizations was proved in [Weis:81] in 1981.

Observe that at that time no example of hereditarily indecomposable or quotient inde-

composable space was known.

Theorem 2 (see [Ferenczi:97]). A Banach space X is hereditarily indecomposable if and

only if, for every Banach space Y ,

L(X, Y ) = Φ+(X, Y ) ∪ SS(X, Y ).

In the complex case, this is equivalent to the fact that for each closed subspace M of X

and every T ∈ L(M, X) there exists λ ∈ C such that T − λJM is strictly singular.

Theorem 3 (see [GonzalezH:01]). A Banach space X is quotient indecomposable if and

only if, for every Banach space Z,

L(Z, X) = Φ−(Z, X) ∪ SC(Z, X).

In the complex case, this is equivalent to the fact that for each quotient X/N of X and

every T ∈ L(X, X/N) there exists λ ∈ C such that T − λQN is strictly cosingular.

Remark 1. The classical Banach spaces are far from being indecomposable. However,

many examples of indecomposable spaces have been found by now.

• The space XGM , which appears here as Example 6.1.1, is hereditarily indecompos-

able and quotient indecomposable. See [Ferenczi:99].

• The space Xs of Example 6.1.2 is indecomposable, but not hereditarily indecom-

posable or quotient indecomposable.

• Koszmider’s space in Example 6.2 is an indecomposable C(K) space, but contains

subspaces isomorphic to c0 and admits quotients isomorphic to ℓ2.

It has been open for some time whether a hereditarily indecomposable space has to

be separable. Finally, a negative answer has been obtained. However, some limitations

apply.



SMALL CALKIN ALGEBRAS 165

Theorem 4 ([ArgyrosT:04]). There are nonseparable hereditarily indecomposable Ba-

nach space; however, each hereditarily indecomposable Banach space is isomorphic to a

subspace of ℓ∞.

5. The “smallest” Calkin algebra. Here we deal with L(X)/In(X), which is the

smallest Calkin algebra. Throughout this section, X is a complex Banach space.

Remark 1. The inessential operators were introduced in [Kleinecke:63] as follows. Let

π : L(X) → L(X)/K(X) denote the quotient map. Then In(X) is the inverse under π of

the radical of L(X)/K(X).

The following classes of operators were introduced in [Atkinson:51].

Definition 1. Let T ∈ L(X, Y ).

• T is left Atkinson, denoted T ∈ Φl, if R(T ) is complemented and dimN(T ) < ∞.

• T is right Atkinson, denoted T ∈ Φr, if N(T ) is complemented R(T ) closed and

dimY/R(T ) < ∞.

Remark 2. The relevance of the Atkinson operators in this section stems from the

following facts. Let L(X)/A(X) be a Calkin algebra.

1. T ∈ L(X) is left Atkinson if and only if the class of T in L(X)/A(X) is left

invertible.

2. T ∈ L(X) is right Atkinson if and only if the class of T in L(X)/A(X) is right

invertible.

3. PΦl(X) = PΦr(X) = PΦ(X) = In(X).

We refer to [LebowS:71] or [CaradusPY:74] for proofs of these facts.

Let us see how the size of L(X)/In(X) is directly related to the size of the essential

spectrum of the operators acting on X.

Let |A| denote the cardinal of a set A. We introduce the class Σn
e as follows.

Σn
e := {X : n = max{|σe(T )| : T ∈ L(X)} }.

Theorem 1 ([GonzalezH:05]). The following assertions are equivalent:

1. For every T ∈ L(X), the essential spectrum σe(T ) is finite.

2. dimL(X)/In(X) < ∞.

3. The space X belongs to the class Σn
e , for some n ∈ N.

Remark 3. It is not difficult to see that X belongs to the class Σ1
e if and only if

dimL(X)/In(X) = 1.

Definition 1. Let X and Y be Banach spaces.

• We say that X and Y are essentially incomparable when L(X, Y ) = In(X, Y ).

• We say that X and Y are essentially isomorphic when Φ(X, Y ) is non-empty.

Remark 4. The concept of essential incomparability is “symmetric” [Gonzalez:94]; i.e.,

L(X, Y ) = In(X, Y ) if and only if L(Y, X) = In(Y, X).

Remark 5. X essentially isomorphic to Y means that X is isomorphic to Y up to a

finite dimensional space.
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There are many examples of pairs of Banach spaces which are essentially incompara-

ble.

Theorem 2 ([Gonzalez:94]). In the following cases, the spaces X and Y are essentially

incomparable.

1. X is reflexive and Y has the Dunford-Pettis property.

2. X has the reciprocal Dunford-Pettis property and Y has the Schur property.

3. X contains no copies of ℓ∞ and Y = ℓ∞ or C(K) with K σ-stonian.

4. X contains no copies of c0 and Y = C(K).

5. X contains no complemented copies of c0 and Y = C[0, 1].

6. X contains no complemented copies of ℓ1 and Y = L1[0, 1].

7. X contains no complemented copies of ℓp and Y = Lp[0, 1], or ℓp; 1 < p < ∞.

Example 1. Let X be a hereditarily indecomposable space and let M be a subspace of

X such that dim X/M = ∞. It follows from Theorem 4.2 that M and X are essentially

incomparable.

Similarly, let X be a quotient indecomposable space and let M be an infinite di-

mensional subspace of X. It follows from Theorem 4.3 that X and X/M are essentially

incomparable.

The following result should be compared with the corresponding results for heredi-

tarily indecomposable spaces (Theorem 4.2) and quotient indecomposable spaces (Theo-

rem 4.3).

Theorem 3 ([GonzalezH:05]). For an infinite dimensional Banach space X, the following

assertions are equivalent.

1. dimL(X)/In(X) = 1; i.e., X ∈ Σ1
e.

2. L(X) = Φ(X) ∪ In(X).

3. L(X, Y ) = Φl(X, Y ) ∪ In(X, Y ), for all Y .

4. L(Z, X) = Φl(Z, X) ∪ In(Z, X), for all Z.

Next we give a result that provides a precise description of the spaces X for which

L(X)/In(X) is finite dimensional.

Theorem 4 ([GonzalezH:05], Structure theorem). Suppose that X ∈ Σn
e . Then there

exist k integers ni and k spaces X1, . . . , Xk satisfying the following properties.

• n = n1 + · · · + nk.

• Xi and Xj are essentially incomparable for i 6= j.

• X is essentially isomorphic to (n1 copies of X1) ⊕ · · · ⊕ (nk copies of Xk).

As a consequence of Theorem 4 we obtain a description of L(X)/In(X).

Theorem 5 ([GonzalezH:05]). Suppose that X∈Σn
e . Then there exist k integers n1, . . . , nk

satisfying n = n1 + · · · + nk so that

L(X)/In(X) is isomorphic to Mn1
(C) ⊕ · · · ⊕ Mnk

(C).

Theorems 4 and 5 allow us to give examples of spaces with different Calkin algebras.
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Example 2. Let us consider the space XGM in Example 6.1.1. Since XGM is hereditarily

indecomposable, taking infinite dimensional closed subspaces M1 ⊂ · · · ⊂ Mn of XGM

such that dim Mk+1/Mk = ∞ for k = 1, . . . , n − 1 and denoting

Y := M1 ⊕ · · · ⊕ Mn,

then L(Y )/In(Y ) can be identified with the diagonal n × n complex matrices, while

L(Y )/SS(Y ) can be identified with the triangular n × n complex matrices.

Similarly, since XGM is quotient indecomposable, taking closed subspaces M1 ⊃ · · · ⊃

Mn+1 of XGM such that dimMk/Mk+1 = ∞ for k = 1, . . . , n, and denoting

Z := M1/M2 ⊕ · · · ⊕ Mn/Mn+1,

then L(Z)/In(Z) can be identified with the diagonal n × n complex matrices, while

L(Z)/SC(Z) can be identified with the triangular n × n complex matrices.

6. The examples. In this section we present some examples of exotic Banach spaces

that are relevant as examples or counterexamples in Fredholm theory.

As usual, we denote by D and T the unit disc and the unit circle in the complex field,

respectively.

6.1. The Gowers-Maurey examples [Gowers-Maurey:97]

1. (The HI and QI space) There exists a reflexive, complex hereditarily indecomposable

Banach space XGM such that

dimL(XGM )/SS(XGM ) = dimL(X∗
GM )/SC(X∗

GM ) = 1.

Even more, for every closed subspace Y of XGM and every T ∈ L(Y, XGM ), there

exists a complex number λ such that T − λJY ∈ SS(Y, XGM ). It was shown in

[Ferenczi:99] that the space XGM is also quotient indecomposable. Thus

dimL(XGM )/SC(XGM ) = dimL(X∗
GM )/SS(X∗

GM ) = 1.

Moreover, for every quotient Z of XGM and every T ∈ L(XGM , Z), there exists a

complex number λ such that T − λQ ∈ SC(XGM , Z), where Q is the quotient map

onto Z.

2. (The shift space) There exists a complex Banach space Xs which admits a Schauder

basis and satisfies the following properties:

(a) L(Xs) admits a closed ideal A(Xs) with K(Xs) ⊂ A(Xs) ⊂ SS(Xs).

(b) Denoting by S and L the right shift and the left shift acting on Xs,

σ(S) = σ(L) = D and σe(S) = σe(L) = T.

(c) For every operator T ∈ L(Xs), there exists a sequence (an)∞n=−∞ of complex

numbers such that
∑∞

n=−∞ |an| < ∞ and

T −
∞∑

n=0

anSn −
∞∑

n=1

a−nLn ∈ SS(Xs).

(d) Denoting by ΨT the function given by ΨT (λ) :=
∑∞

n=−∞ anλn,

σ(T ) = ΨT (D) and σe(T ) = ΨT (T).
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(e) L(Xs)/A(Xs) can be identified with the algebra ℓ1(Z), endowed with the con-

volution product. Indeed, if T =
∑∞

n=0 anSn−
∑∞

n=1 a−nLn is strictly singular,

then σe(T ) = ΨT (T) = {0}. Thus T = 0.

(f) Each pair of operators A, B ∈ L(Xs) commute modulo the strictly singular

operators; i.e., AB − BA ∈ SS(Xs).

3. (The double shift space) There exists a complex Banach space Xds which is iso-

morphic to its closed subspaces of even codimension while not being isomorphic to

those of odd codimension. As a consequence, each Fredholm operator acting on Xds

has even index.

4. There exists a Banach space X which is isomorphic to X ⊕ X ⊕ X but is not

isomorphic to X ⊕ X.

5. There exists a Banach space Xd which has an unconditional Schauder basis and

satisfies the following properties.

• Every operator on Xd is the sum of a diagonal operator and a strictly singular

one.

• L(Xd)/SS(Xd) can be identified with ℓ∞/c0. See [Ferenczi:95].

Remark 1. The constructions of the previous Examples 1-5 admit modifications and

extensions to obtain other Banach spaces satisfying nonclassical properties. We refer to

the paper [GowersM:97] for further details.

6.2. The Koszmider example [Koszmider:04]. There exists a connected, separable compact

space K such that the space C(K) of real-valued continuous defined on K satisfies the

following properties:

(a) C(K) is indecomposable and is not isomorphic to any of its proper subspaces or

quotients.

(b) It follows from property (a) that every semi-Fredholm operator on C(K) is Fred-

holm with index zero.

(c) For every operator T ∈ L(C(K)) there exists a function φ ∈ C(K) such that

T = Mφ + S, where Mφ is the multiplication operator by φ and S is a strictly

singular operator.

(d) It follows from property (c) that the Calkin algebra L(C(K))/SS(C(K)) can be

identified with the space C(K). Indeed, since K is connected, if Mφ is strictly

singular then φ(K) = {0}, hence Mφ = 0.

Remark 2. Koszmider has found some other examples of C(K) spaces whose proper-

ties are remarkable from the point of view we consider here. See [Koszmider:05] and

[Koszmider:05a].

6.3. The Argyros et al. examples. In the last few years, S. Argyros and coworkers have

found plenty of examples of hereditarily indecomposable and quotient indecomposable

Banach spaces.

1. There exists a reflexive, separable, hereditarily indecomposable Banach space X

which admits a quotient isomorphic to ℓ2 [ArgyrosF:00]. Hence, the dual space X∗

is quotient indecomposable and contains a subspace isomorphic to ℓ2.
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2. There exists a Banach space X such that X, X∗ and X∗∗ are hereditarily indecom-

posable, X and X∗ are separable but X∗∗ is not separable [ArgyrosT:04].

The quotient space X∗∗/X is isomorphic to c0(Γ), where Γ is an uncountable set.

Every operator T ∈ L(X) can be written as T = λI + S, where λ is a real number

and S is strictly cosingular and weakly compact.

Every operator T ∈ L(X∗) can be written as T = λI +S, where λ is a real number

and S is strictly singular and weakly compact.

Every operator T ∈ L(X∗∗) can be written as T = S∗ + K, where S ∈ L(X∗) and

K is compact.

We refer to [ArgyrosDKM:98], [ArgyrosLT:03], [ArgyrosM:03] and the above mentioned

papers for further examples and additional information.

Acknowledgements. The author thanks J. M. Herrera and the referee for their helpful

comments.
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