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Abstract. To any bounded analytic semigroup on Hilbert space or on L
p-space, one may as-

sociate natural ‘square functions’. In this survey paper, we review old and recent results on

these square functions, as well as some extensions to various classes of Banach spaces, including

noncommutative L
p-spaces, Banach lattices, and their subspaces. We give some applications to

H
∞ functional calculus, similarity problems, multiplier theory, and control theory.

1. Introduction. Square functions for generators of semigroups grew out of classical

harmonic analysis, and the Littlewood-Paley theory. They were first developed in Stein’s

classical book [52], with applications to functional calculus and multiplier theorems for

diffusion semigroups on Lp-spaces. Later on, further remarkable extensions of these mul-

tiplier theorems were obtained by Cowling in [10], who used them to obtain maximal

theorems. Then in the three fundamental papers [42, 43, 11], McIntosh and his coauthors

introduced H∞ functional for sectorial operators on Banach space X, generalized associ-

ated square functions if X is a Hilbert space or an Lp-space, and found deep connections

between these topics, giving a new viewpoint on Stein and Cowling’s results. Since then,

H∞ calculus and its applications to evolution equations and semigroups have developed

rapidly.

The purpose of this survey paper is to give a review of the various connections between

functional calculus and square functions, as well as some of their applications to several

aspects of the theory of semigroups. Of course it is only a selection of these applications,

obviously influenced by the author’s tastes.

In Section 2, we briefly review all necessary definitions and basic results concerning

sectorial operators, H∞ functional calculus, and bounded analytic semigroups. We also

include a subsection on Rademacher boundedness, a recent notion which now plays a key
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role in the development of the subject (see e.g. [29, 30, 35, 56, 57]). Section 3 is devoted

to square functions on Hilbert space. It is mainly based on [42, 43]. We give proofs of

the main results so that the reader can gain some intuition on the subject. Indeed, from

these results grew many generalizations from Hilbert space to broader classes of Banach

spaces, which are considered later on in the paper. In Section 4, we give two specific

applications of square functions for bounded analytic semigroups on Hilbert space. These

applications are independent of each other and show the power of the subject. Subsection

4.1 is devoted to the topic of similarity to contractions, whereas Subsection 4.2 is devoted

to the study of operators which are admissible for the generator of a bounded semigroup,

a problem arising from control theory. Square functions on Lp-spaces are introduced in

Section 5. We explain Stein and Cowling’s original results for diffusion semigroups in

this context. The last two sections are devoted to more recent developments of square

functions. In Section 6, we review some work from [26, 27] on square functions and semi-

groups on noncommutative Lp-spaces associated with a semifinite von Neumann algebra.

This includes applications to noncommutative diffusion semigroups and noncommuta-

tive Fourier multipliers on free groups. Section 7 contains further extensions of square

functions, either in a concrete or in an abstract form.

2. Preliminaries and the H∞ functional calculus

2.A. Sectorial operators and their H∞ functional calculus. In the first three subsections,

we will define sectorial operators and H∞ functional calculus, and review some of their

basic properties. The definitions and results below essentially go back to [42] and [11].

See also [1] or [33] for further details.

Let X be a complex Banach space. We let B(X) denote the Banach algebra of all

bounded operators on X. The identity operator on X will be either denoted by IX or

1. Let A be a closed and densely defined operator on X. We let D(A), N(A), and R(A)

denote the domain, the kernel and the range of A respectively. Further we let σ(A) and

ρ(A) denote the spectrum and the resolvent set of A respectively. For any λ ∈ ρ(A), we

let R(λ,A) = (λ−A)−1 be the associated resolvent operator; this is an element of B(X).

For any ω ∈ (0, π), we introduce

Σω = {z ∈ C
∗ : |Arg(z)| < ω},

the open sector of angle 2ω around the half-line (0,∞). By definition, A is sectorial of

type ω if σ(A) ⊂ Σω and if for any θ ∈ (ω, π) there is a constant Kθ > 0 such that

(2.1) ‖λR(λ,A)‖ ≤ Kθ, λ ∈ C \ Σθ.

For any θ ∈ (0, π), we letH∞(Σθ) be the space of bounded analytic functions f : Σθ →
C. This is a Banach algebra for the supremum norm

‖f‖∞,θ = sup{|f(z)| : z ∈ Σθ}.
Then we let H∞

0 (Σθ) be the subalgebra of all f ∈ H∞(Σθ) for which there exists a

positive number s > 0 such that

(2.2) |f(z)| = O(|z|−s) as |z| → ∞ for z ∈ Σθ,
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and

(2.3) |f(z)| = O(|z|s) as |z| → 0 for z ∈ Σθ.

For any γ ∈ (0, π), we let Γγ be the boundary of Σγ , oriented counterclockwise. If

θ ∈ (γ, π) and f ∈ H∞
0 (Σθ), then (2.2) and (2.3) ensure that

(2.4)

∫

Γγ

|f(z)|
∣∣∣∣
dz

z

∣∣∣∣ < ∞ .

Let A be a sectorial operator of type ω, and let θ ∈ (ω, π). For any f ∈ H∞
0 (Σθ), we

set

(2.5) f(A) =
1

2πi

∫

Γγ

f(z)R(z,A) dz,

where γ ∈ (ω, θ). It is clear from (2.4) and (2.1) that f(A) is a well defined element

of B(X). Moreover its definition does not depend on the choice of γ, and the resulting

mapping f 7→ f(A) is an algebra homomorphism from H∞
0 (Σθ) into B(X).

It is convenient to extend this functional calculus to bounded rational functions, as

follows. For any λ ∈ C \Σθ, let Rλ ∈ H∞(Σθ) be defined by Rλ(z) = (λ− z)−1. Then let

H̃∞
0 (Σθ) = H∞

0 (Σθ) ⊕ Span{1, R−1} ⊂ H∞(Σθ).

This is a subalgebra of H∞(Σθ). Next we let

uA : H̃∞
0 (Σθ) → B(X)

be the linear mapping taking f to f(A) for any f ∈ H∞
0 (Σθ), and taking 1 and R−1 to IX

and R(−1, A) = −(1 +A)−1 respectively. Then it is easy to check that uA is an algebra

homomorphism. Moreover Rλ ∈ H̃∞
0 (Σθ) for any λ ∈ C \Σθ, and uA(Rλ) = R(λ,A). We

call uA the holomorphic functional calculus of A on H̃∞
0 (Σθ).

Definition 2.1. Let A be a sectorial operator of type ω ∈ (0, π) on X and let θ ∈ (ω, π).

We say that A admits a bounded H∞(Σθ) functional calculus if there is a constant C > 0

such that ‖f(A)‖ ≤ C‖f‖∞,θ for any f ∈ H∞
0 (Σθ).

Equivalently, A admits a bounded H∞(Σθ) functional calculus if and only if the above

homomorphism uA is continuous.

If A is a sectorial operator of type ω ∈ (0, π) on X, and if X is reflexive, then A∗

is a sectorial operator of type ω ∈ (0, π) as well. Furthermore given any θ > ω and any

function f ∈ H∞
0 (Σθ), we have

(2.6) f(A)∗ = f̃(A∗), where f̃(z) = f(z) for any z ∈ Σθ.

Consequently, A∗ admits a bounded H∞(Σθ) functional calculus if (and only if) A does.

2.B. Semigroups and sectorial operators. We refer the reader to e.g. [17] for the necessary

background on semigroup theory. Let (Tt)t≥0 be a bounded c0-semigroup on X, and let

−A denote its infinitesimal generator. Then A is closed and densely defined, and we have

σ(A) ⊂ Σπ
2
. Moreover the Laplace formula says that whenever λ ∈ C \ Σπ

2
, we have

(2.7) R(λ,A) = −
∫ ∞

0

eλt Tt dt
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in the strong operator topology. Thus letting C = sup{‖Tt‖ : t ≥ 0}, we see that for any

λ ∈ C \ Σπ
2
, we have

‖λR(λ,A)‖ ≤ C

( |λ|
−Re(λ)

)
.

It is easy to deduce from this estimate that A is sectorial of type π
2 .

We note in passing that there is a natural connection between the holomorphic func-

tional calculus of A and the so-called Phillips functional calculus of the semigroup (Tt)t≥0.

Indeed for any b ∈ L1(R+; dt), let us denote by b̂ its Laplace transform defined on Σπ
2

by

b̂(λ) =

∫ ∞

0

b(t) e−λt dt , λ ∈ Σπ
2
.

Then for any θ ∈ (π2 , π) and for any f ∈ H∞
0 (Σθ), there exists a (necessarily unique)

function b ∈ L1(R+; dt) such that

(2.8) f = b̂ on Σπ
2
, and f(A) =

∫ ∞

0

b(t)Tt dt .

To prove this, take γ ∈ (π2 , θ) and define

b(t) = −
∫

Γγ

f(z) ezt dz , t > 0.

Then b is integrable and using Fubini’s Theorem, we obtain that for any λ ∈ Σπ
2
,

f(λ) =

∫

Γγ

f(z)

z − λ
dz = −

∫

Γγ

f(z)

∫ ∞

0

e(z−λ)t dt dz =

∫ ∞

0

b(t) e−λt dt = b̂(λ).

Likewiwe, using (2.5) and (2.7), one proves that f(A)x =
∫ ∞

0
b(t)Ttx dt for any x ∈ X.

By definition (see e.g. [17, I.5]), a bounded analytic semigroup is a bounded c0-

semigroup (Tt)t≥0 on X such that there exist a positive angle α > 0 and a bounded

analytic extension of (Tt)t>0 on Σα. That is, there exists a bounded family of operators

(Tz)z∈Σα
extending (Tt)t>0 and such that z 7→ Tz is analytic from Σα into B(X). Note

that such an extension necessarily satisfies TzTz′ = Tz+z′ for any z, z′ ∈ Σα. Generators

of bounded analytic semigroups can be characterized as follows.

Proposition 2.2. Let A be a linear operator on X. Then −A is the infinitesimal gen-

erator of a bounded analytic semigroup if and only if A is a sectorial operator of type

ω < π
2 .

Proof. Assume that −A generates a bounded analytic semigroup (Tz)z∈Σα
for some α

in (0, π2 ). For any β ∈ (−α, α), (Tteiβ )t≥0 is a bounded c0-semigroup whose generator is

−eiβA. Thus eiβA is sectorial of type π
2 . Since this holds for any β ∈ (−α, α), we deduce

that A is sectorial of type π
2 − α.

Assume conversely that A is a sectorial operator of type ω ∈ (0, π2 ). We fix two angles

α > 0 and θ > ω such that θ + α < π
2 . Next for any z ∈ Σα ∪ {0}, we let fz be

the analytic function defined by fz(λ) = e−zλ. Each fz belongs to H̃∞
0 (Σθ) and we may

therefore define Tz = uA(fz) for any z ∈ Σα∪{0}, where uA is the holomorphic functional

calculus of A on H̃∞
0 (Σθ). It is a simple matter to check that z 7→ Tz is analytic on Σα.

It therefore suffices to check that (Tt)t≥1 is a bounded c0-semigroup with generator −A,
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and that the family (Tz)z∈Σα
is bounded. This is left to the reader, see also [17, I.5.6] for

details.

If (Tt)t≥0 is a bounded c0-semigroup onX with generator −A, we will use the standard

notation Tt = e−tA for any t ≥ 0. If further A is sectorial of type ω < π
2 , and if z ∈ Σπ

2
−ω,

then we will write Tz = e−zA.

2.C. Sectorial operators with dense range. For any integer n ≥ 1, let fn be the rational

function defined by

(2.9) fn(z) =
n2z

(n+ z)(1 + nz)
.

Let A be a sectorial operator on X. Then the operators

fn(A) = [nA(1 + nA)−1][n(n+A)−1]

are uniformly bounded. Moreover, if x ∈ D(A), then we have

n(n+A)−1x− x = (n+A)−1Ax → 0

when n → ∞, by (2.1). Likewise, nA(1 + nA)−1x → x for any x ∈ R(A). These results

imply the following approximation lemma.

Lemma 2.3. Let A be a sectorial operator on X, and assume that A has dense range. Let

(fn)n≥1 be defined by (2.9). Then

sup
n

‖fn(A)‖ <∞ and lim
n
fn(A)x = x for any x ∈ X.

We let ϕ = f1, so that ϕ(z) = z(1 + z)−2 and ϕ(A) = A(1 +A)−2.

Proposition 2.4. Let A be a sectorial operator with dense range on X. Then:

(1) A is 1-1;

(2) R(ϕ(A)) = D(A) ∩R(A);

(3) The operator ϕ(A) is 1-1 and has dense range.

Proof. If x ∈ N(A), then fn(A)x = 0 for any n ≥ 1. Hence x = 0 by Lemma 2.3. The

assertion (2) and the injectivity of ϕ(A) are easy and left to the reader. To show that

D(A)∩R(A) is dense, observe that fn(A)x belongs to that space for any n ≥ 1 and apply

Lemma 2.3.

Let A be a sectorial operator of type ω ∈ (0, π), and assume that A has dense range.

Following [42, 11], one can construct a possibly unbounded operator f(A) for any f ∈
H∞(Σθ), provided that θ ∈ (ω, π). Indeed for f ∈ H∞(Σθ), the product function fϕ

belongs to H∞
0 (Σθ), hence we may define (fϕ)(A) by (2.5). Then using Proposition 2.4

we set

f(A) = ϕ(A)−1(fϕ)(A)

with domain given by

D(f(A)) = {x ∈ X : [(fϕ)(A)](x) ∈ D(A) ∩R(A)}.
This domain contains D(A)∩R(A) and is therefore dense. Furthermore the operator f(A)

is closed because ϕ(A) is bounded. Thus f(A) is bounded if and only if D(f(A)) = X.
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Using Lemma 2.3 and Proposition 2.4, one obtains the following fundamental result,

which shows the relevance of the preceding definitions.

Theorem 2.5 (McIntosh). Let A be a sectorial operator of type ω ∈ (0, π) on X, and

assume that A has dense range. Let θ ∈ (ω, π) be an angle. Then A has a bounded

H∞(Σθ) functional calculus (in the sense of Definition 2.1) if and only if f(A) is a

bounded operator for any f ∈ H∞(Σθ). In this case the mapping f 7→ f(A) is a bounded

homomorphism from H∞(Σθ) into B(X), which extends uA.

Remark 2.6. Let A be a sectorial operator on X. If X is reflexive, then there is a direct

sum decomposition

X = N(A) ⊕ R(A),

and the restriction of A to R(A) is a sectorial operator with dense range (see [11, Theorem

3.8]). Thus A is 1-1 if and only if A has dense range, and one can easily reduce to this

case by changing A into its restriction to R(A).

2.D. Rademacher boundedness. In this subsection, we introduce the concepts of R-

boundedness (see [5, 8]) and R-sectoriality (see [56], [57], [29]), which now play a funda-

mental role for the study of sectorial operators and H∞ functional calculus.

Consider a Rademacher sequence (εk)k≥1 on a probability space (Σ,P), that is, a

sequence of pairwise independent random variables on Σ such that P(εk = 1) = P(εk =

−1) = 1
2 for any k ≥ 1. For any finite family x1, . . . , xn in a Banach space X, we let

∥∥∥
n∑

k=1

εk xk

∥∥∥
Rad(X)

=

(∫

Σ

∥∥∥
n∑

k=1

εk(s)xk

∥∥∥
2

X
dP(s)

) 1
2

.

By definition, a set T ⊂ B(X) is R-bounded if there is a constant C ≥ 0 such that for

any finite families T1, . . . , Tn in T , and any x1, . . . , xn in X, we have

∥∥∥
n∑

k=1

εk Tk(xk)
∥∥∥

Rad(X)
≤ C

∥∥∥
n∑

k=1

εk xk

∥∥∥
Rad(X)

.

If H is a Hilbert space, then for any x1, . . . , xn in H we have

(2.10)
∥∥∥
n∑

k=1

εk xk

∥∥∥
Rad(H)

=
( n∑

k=1

‖xk‖2
) 1

2

.

Hence any bounded set T ⊂ B(H) is automatically R-bounded. More generally, any

bounded set T ⊂ B(X) is automatically R-bounded if X is isomorphic to a Hilbert

space. Conversely, if X is not isomorphic to a Hilbert space, then there exist bounded

subsets of B(X) which are not R-bounded (see e.g. [2, Proposition 1.13]).

If A is a sectorial operator on X and ω ∈ (0, π) is an angle, we say that A is R-sectorial

of R-type ω if for any θ ∈ (ω, π), the set

{λR(λ,A) : λ ∈ C \ Σθ} ⊂ B(X)

is R-bounded. The following result due to Kalton and Weis is a key connection between

H∞ calculus and R-boundedness.
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Theorem 2.7 (Kalton-Weis [29]). Let A be a sectorial operator on X, and assume that

X has property (∆). If A has a bounded H∞(Σθ) functional calculus, then A is R-sectorial

of R-type θ.

A few words on (∆) and related Banach space geometry is in order. Let (εk)k≥1 and

(ε′j)j≥1 be two mutually independent Rademacher sequences on (Σ,P). Following [29],

we say that a Banach space X has property (∆) if there is a constant K ≥ 0 such that
∫

Σ

∥∥∥
∑

1≤j≤k≤n

ε′j(s)εk(s)xjk

∥∥∥
2

X
dP(s) ≤ K2

∫

Σ

∥∥∥
n∑

j,k=1

ε′j(s)εk(s)xjk

∥∥∥
2

X
dP(s)

for any n ≥ 1 and any xjk in X.

We recall that a Banach space X is UMD if for some 1 < p <∞ (equivalently, for all

1 < p <∞), the Hilbert transform is bounded on Lp(R;X). UMD Banach spaces include

Hilbert spaces, as well as Lp-spaces for any 1 < p < ∞. Indeed, if Ω is any measure

space and Y is a UMD Banach space, then X = Lp(Ω;Y ) is UMD for any 1 < p < ∞.

Moreover subspaces of UMD Banach spaces are UMD. We refer the reader to [7] and the

references therein for more information on this topic.

It is shown in [29] that any UMD Banach space has property (∆). In fact, it is shown

in [29] that a Banach space X has property (∆) provided that it has the so-called analytic

UMD property (see also [20]). Analytic UMD Banach spaces include UMD spaces, as well

as L1-spaces and their subspaces (see [16, 7]). Thus Theorem 2.7 applies to any subspace

of Lp, for any 1 ≤ p <∞.

We wish to mention that the notion of R-sectoriality on non Hilbertian Banach spaces

is closely related to maximal Lp-regularity. Namely, it was proved in [28] and [56] that if

A is a sectorial operator of type < π
2 on a Banach space X with maximal Lp-regularity,

then A is R-sectorial of R-type < π
2 . Thus the counterexamples to maximal Lp-regularity

obtained by Kalton-Lancien in [28] show that when p 6= 2, there exist sectorial operators

on Lp-spaces which are not R-sectorial. Conversely, it was proved in [56] that if X is a

UMD Banach space, and A is R-sectorial of R-type < π
2 on X, then A has maximal

Lp-regularity.

3. Square functions on Hilbert space

3.A. Square functions and their equivalence. Square functions for sectorial operators on

Hilbert space were introduced by McIntosh in [42], with important developments in [43]

(see also [1, 4]). After introducing them, we will focus on their equivalence and their

connections with H∞ functional calculus.

Throughout this section, we let H be a Hilbert space and we let A be a sectorial

operator of type ω ∈ (0, π) on H. We define

H∞
0 (Σω+) = ∪θ>ωH∞

0 (Σθ).

Then for any F ∈ H∞
0 (Σω+), we set

(3.1) ‖x‖F =

(∫ ∞

0

‖F (tA)x‖2 dt

t

)1/2

, x ∈ H.
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In the above definition F (tA) means Ft(A), where Ft(z) = ϕ(tz). Using Lebesgue’s

continuity Theorem, it is easy to check that t 7→ F (tA) is continuous hence ‖x‖F is well

defined for any x ∈ X. Note however that we may have ‖x‖F = ∞. We call ‖ ‖F a square

function associated with A.

Theorem 3.1 (McIntosh-Yagi [43]). Let A be a sectorial operator of type ω ∈ (0, π) on

some Hilbert space H, and assume that A is 1-1. Let F and G be nonzero functions in

H∞
0 (Σθ), for some θ > ω.

(1) There is a constant K > 0 such that for any f ∈ H∞(Σθ),

(∫ ∞

0

‖g(A)F (tA)x‖2 dt

t

) 1
2

≤ K ‖g‖∞,θ ‖x‖G, x ∈ H.

(2) There is a constant K > 0 such that

K−1‖x‖G ≤ ‖x‖F ≤ K‖x‖G, x ∈ H.

Proof. For simplicity we will prove (2) only. The proof of (1) is quite similar (see [43], [1],

or [35] for details). Let θ ∈ (ω, π), and let F and G be two nonzero functions belonging

to H∞
0 (Σθ). We introduce an auxiliary function ϕ ∈ H∞

0 (Σθ) such that
∫ ∞

0

ϕ(t)G(t)
dt

t
= 1.

Then we have
∫ ∞

0
ϕ(tz)G(tz) dtt = 1. for any z ∈ Σθ. Indeed it is clear when z is

a positive real number, and hence for general z by analytic continuation. By Fubini’s

Theorem and (2.5), this implies that

(3.2) f(A) =

∫ ∞

0

ϕ(tA)G(tA)f(A)
dt

t

for any f ∈ H∞
0 (Σθ), the latter integral being absolutely convergent.

We let γ ∈ (ω, θ) be an intermediate angle, and we let Γ = Γγ be the corresponding

contour used in (2.5). Next we consider the two measure spaces Ω0 = (R∗
+; dtt ) and

Ω = (Γ, |dzz |). We may define a bounded operator σ : L2(Ω0) → L2(Ω) by letting

[σ(a)](z) =

∫ ∞

0

ϕ(tz) a(t)
dt

t
, a ∈ L2(Ω0), z ∈ Ω.

To check this, we first observe that

(3.3) K = sup
t>0

∫

Γ

|ϕ(tz)|
∣∣∣∣
dz

z

∣∣∣∣ <∞ and K ′ = sup
z∈Γ

∫ ∞

0

|ϕ(tz)| dt
t
<∞ .

Indeed, changing z into tz does not change
∫
Γ
|ϕ(tz)| |dzz | hence K =

∫
Γ
|ϕ(z)| |dzz |, which

is finite by (2.4). On the other hand, for any z ∈ Γ \ {0} we have
∫ ∞

0

|ϕ(tz)| dt
t

+

∫ ∞

0

|ϕ(tz)| dt
t

=

∫

Γ

|ϕ(λ)|
∣∣∣∣
dλ

λ

∣∣∣∣

hence K ′ ≤ K <∞.
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We let a be an arbitrary element of L2(Ω0). Then by Cauchy-Schwarz and (3.3), we

have∫

Γ

|[σ(a)](z)|2
∣∣∣∣
dz

z

∣∣∣∣ ≤
∫

Γ

(∫ ∞

0

|ϕ(tz)| dt
t

)(∫ ∞

0

|ϕ(tz)||a(t)|2 dt
t

) ∣∣∣∣
dz

z

∣∣∣∣

≤ K ′

∫

Γ

(∫ ∞

0

|ϕ(tz)||a(t)|2 dt
t

) ∣∣∣∣
dz

z

∣∣∣∣ ≤ KK ′

∫ ∞

0

|a(t)|2 dt
t
.

This shows that ‖σ : L2(Ω0) → L2(Ω)‖ ≤
√
KK ′. Since H is a Hilbert space, the tensor

extension

σ ⊗ IH : L2(Ω0) ⊗H → L2(Ω) ⊗H

extends to a bounded operator S : L2(Ω0;H) → L2(Ω;H), with ‖S‖ ≤
√
KK ′.

Let x ∈ H such that ‖x‖G <∞, and let u ∈ L2(Ω0;H) be defined by u(t) = G(tA)x.

For any z ∈ Γ, let

w(z) =

∫ ∞

0

ϕ(tz)G(tA)x
dt

t
=

∫ ∞

0

ϕ(tz)u(t)
dt

t
.

Then w = S(u) ∈ L2(Ω;H), and letting C = ‖S‖, we obtain that

(3.4)

∫

Γ

‖w(z)‖2

∣∣∣∣
dz

z

∣∣∣∣ ≤ C2 ‖x‖2
G.

Next we define

w′(z) = zR(z,A)f(A)w(z) and v(s) =
1

2πi

∫ ∞

0

F (sz)w′(z)
dz

z

for z ∈ Ω and s ∈ Ω0. Using (3.2) and Fubini’s Theorem, it is fairly easy to check that

v(s) = f(A)F (sA)x, s > 0.

Letting C ′ = supz∈Γ{‖zR(z,A)‖}, we see that
∫

Γ

‖w′(z)‖2

∣∣∣∣
dz

z

∣∣∣∣ ≤ C ′2 ‖f(A)‖2

∫

Γ

‖w(z)‖2

∣∣∣∣
dz

z

∣∣∣∣ .

Moreover, arguing as in the proof of (3.4), we can find a constant C ′′ such that
∫ ∞

0

‖v(s)‖2 dt

t
≤ C ′′2

∫

Γ

‖w′(z)‖2

∣∣∣∣
dz

z

∣∣∣∣ .

Altogether, we finally obtain that

‖f(A)x‖F = ‖v‖L2(Ω0;H) ≤ CC ′C ′′‖f(A)‖‖x‖G.
Now using Lemma 2.3 and applying the above estimate with fn instead of f , we find that

‖ ‖G dominates ‖ ‖F . By symmetry, ‖ ‖G and ‖ ‖F are therefore equivalent.

3.B. Square functions and H∞ functional calculus. Suppose that A is a sectorial operator

of type ω on H, and let G ∈ H∞
0 (Σω+). We will denote by ‖ ‖∗G the square function for

G associated with the adjoint operator A∗. Namely,

‖y‖∗G =

(∫ ∞

0

‖G(tA∗)y‖2 dt

t

)1/2

, y ∈ H.
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Theorem 3.2 (McIntosh [42]). Let A be a 1-1 sectorial operator of type ω ∈ (0, π) on

some Hilbert space H, and let θ ∈ (ω, π). The following assertions are equivalent.

(i) A has a bounded H∞(Σθ) functional calculus.

(ii) For some (equivalently, for any) pair (F,G) of nonzero functions in H∞
0 (Σω+),

there is a constant K > 0 such that

‖x‖F ≤ K‖x‖ and ‖y‖∗G ≤ K‖y‖
for any x, y ∈ H.

(iii) For some (equivalently, for any) nonzero function F ∈ H∞
0 (Σω+), there is a con-

stant K > 0 such that

K−1‖x‖ ≤ ‖x‖F ≤ K‖x‖, x ∈ H.

Proof. (i)⇒ (ii): We assume that A admits a bounded H∞(Σθ) functional calculus, and

we let F ∈ H∞
0 (Σθ). By [29, Lemma 4.1] and its proof, there exists a constant K > 0 such

that whenever (αk)k∈Z is a finite sequence of complex numbers and t > 0 is a positive

real number, we have

(3.5)
∥∥∥
∑

k

αkF (t2kA)
∥∥∥ ≤ Kmax

k
|αk|.

For any x ∈ X, we have
∫ ∞

0

‖F (tA)x‖2 dt

t
=

∞∑

k=−∞

∫ 2k+1

2k

‖F (tA)x‖2 dt

t
=

∫ 2

1

∞∑

k=−∞

‖F (t2kA)x‖2 dt

t

by changing t into t2−k. Then using (2.10), we have for any n ≥ 1 and any t ∈ [1, 2],

k=n∑

k=−n

‖F (t2kA)x‖2 =

∥∥∥∥
n∑

k=−n

εkF (t2kA)x

∥∥∥∥
2

Rad(H)

≤
∥∥∥∥

n∑

k=−n

εkF (t2kA)

∥∥∥∥
2

Rad(B(H))

‖x‖2 ≤ K2 ‖x‖2

by (3.5). We therefore deduce that ‖x‖2
F ≤ K2 ‖x‖2. This proves the first half of (ii).

Changing A into A∗, we obtain the second half.

(iii)⇒ (i): This is a straightforward consequence of Theorem 3.1.

(ii)⇒ (iii): Let θ > ω be an angle. Let (F,G) be two functions in H∞
0 (Σθ), such that

∫ ∞

0

F (t)G̃(t)
dt

t
= 1.

Here G̃ is defined as in (2.6). Arguing as in the proof of Theorem 3.1, we obtain that for

any f ∈ H∞
0 (Σθ), we have

f(A) =

∫ ∞

0

f(A)F (tA)G(tA∗)∗
dt

t
.

This implies that for any x, y ∈ H, we have

〈f(A)x, y〉 =

∫ ∞

0

〈f(A)F (tA)x,G(tA∗)y〉 dt
t
.
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Using Cauchy-Schwarz, we deduce that

|〈f(A)x, y〉| ≤ ‖f(A)‖ ‖x‖F ‖y‖∗G.
Applying Lemma 2.3 and the above estimate with fn instead of f , we deduce that for a

certain constant K > 0, we have

|〈x, y〉| ≤ K ‖x‖F ‖y‖∗G, x, y ∈ H.

By assumption, ‖y‖∗G is dominated by ‖y‖. With y = x, we deduce that ‖x‖ ≤ K ′‖x‖F
for a certain constant K ′ not depending on x.

Remark 3.3. Let A be a sectorial operator on H, with type ω.

(1) As a consequence of Theorem 3.2, we see that A has a bounded H∞(Σθ) functional

calculus for all θ ∈ (ω, π) if it has a bounded H∞(Σθ) functional calculus for some

θ ∈ (ω, π). We will simply say that A has a bounded H∞ functional calculus in that case.

(2) We say that A satisfies a square function estimate if for some (equivalently, for

all) F ∈ H∞
0 (Σω+), there is a constant K > 0 such that ‖x‖F ≤ K‖x‖ for any x ∈ H.

By Theorem 3.2 (and Remark 2.6), A has a bounded H∞ functional calculus if and

only if both A and A∗ satisfy a square function estimate. In [34], an example is given

of an operator A which satisfies a square function estimate, although it does not have a

bounded H∞ functional calculus.

(3) Assume that A is 1-1, and let F ∈ H∞
0 (Σω+) \ {0}. Then the set HF of all x ∈ H

such that ‖x‖F <∞ is a subspace of H, and ‖ ‖F is a Hilbertian norm on HF . It is not

hard to check that ‖x‖F < ∞ for any x ∈ D(A) ∩ R(A), hence HF is a dense subset of

H, by Proposition 2.4. Let HF be the completion of (HF , ‖ ‖F ). By Theorem 3.1, the

identity mapping on D(A)∩R(A) induces an isomorphism HF ≈ HG for any pair (F,G)

of nonzero functions in H∞
0 (Σω+). On the other hand, Theorem 3.2 implies that HF ≈ H

if and only if A has an H∞ functional calculus. We refer the reader to [4] for more on

HF and a description of that space in terms of complex interpolation.

4. Two applications. We present two applications of square functions to operator the-

oretical problems for bounded analytic semigroups. We will freely use the notation and

results discussed in 2.B. Both applications will use the following simple observation. Let

F0 be defined by

F0(z) = z
1
2 e−z .

Clearly F0 ∈ H∞
0 (Σθ) for any θ < π

2 .

Lemma 4.1. Let A be a sectorial operator of type < π
2 on some Hilbert space H, and let

(Tt)t≥0 be the bounded analytic semigroup on H generated by −A.

(1) For any x ∈ H, we have

‖x‖2
F0

=

∫ ∞

0

‖A 1
2Ttx‖2 dt .

(2) For any x ∈ H and any t > 0, we have

‖Ttx‖F0
≤ ‖x‖F0

.
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Proof. (1) is clear from the definitions. For (2), consider x ∈ H and t > 0. Then by (1),

‖Ttx‖2
F0

=

∫ ∞

0

‖A 1
2TsTtx‖2 ds =

∫ ∞

0

‖A 1
2Ts+tx‖2 ds

=

∫ ∞

t

‖A 1
2Tsx‖2 ds ≤

∫ ∞

0

‖A 1
2Tsx‖2 ds = ‖x‖2

F0
.

4.A. Bounded analytic semigroups similar to contractions. Let H be a Hilbert space. We

say that an operator B ∈ B(H) is similar to a contraction if there exists an invertible

operator S ∈ B(H) such that ‖S−1BS‖ ≤ 1. The question of determining operators

similar to contractions has attracted much attention in the last two decades. A key

result for this topic is the von Neumann inequality which asserts that if B ∈ B(H) is a

contraction, then

(4.1) ‖ϕ(B)‖ ≤ sup{|ϕ(w)| : w ∈ D}
for any ϕ in the disc algebra A(D). Here D = {w ∈ C : |w| < 1} is the unit disc of C.

Thus if B is similar to a contraction, then there is a constant K > 0 such that

(4.2) ‖ϕ(B)‖ ≤ K sup{|ϕ(w)| : w ∈ D}, ϕ ∈ A(D).

An operator B satisfying (4.2) is called polynomially bounded. Solving a famous conjecture

due to Halmos, Pisier proved in [47] that there exist polynomially bounded operators not

similar to contractions. Paulsen proved in [45] that B ∈ B(H) is similar to a contraction

if and only if it is completely polynomially bounded, a stronger condition meaning that

(4.2) remains valid with a constant K independent of n when ϕ belongs to the matrix

disc algebra Mn(A(D)). We refer to [46, 48] and the references therein for more details

and various results on similarity problems.

We say that a bounded c0-semigroup (Tt)t≥0 on H is similar to a contraction if there

is an invertible operator S ∈ B(H) such that ‖S−1TtS‖ ≤ 1 for any t ≥ 0. If −A is the

infinitesimal generator of (Tt)t≥0, this is equivalent to saying that S−1AS is maximal

accretive. Let

B = (A− 1)(A+ 1)−1

be the cogenerator of A (see e.g. [44]). Then B is a contraction if and only if (Tt)t≥0 is a

contraction semigroup, and B is similar to a contraction if and only if (Tt)t≥0 is similar

to contraction. Thus the problems of characterizing operators similar to contractions and

semigroups similar to contractions are essentially equivalent. In this part, we want to

show how square functions can be used to deal with the specific class of bounded analytic

semigroups. The following result is due to the author [36, 37] and independently to Franks

[15] and Callier-Grabowsky (in the case when A is invertible, [18]).

Theorem 4.2. Let A be a sectorial operator of type ω < π
2 on H, and let (Tt)t≥0 be

generated by −A. Let 0 < α < π
2 −ω be an angle. The following assertions are equivalent.

(i) The operator A has a bounded H∞ functional calculus.

(ii) There is an invertible operator S ∈ B(H) such that ‖S−1e−zAS‖ ≤ 1 for any

z ∈ Σα.

(iii) The semigroup (Tt)t≥0 is similar to a contraction.
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Proof. (ii)⇒ (iii) is obvious.

(iii)⇒ (i): We fix an angle θ > π
2 , and we let B be the cogenerator of A. According

to our previous discussion, B is polynomially bounded, that is, it satisfies (4.2). We set

τ (w) = (1 + w)(1 − w)−1 for any w 6= 1. Let f ∈ H∞
0 (Σθ) and let ϕ : D → C be defined

by ϕ = f ◦ τ . Since τ induces a conformal mapping from D onto Σπ
2
, the supremum of |ϕ|

on D is equal to ‖f‖∞,π
2
. Furthermore, ϕ belongs to the disc algebra and ϕ(B) = f(A).

Hence

‖f(A)‖ ≤ K‖f‖∞,π
2
.

This shows that A has a bounded H∞ functional calculus.

(i)⇒ (ii): Using Remark 2.6, we may assume that A is 1-1. It suffices to show that

there exists an equivalent Hilbertian norm |‖ ‖| on H such that |‖e−zAx‖| ≤ |‖x‖| for any

z ∈ Σα and any x ∈ H. (Indeed in that case, the identity mapping S from (H, |‖ ‖|) onto

(H, ‖ ‖) is an isomorphism and S−1e−zAS is a contraction.) By Theorem 3.2 (see also

Remark 3.3), ‖ ‖F is an equivalent Hilbertian norm on H for any nonzero F ∈ H∞
0 (Σω+).

Thus we only need to find such an F for which

(4.3) ‖e−zAx‖F ≤ ‖x‖F , z ∈ Σα, x ∈ H.

We fix two numbers ε > 0 and ν > 2ω
π such that

α+ ν(π2 + ε) < π
2 .

We let C = A
1
ν , which is a sectorial operator of type ω

ν <
π
2 . We set

F (z) = F0(z
1
ν ) = z

1
2ν e−z

1
ν ,

where F0 is the special function considered in Lemma 4.1. Since ω
ν <

π
2 , the function F

belongs to H∞
0 (Σω+). For any x ∈ H, we have

‖x‖2
F =

∫ ∞

0

‖t 1
2νC

1
2 e−t

1
ν Cx‖2 dt

t
= ν

∫ ∞

0

‖C 1
2 e−sCx‖2 ds

by letting s = t
1
ν . Applying Lemma 4.1 to C, we deduce that

‖e−tCx‖F ≤ ‖x‖F , x ∈ H, t > 0.

Thus (e−tC)t≥0 is a contraction semigroup on the Hilbert spaceHF = (H, ‖ ‖F ). Applying

von Neumann’s inequality as in the proof of ‘(iii)⇒ (i)’ above, we deduce that for any

θ > π
2 and any f ∈ H̃∞

0 (Σθ), we have

(4.4) ‖f(C)x‖F ≤ ‖f‖∞,π
2
‖x‖F , x ∈ H.

We fix a complex number z ∈ Σα, and we define

f(λ) = e−zλ
ν

, λ ∈ C.

Let θ = π
2 +ε and recall that α+νθ < π

2 . This angle condition ensures that f ∈ H̃∞
0 (Σθ),

and moreover we have ‖f‖∞,π
2

= 1. Hence ‖f(C)x‖F ≤ ‖x‖F for any x ∈ H by (4.4).

Since f(C) = e−zA, this yields (4.3).

Remark 4.3. Let (Tt)t≥0 be a bounded c0-semigroup on H, and assume that its negative

generator A is 1-1. We do not assume the semigroup to be analytic in this subsection. For

any real number s, let Ais be the corresponding imaginary power of A. Using Subsection
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2.C, these may be defined as Ais = ψs(A), where ψs(z) = zis. Using von Neumann’s

inequality as in the proof of Theorem 4.2, one obtains that if (Tt)t≥0 is a contraction

semigroup, then ‖Ais‖ ≤ e
π
2
|s| for any s ∈ R. It is shown in [38] that conversely, if

‖Ais‖ ≤ e
π
2
|s| for any s ∈ R, then (Tt)t≥0 is similar to a contraction semigroup.

4.B. An application to control theory. Let (Tt)t≥0 be a bounded c0-semigroup on some

Hilbert space H, and let −A denote its generator. Let K be another Hilbert space and

let C : D(A) → K be a linear operator defined on the domain of A. We assume that C

is continuous with respect to the graph norm of D(A). By definition, C is admissible for

A if there is a constant M > 0 such that

(4.5)

∫ ∞

0

‖CTtx‖2 dt ≤M2‖x‖2, x ∈ D(A).

The problem of characterizing admissibility arises from control theory. For a wide infor-

mation on this topic, we refer the reader to the excellent survey [23] and the references

therein. A key observation due to Weiss [55] is that if C is admissible for A, then there

is a constant D > 0 such that

(4.6) (−Re(λ))
1
2 ‖CR(λ,A)‖ ≤ D

for any complex number λ with Re(λ) < 0. To check this, just observe that we have

CR(λ,A)x = −
∫ ∞

0

eλtCTtx dt

by the Laplace formula (2.7). Hence if (4.5) holds, we have

‖CR(λ,A)x‖ ≤
∫ ∞

0

eRe(λ)t ‖CTtx‖ dt ≤
(∫ ∞

0

e2Re(λ)t dt

) 1
2

(∫ ∞

0

‖CTtx‖2 dt

) 1
2

≤ M√
2 (−Re(λ))

1
2

‖x‖.

To find conditions on A that ensure that the converse implication ‘(4.6) ⇒ (4.5)’

holds true is one of the most important questions in the area. The question whether this

holds true for any A remained open for a while under the name of ‘Weiss conjecture’.

This conjecture was disproved by Jacob, Partington and Pott [24] in the case when

H = K = ℓ2, and by Jacob and Zwart [25] in the case when H = ℓ2 and K = C.

Here we consider again the special case when (Tt)t≥0 is a bounded analytic semigroup.

In this case it is easy to check that C = A
1
2 satisfies (4.6). On the other hand, it follows

from Lemma 4.1 (1) that A
1
2 is admissible for A if and only if A has a square function

estimate (in the sense of Remark 3.3 (2)). These conditions turn out to characterize the

validity of the implication ‘(4.6) ⇒ (4.5)’.

Theorem 4.4 ([34]). Let A be a sectorial operator of type ω < π
2 on some Hilbert space

H. The following assertions are equivalent.

(i) A
1
2 is admissible for A.

(ii) A has a square function estimate.
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(iii) A continuous linear operator C : D(A) → K is admissible for A if and only if there

is a constant D > 0 such that (−Re(λ))
1
2 ‖CR(λ,A)‖ ≤ D for any complex number

λ with Re(λ) < 0.

Proof. The equivalence between (i) and (ii), and the implication ‘(iii)⇒ (i)’, follow from

the discussion before the theorem. We now prove ‘(ii)⇒ (iii)’, which is the main impli-

cation. We assume that A has a square function estimate and we let C : D(A) → K be

an operator satisfying (4.6). This implies that for any γ ∈ (π2 , π), there is a constant D′

such that

(4.7) |λ| 12 ‖CR(λ,A)‖ ≤ D′, λ ∈ C \ Σγ .

Using Remark 2.6, we may assume that A is 1-1. In that case, A− 1
2 is a well-defined

densely defined operator. Hence given any x ∈ H and any t > 0, we may write

(4.8) Ce−tAx = CA− 1
2A

1
2 e−tAx = t−

1
2CA− 1

2F0(tA)x,

where F0(z) = z
1
2 e−z. Let ϕ and ψ be defined by

ϕ(z) =
z

1
4

1 + z
and ψ(z) = z

1
4 (1 + z) e−z.

Then F0 = ϕψ, ψ ∈ H∞
0 (Σω+), and ϕ ∈ H∞

0 (Σθ) for any θ ∈ (0, π). By (4.8), we have
∫ ∞

0

‖CTtx‖2 dt =

∫ ∞

0

‖CA− 1
2ϕ(tA)ψ(tA)x‖2 dt

t

≤
∫ ∞

0

‖CA− 1
2ϕ(tA)‖2 ‖ψ(tA)x‖2 dt

t

≤ sup
t>0

{‖CA− 1
2ϕ(tA)‖2} ‖x‖2

ψ.

To prove (4.5), it therefore suffices to show that

sup
t>0

{‖CA− 1
2ϕ(tA)‖} < ∞ .

Let γ > π
2 be any angle. One can show that

CA− 1
2ϕ(tA) =

1

2πi

∫

Γγ

z−
1
2ϕ(tz)CR(z,A) dz

(see [34] for details). Applying (4.7), we deduce that for some constant D′′ not depending

on t > 0, we have

‖CA− 1
2ϕ(tA)‖ ≤ D′′

∫

Γγ

|ϕ(tz)|
∣∣∣∣
dz

z

∣∣∣∣ =

∫

Γγ

|ϕ(z)

∣∣∣∣
dz

z

∣∣∣∣ .

This is finite, by (2.4), which concludes the proof.

Remark 4.5. In the paper [21], Bernhard Haak and the author introduced a variant of

admissibility, called α-admissibility. Let α > −1 be a real number. An operator C is

α-admissible if it satisfies an estimate of the form

(4.9)

∫ ∞

0

tα‖CT (t)x‖2 dt ≤M2‖x‖2.
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Let β ∈ (−1, 3) be such that k = α+β
2 is a nonnegative integer. Let A be a sectorial

operator of type < π
2 that has a square function estimate. We show that an operator C

is α-admissible if and only if there exists a constant D > 0 such that

‖(−Re(λ))
1+β
2 CR(λ,A)k+1‖ ≤ D, λ ∈ C, Re(λ) < 0.

Moreover, the square function estimate is a necessary condition for this equivalence to

hold.

5. Square functions on Lp-spaces

5.A. Main results on Lp-spaces. Let 1 ≤ p < ∞ be a number, let Ω be an arbitrary

measure space, and consider the Banach space X = Lp(Ω). Given a sectorial operator A

of type ω ∈ (0, π) on Lp(Ω) and F ∈ H∞
0 (Σω+), we let

(5.1) ‖x‖F =

∥∥∥∥
(∫ ∞

0

|F (tA)x|2 dt
t

) 1
2
∥∥∥∥
Lp(Ω)

, x ∈ Lp(Ω).

More precisely, let xF be the continuous function from R
∗
+ into X = Lp(Ω) defined by

xF (t) = F (tA)x. Let H0 = L2(R∗
+; dtt ). Then ‖x‖F is defined as the norm of xF in the

Hilbert space valued Lp-space Lp(Ω;H0), if xF belongs to that space, and ‖x‖F = ∞
otherwise. These square functions were introduced in [11] (see also Subsection 5.4 below).

They obviously extend the ones on Hilbert space (see Section 4) that we recover when

p = 2. Our main objective in this subsection is to present analogs of Theorems 3.1 and

3.2 on Lp.

Theorem 5.1 ([35]). Let A be an R-sectorial operator of R-type ω ∈ (0, π) on a space

X = Lp(Ω), with 1 ≤ p < ∞. Assume that A has dense range. Let F and G be nonzero

functions in H∞
0 (Σθ), for some θ > ω.

(1) There is a constant K > 0 such that for any f ∈ H∞(Σθ),

‖f(A)x‖F ≤ K ‖f‖∞,θ ‖x‖G, x ∈ Lp(Ω).

(2) There is a constant K > 0 such that

K−1‖x‖G ≤ ‖x‖F ≤ K‖x‖G, x ∈ Lp(Ω).

This generalization of Theorem 3.1 can be proved following the same approach as the

one presented for the latter result in Section 3. See [35] for details. We do not know if

this result remains true without assuming that A is R-sectorial.

Assume that A is a sectorial operator of type ω ∈ (0, π) on X = Lp(Ω), with 1 ≤ p

<∞. Given any F ∈ H∞
0 (Σω+), we say that A satisfies a square function estimate (SF )

if there is a constant K > 0 such that

(SF) ‖x‖F ≤ K‖x‖, x ∈ Lp(Ω).

It clearly follows from the previous result that if A is R-sectorial of R-type ω, then A

satisfies (SF ) for some F ∈ H∞
0 (Σω+) \ {0} if and only if it satisfies (SF ) for all such F .

If p 6= 1, then A∗ is a sectorial operator of type ω ∈ (0, π) on X∗ = Lp
′

(Ω), where

p′ = p/(p− 1) is the conjugate number of p. For any G ∈ H∞
0 (Σω+), we will say that A

satisfies (S∗
G) if A∗ satisfies a square function estimate with respect to G.
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Theorem 5.2 ([11]). Let A be a sectorial operator of type ω ∈ (0, π) on X = Lp(Ω),

with 1 ≤ p <∞. Let θ > ω.

(1) If A has a bounded H∞(Σθ) functional calculus, then A satisfies a square function

estimate (SF ) for any F ∈ H∞
0 (Σθ+).

(2) Assume that p 6= 1. There exists a pair (F,G) of nonzero functions in H∞
0 (Σω+)

such that:

• If A satisfies (SF ) and (S∗
G), then A has a bounded H∞(Σθ) functional calcu-

lus.

• If A is 1-1 and satisfies (S∗
G), then there is a constant K > 0 such that

‖x‖ ≤ K‖x‖F , x ∈ X.

These fundamental results are due to Cowling, Doust, McIntosh, and Yagi [11]. They

generalize the equivalence ‘(i)⇔ (ii)’ and the implication ‘(i)⇔ (iii)’ of Theorem 3.2.

However their proofs are more difficult than the analogous ones on Hilbert space and

require subtle decompositions of analytic functions in the spirit of harmonic analysis.

These difficulties arise from the existence of bounded sets of operators on Lp which are

not R-bounded. A version of Theorem 3.2 on Lp-spaces goes as follows.

Corollary 5.3. Let A be a 1-1 sectorial operator on X = Lp(Ω), with 1 < p <∞, and

let ω ∈ (0, π). The following assertions are equivalent.

(i) For any θ ∈ (ω, π), A has a bounded H∞(Σθ) functional calculus.

(ii) For every F,G in H∞
0 (Σω+), A satisfies (SF ) and (S∗

G).

(iii) The operator A is R-sectorial of R-type ω and for every nonzero F ∈ H∞
0 (Σω+),

there is a constant K > 0 such that

K−1‖x‖ ≤ ‖x‖F ≤ K‖x‖, x ∈ X.

Proof. Recall that A∗ has a bounded H∞(Σθ) functional calculus if and only if A has one.

Hence the equivalence between (i) and (ii) follows from Theorem 5.2. Since X = Lp(Ω)

has property (∆), the equivalence with (iii) follows from Theorems 2.7, 5.1, and 5.2.

Example 5.4. Square functions originate in harmonic analysis and it is worthwhile to

mention a few classical ones, that are used e.g. in Stein’s book [52]. For any k ≥ 1, let

Gk(z) = zke−z, z ∈ C.

Then Gk ∈ H∞
0 (Σω+) for any ω < π

2 . Hence if A is a sectorial operator on Lp(Ω) of type

ω < π
2 , then Gk gives rise to a square function associated with A. Indeed if (Tt)t≥0 is the

bounded analytic semigroup generated by −A, we have

Gk(tA)x = tkAke−tAx = (−t)k ∂k

∂tk
(Ttx), x ∈ Lp(Ω).

Hence the corresponding square function is

‖x‖Gk
=

∥∥∥∥
(∫ ∞

0

t2k−1

∣∣∣∣
∂k

∂tk
(Ttx)

∣∣∣∣
2

dt

)1/2∥∥∥∥
Lp(Ω)

, x ∈ Lp(Ω).
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On the other hand, let us define

(5.2) σtx =
1

t

∫ t

0

Tsx ds, t > 0, x ∈ Lp(Ω).

Then consider the holomorphic function

(5.3) Φ(z) =
1 − e−z

z
− e−z, z ∈ C.

It is easy to check that Φ ∈ H∞
0 (Σω+) for any ω < π

2 . Furthermore, one has

Φ(tA)x = t
∂

∂t
(σtx), t > 0.

This is left as an exercice for the reader, details can be found e.g. in [26, Chapter 10].

Thus

‖x‖Φ =

∥∥∥∥
(∫ ∞

0

t

∣∣∣∣
∂

∂t
(σtx)

∣∣∣∣
2

dt

)1/2∥∥∥∥
Lp(Ω)

is a square function associated to A. We will come back to these examples in the next

subsection.

5.B. Diffusion semigroups. The following class of semigroups was considered by Stein in

[52]. It provides a good illustration of the theory developed so far. A noncommutative

analog will be presented in Section 6 below. Let Ω be a measure space and let (Tt)t≥0

be a c0-semigroup on L2(Ω). We say that (Tt)t≥0 is a diffusion semigroup on Ω if the

following two conditions hold:

(I) For any t ≥ 0, for any 1 ≤ p ≤ ∞, and for any x ∈ Lp ∩L2, Ttx belongs to Lp, and

‖Ttx‖p ≤ ‖x‖p.
(II) For any t ≥ 0, Tt : L

2 → L2 is a selfadjoint operator.

Let t ≥ 0 be any nonnegative real number. By (I), Tt uniquely extends to a contractive

operator Lp(Ω) → Lp(Ω) if 1 ≤ p < ∞, and to a contractive w∗-continuous operator

L∞(Ω) → L∞(Ω). We will keep the notation Tt for all these realizations. For any 1 ≤
p <∞, the resulting contraction semigroup (Tt)t≥0 on Lp(Ω) is strongly continuous (see

[54]). In the sequel, we let −Ap denote the infinitesimal generator of the realization of

(Tt)t≥0 on Lp(Ω). It follows from [52, III.2] that Ap is sectorial of type π| 1p − 1
2 | . The

main result of this subsection is the following.

Theorem 5.5 (Cowling [10]). Let (Tt)t≥0 be a diffusion semigroup on Ω and let −Ap be

the generator of (Tt)t≥0 on Lp(Ω). Then for any 1 < p < ∞, and for any θ > π| 1p − 1
2 | ,

the operator Ap has a bounded H∞(Σθ) functional calculus.

We will sketch a proof of Cowling’s Theorem, pointing out some of the general ideas.

The first step is a transference result, whose general form is as follows.

Proposition 5.6 (Hieber-Prüss [22]). Let X be a UMD Banach space, and let (Ut)t∈R

be a bounded c0-group on X. Let −B be the generator of this group. Then B has a bounded

H∞(Σθ) functional calculus for any θ > π
2 .
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Let (Vt)t be the translation group on L2(R;X), and let −BX = d
dt denote its genera-

tor. The proof of Proposition 5.6 consists, using a transference method, in showing that

for any b ∈ L1(R+; dt), we have
∥∥∥∥
∫ ∞

0

b(t)Ut dt

∥∥∥∥≤ K2

∥∥∥∥
∫ ∞

0

b(t)Vt dt

∥∥∥∥,

where K = sups ‖Us‖. Then using (2.8), this implies that ‖f(B)‖ ≤ K2‖f(BX)‖ for any

f ∈ H∞
0 (Σπ

2
+). Therefore it suffices to show that BX has a bounded H∞(Σθ) functional

calculus for any θ > π
2 . Using the hypothesis thatX is UMD, this follows from McConnel’s

generalization of Mikhlin’s multiplier theorem from [41].

Proof of Theorem 5.5. We only give a sketch, based on the following dilation property. Let

(Tt)t≥0 be a diffusion semigroup on Ω, and let 1 < p <∞. According to [14], there exist

a measure space Ω′, an isometry J : Lp(Ω) → Lp(Ω′), a contraction Q : Lp(Ω′) → Lp(Ω),

and a c0-group (Ut)t∈R of isometries on Lp(Ω′), such that

(5.4) Tt = QUtJ, t ≥ 0.

(This is continuous version of Ackoglu’s famous dilation theorem for subpositive contrac-

tions on Lp.)

Let −B be the generator of (Ut)t. Using either (2.8) or (2.5), it follows from (5.4)

that ‖f(Ap)‖ ≤ ‖f(B)‖ for any f ∈ H∞
0 (Σπ

2
+). Since Lp(Ω′) is UMD, we deduce from

Proposition 5.6 that Ap has a bounded H∞(Σθ) functional calculus for any θ > π
2 .

By (II), the operator A2 is a positive selfadjoint operator on L2(Ω). Hence it admits

a bounded H∞(Σν) functional calculus for any ν > 0. Combining these two results, and

using complex interpolation, one can deduce that Ap actually has a bounded H∞(Σθ)

functional calculus for any θ > π| 1p − 1
2 | .

We refer the reader to [32], [12], [13], [9], and [57] for variants and extensions of

Cowling’s Theorem.

Combining Theorem 5.2 (1), Theorem 5.5, and the examples from 5.4, one finds

extensions of various square function estimates established by Stein (see [52, p.115 and

p.120]). Namely if (Tt)t≥0 is a diffusion semigroup on Ω, then for any 1 < p <∞ there is

a constant Kp > 0 such that

(5.5)

∥∥∥∥
(∫ ∞

0

t2k−1

∣∣∣∣
∂k

∂tk
(Ttx)

∣∣∣∣
2

dt

)1/2∥∥∥∥
p

≤ Kp‖x‖p

and

(5.6)

∥∥∥∥
(∫ ∞

0

t

∣∣∣∣
∂

∂t
(σtx)

∣∣∣∣
2

dt

)1/2∥∥∥∥
p

≤ Kp‖x‖p

for any x ∈ Lp(Ω), where σt is the averaging function defined by (5.2). In fact if Ap is

1-1, then the above inequalities can be reversed, by Corollary 5.3.

6. Extension to noncommutative Lp-spaces. In this section, we present analogs

of the previous results for noncommutative Lp-spaces, as well as an illustration. All re-

sults from this section are taken from joint work with Marius Junge and Quanhua Xu
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[26, 27]. Throughout this section, we let M denote a semifinite von Neumann algebra

equipped with a normal semifinite faithful trace. For any 1 ≤ p ≤ ∞, we let Lp(M)

denote the associated noncommutative Lp-space. We refer the reader e.g. to [50] for all

necessary information on these spaces. We merely recall that if M = B(ℓ2) is the algebra

of all bounded operators on ℓ2 equipped with its usual trace, then the corresponding

noncommutative Lp-spaces are the Schatten spaces. On the other hand, if M is com-

mutative and if we represent M = L∞(Ω) for some measure space Ω in the usual way,

then Lp(M) = Lp(Ω), the classical (commutative) Lp-space over Ω. We also recall that

if 1 < p < ∞, Lp(M) is a UMD Banach space [6], and that Lp(M)∗ = Lp
′

(M), where

p′ = p/(p− 1) is the conjugate number of p.

6.A. Square functions and H∞ functional calculus on noncommutative Lp-spaces. We

will define square functions for sectorial operators on Lp(M). In order to extend (5.1),

we need Hilbert space valued noncommutative Lp-spaces. Let H be a Hilbert space and

let e ∈ H with ‖e‖ = 1. For 1 ≤ p <∞, we consider the embedding

Lp(M) ⊗H →֒ Lp(M⊗B(H)),

obtained by taking any x ⊗ a to x ⊗ (a ⊗ e) for any x ∈ Lp(M) and a ∈ H, and then

extending by linearity. Then we let Lp(M;Hc) be the completion of Lp(M) ⊗ H for

the norm induced by Lp(M⊗B(H)). It turns out that this definition does not depend

on e. The index ‘c’ is for ‘column’. Indeed, it is easy to check that if (e1, . . . , en) is an

orthonormal family of H and a1, . . . , an belong to Lp(M), then

(6.1)
∥∥∥
∑

k

ak ⊗ ek

∥∥∥
Lp(M ;Hc)

=
∥∥∥
(∑

k

a∗kak

) 1
2
∥∥∥
Lp(M)

=

∥∥∥∥∥∥∥



a1 0 · · · 0
...

...
...

an 0 · · · 0




∥∥∥∥∥∥∥
Lp(Mn(M))

.

Likewise we may consider the embedding Lp(M) ⊗ H →֒ Lp(M⊗B(H)) obtained by

taking x⊗ a to x⊗ (e⊗ a) for any x ∈ Lp(M) and a ∈ H, and we let Lp(M;Hr) be the

completion of Lp(M)⊗H for the resulting norm. Again this does not depend on e. The

index ‘r’ is for ‘row’, and the analog of (6.1) is

(6.2)
∥∥∥
∑

k

ak ⊗ ek

∥∥∥
Lp(M ;Hr)

=
∥∥∥
(∑

k

aka
∗
k

) 1
2
∥∥∥
Lp(M)

=

∥∥∥∥∥∥∥∥∥




a1 . . . an
0 . . . 0
...

...

0 · · · 0




∥∥∥∥∥∥∥∥∥
Lp(Mn(M))

.

We apply these definitions to the Hilbert space H = H0 = L2(Ω0), where Ω0 =

(R∗
+,

dt
t ). Let A be a sectorial operator of type ω ∈ (0, π) on Lp(M), with 1 ≤ p < ∞.

For any F in H∞
0 (Σω+), we define square functions associated with A by letting

‖x‖F,c = ‖t 7→ F (tA)x‖Lp(M ;L2(Ω0)c) and ‖x‖F,r = ‖t 7→ F (tA)x‖Lp(M ;L2(Ω0)r)

for any x ∈ Lp(M). More precisely, let xF (t) = F (tA)x for any t > 0. Then ‖x‖F is

defined as the norm of xF in Lp(Ω;Hc), if xF belongs to that space, and ‖x‖F,c = ∞
otherwise. The convention for ‖x‖F,r is similar.
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Next we define symmetrized square functions by letting

(6.3) ‖x‖F = max{‖x‖F,c , ‖x‖F,r} if 2 ≤ p <∞;

and

(6.4) ‖x‖F = inf{‖u1‖Lp(M ;L2(Ω0)c) + ‖u2‖Lp(M ;L2(Ω0)r) :

u1 + u2 = F (·A)x} if 1 < p ≤ 2,

the infimum running over all possible decompositions of xF = F (·A)x into a sum u1 +u2

of measurable functions uj : Ω0 → Lp(M). It is not hard to see that if M is commutative,

then the above definition of ‖ ‖F coincides with (5.1). As with the noncommutative

Khintchine inequalities due to Lust-Piquard (see [40, 50]), the definitions depend upon

whether p ≥ 2 or p < 2.

Although they are quite involved, these definitions are close to (5.1). Indeed one can

show that if p ≥ 2, then we have

(6.5) ‖x‖F,c = sup
0<α<β<∞

∥∥∥∥
∫ β

α

(F (tA)x)∗(F (tA)x)
dt

t

∥∥∥∥
1
2

L
p
2 (M)

, x ∈ Lp(M).

Here (F (tA)x)∗ stands for the adjoint of F (tA)x regarded as an operator on the Hilbert

space on which M is acting. Likewise, we obtain ‖x‖F,r by changing (F (tA)x)∗(F (tA)x)

into (F (tA)x)(F (tA)x)∗. These formulas should be regarded as ‘continuous versions’ of

(6.1) and (6.2).

As in the commutative case, we will say that A satisfies a square function estimate

(SF ) if there is a constant K > 0 such that ‖x‖F ≤ K‖x‖ for any x ∈ X = Lp(M).

Theorem 6.1 ([26]). Theorems 5.1, 5.2, and Corollary 5.3 extend to the case when X =

Lp(M) is a noncommutative Lp-space.

6.B. Noncommutative diffusion semigroups. Let (Tt)t≥0 be a c0-semigroup on the Hilbert

space L2(M). Extending the terminology from the previous section, we say that (Tt)t≥0

is a (noncommutative) diffusion semigroup on M if conditions (I) and (II) from 5.B

hold true. As in the commutative case, they imply that (Tt)t≥0 extends to a contractive

c0-semigroup on Lp(M) for every 1 < p <∞. Again we let −Ap denote the generator of

the realization of (Tt)t≥0 on Lp(M). We let

ωp = π

∣∣∣∣
1

p
− 1

2

∣∣∣∣ .

Arguing as in [52, III.2], one has the following basic result.

Lemma 6.2. Let (Tt)t≥0 be a noncommutative diffusion semigroup on L2(M) and for any

1 < p < ∞, let −Ap denote the generator of (Tt)t≥0 on Lp(M). Then Ap is a sectorial

operator of type ωp.

We do not know whether Theorem 5.5 extends to noncommutative Lp-spaces. The

obstacle is the lack of an analog of the dilation property (5.4) in the noncommutative

setting. Our main ‘general’ result for noncommutative diffusion semigroups is Theorem

6.3 below. Before stating it, we recall that the space Lp(M) has a natural positive cone
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Lp(M)+. Thus we say that a linear mapping T : Lp(M) → Lp(M) is positive it it maps

Lp(M)+ into itself. Then for an integer n ≥ 2, we say that T is n-positive if

IMn
⊗ T : Lp(Mn(M)) → Lp(Mn(M))

is positive. Finally we say that T is completely positive if it is n-positive for all n. See

e.g. [46] for more on completely positive maps.

Theorem 6.3 ([26]). Let (Tt)t≥0 be a noncommutative diffusion semigroup on M and

for any 1 < p <∞, let −Ap denote the generator of (Tt)t≥0 on Lp(M). Assume moreover

that Tt is 2-positive for any t ≥ 0. Then Ap is R-sectorial of R-type ωp.

The paper [26] contain various examples of noncommutative diffusion semigroups

satisfying the conclusions of Theorem 5.5. In the next subsection, we present one of

them.

6.C. Noncommutative Fourier multipliers. Let n ≥ 1 be an integer, and let G = Fn be

the free group with n generators denoted by c1, . . . , cn. We let e be the unit element of

G, and we let (δg)g∈G denote the canonical basis of the space ℓ2G of all square summable

families of complex numbers indexed by G. Then we let λ : G→ B(ℓ2G) be the left regular

representation of G, defined by λ(g)δh = δgh for any g, h ∈ G. We recall that the group

von Neumann algebra V N(G) ⊂ B(ℓ2G) is defined as the von Neumann algebra on ℓ2G
generated by the ∗-algebra

P = Span{λ(g) : g ∈ G}.
We let τ be the normalized trace on V N(G) defined by τ (x) = 〈x(δe), δe〉 for any x ∈
V N(G). We will consider M = V N(G) and the noncommutative Lp-spaces associated

with the above trace. It is easy to check that for any 1 ≤ p < ∞, P ⊂ Lp(V N(G)) is a

dense subspace.

Since G is a free group, any g ∈ G has a unique decomposition of the form

(6.6) g = ck1

i1
ck2

i2
· · · ckp

ip
,

where p ≥ 0 is an integer, each ij belongs to {1, . . . , n}, each kj is a nonzero integer, and

ij 6= ij+1 if 1 ≤ j ≤ p− 1. The case when p = 0 corresponds to the unit element g = e.

By definition, the length of g is defined as

|g| = |k1| + · · · + |kp|.
This is the number of factors in the above decomposition of g.

For any t ≥ 0, we let Tt : P → P be the linear mapping defined by letting

(6.7) Tt(λ(g)) = e−t|g| λ(g), g ∈ G.

These operators were introduced by Haagerup in [19], where he shows that each Tt
uniquely extends to a w∗-continuous unital completely positive map Tt : V N(G) →
V N(G). Moreover, Tt also extends to a contractive, selfadjoint operator on L2(M). Then

it is easy to check that (Tt)t≥0 is a completely positive diffusion semigroup in the sense of

the previous subsection. Note that if n = 1, then G = Z, and (Tt)t≥0 is the classical Pois-

son semigroup on L∞(T). For this reason, we call (Tt)t≥0 the noncommutative Poisson



SQUARE FUNCTIONS 213

semigroup on M = V N(Fn). (We note in passing that there are other noncommutative

versions of the Poisson transform in the literature, see e.g. [3].)

Theorem 6.4 ([26]). Let (Tt)t≥0 be the noncommutative Poisson semigroup on V N(Fn).

For any 1 < p < ∞, let −Ap be the generator of (Tt)t≥0 on Lp(V N(Fn)). Then for any

θ > ωp, the operator Ap has a bounded H∞(Σθ) functional calculus.

Proof. (Sketch.) The proof of this theorem owes a lot to Stein’s original approach to

(commutative) diffusion semigroups. Using noncommutative martingales (in the sense of

[51]), we show that for any 1 < p < ∞, Ap satisfies a square function estimate (SΦ),

where Φ is the holomorphic function defined by (5.3). Since A∗
p = Ap′ , this shows that

Ap both satisfies (SΦ) and (S∗
Φ). By Theorem 6.3 and by the noncommutative version

of Theorem 5.1 provided by Theorem 6.1, all square functions ‖ ‖F for Ap defined with

a function F ∈ H∞
0 (Σωp+) \ {0} are equivalent. Hence Ap satisfies (SF ) and (S∗

G) for

any F,G in H∞
0 (Σωp+). By the noncommutative version of Corollary 5.3 provided by

Theorem 6.1, we deduce that Ap has a bounded H∞(Σθ) functional calculus for any

θ > ωp.

It follows from the above theorem and its proof that (5.5) and (5.6) have analogs for

the noncommutative Poisson semigroup. For example using (6.5) we obtain that if p ≥ 2

and if (Tt)t≥0 is the noncommutative Poisson semigroup on V N(Fn), then for any integer

k ≥ 1, there is a constant K > 0 such that
∥∥∥∥

∫ β

α

t2k−1

(
∂k

∂tk
(Ttx)

)∗(
∂k

∂tk
(Ttx)

)
dt

∥∥∥∥
1
2

p
2

≤ K‖x‖p

for any 0 < α < β <∞ and any x ∈ Lp(V N(Fn)).

It clearly follows from (6.7) that P ⊂ D(Ap) and that Ap(λ(g)) = |g|λ(g) for any

g ∈ G and any 1 < p <∞. Then

[f(Ap)](λ(g)) = f(|g|)λ(g), g ∈ G,

for every f ∈ H∞
0 (Σωp+). Applying Theorem 6.4 we therefore deduce the following.

Corollary 6.5. Let 1 < p < ∞ and let f ∈ H∞(Σθ) for some θ > ωp. Then there is

a constant K > 0 such that for every finitely supported family (αg)g∈G\{e} of complex

numbers, we have ∥∥∥
∑

g

αg f(|g|)λ(g)
∥∥∥
p
≤ K

∥∥∥
∑

g

αg λ(g)
∥∥∥
p
.

In this statement, we may regard the family {f(|g|)}g∈G\{e} as a ‘noncommutative

Fourier multiplier’, and the corollary says that this multiplier is bounded on Lp(V N(Fn))

provided that f ∈ H∞(Σθ) for some θ > ωp.

7. Further extensions. In Subsections 5.A and 6.A, we gave various results showing

strong connections between square functions and H∞ functional calculus for sectorial

operators on either commutative or noncommutative Lp-spaces. Some of these results

turn out to extend quite naturally to sectorial operators defined on subspaces of certain

Banach lattices. These results, taken from a joint work with Florence Lancien [31], will

be explained shortly. Then we will present an abstract approach initiated and developed
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by Kalton and Weis in [30], which allows an extension of square functions and their

connections with H∞ functional calculus to a large class of Banach spaces.

7.A. Banach lattices with a finite cotype and their subspaces. Let Λ be a Banach lattice

with a finite cotype (see e.g. [39]). This class includes classical (= commutative) Lp-spaces

for any 1 ≤ p <∞. Let X ⊂ Λ be (closed) subspace, and let A be a sectorial operator of

type ω ∈ (0, π) on X. For any F ∈ H∞
0 (Σω+), we define

(7.1) ‖x‖F =

∥∥∥∥
(∫ ∞

0

|F (tA)x|2 dt
t

) 1
2
∥∥∥∥

Λ

, x ∈ X.

The meaning of this definition is similar to the one of (5.1). Indeed for any x ∈ X, we let

xF (t) = F (tA)x for t > 0. Then we let H0 = L2(R∗
+; dtt ), and ‖x‖F is defined as the norm

of xF in Λ(H0), if xF belongs to that space, and ‖x‖F = ∞ otherwise. The fact that

A is defined only on X does not cause any trouble in this definition. However (when X

is reflexive) the adjoint operator A∗ does not necessarily act on a subspace of a Banach

lattice. Thus (7.1) does not provide us with any square function associated with A∗. In

consequence, we cannot expect any analog of Theorem 5.2 (2), say, in this context. This

situation will be clarified in the next two subsections. For the moment we will content

ourselves with the following.

Theorem 7.1 ([31]). Let A be a sectorial operator on X ⊂ Λ, where Λ is a Banach

lattice with a finite cotype. Assume that A has dense range.

(1) Assume that A is R-sectorial of R-type ω ∈ (0, π). Let F and G be nonzero functions

in H∞
0 (Σθ), for some θ > ω.

• There is a constant K > 0 such that for any f ∈ H∞
0 (Σθ),

‖f(A)x‖F ≤ K ‖f‖∞,θ ‖x‖G, x ∈ X.

• There is a constant K > 0 such that

K−1‖x‖G ≤ ‖x‖F ≤ K‖x‖G, x ∈ X.

(2) Assume that A admits a bounded H∞(Σθ) functional calculus for some θ > ω. Then

for any nonzero F in H∞
0 (Σθ+), there is a constant K > 0 such that

K−1‖x‖F ≤ ‖x‖ ≤ K‖x‖F , x ∈ X.

Any subspace X of a Banach lattice with finite cotype has property (∆), hence The-

orem 2.7 applies to it. It therefore follows from the above statement that the equivalence

‘(i)⇔ (iii)’ in Corollary 5.3 holds true on X.

Let N ≥ 1 be an integer, and let R1, . . . , RN denote the Riesz transforms on R
N . The

classical real-variables Hardy space H1(RN ) may be defined as

H1(RN ) = {h ∈ L1(RN ) : Rj(h) ∈ L1(RN ) for any j = 1, . . . , N},
and it is a Banach space for the norm

‖h‖H1 = ‖h‖1 +

N∑

j=1

‖Rj(h)‖1, h ∈ H1(RN ).
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(See e.g. [53].) The mapping h 7→ (h,R1(h), . . . , RN (h)) from H1(RN ) into Z =

ℓ1N+1(L
1(RN )) is an isometry. Since the latter space is an L1-space, we may therefore

regard

H1(RN ) →֒ Z ≃ L1(Ω)

as a subspace of an L1-space.

Let A be a sectorial operator of type ω ∈ (0, π) on H1(RN ), and let F ∈ H∞
0 (Σω+).

One can check (see [31] for details) that under the above identification, the square function

‖ ‖F associated with A is given by

(7.2) ‖h‖F = [h]F +
N∑

j=1

[h]RjF ,

where we have defined

[h]TF =

∥∥∥∥
(∫ ∞

0

|T (F (tA)h)|2 dt
t

)1/2∥∥∥∥
1

for any T : H1(RN ) → L1(RN ) and any h ∈ H1(RN ).

Corollary 7.2. Let A be a sectorial operator with dense range on H1(RN ). If the square

functions associated with A are given by (7.2), then A satisfies (1) and (2) in Theorem 7.1.

7.B. Square functions on general Banach spaces. In this short presentation, we mainly

report on ideas and results from [30], to which we refer for proofs and developments. We

give analogs of results from 5.A, 6.A, or 7.A on general Banach spaces. Precise connections

with the latter sections will be given in the next Subsection 7.C. Throughout this section,

we let X be a Banach space with a finite cotype (see e.g. [39]). Let Ω0 = (R∗
+,

dt
t ), and

let H0 = L2(Ω0). We fix an orthonormal basis (hj)j≥1 on H0. For any θ ∈ (0, π) and any

F ∈ H∞
0 (Σθ), we let

F z(t) = F (tz), z ∈ Σθ, t > 0.

Each function F z belongs to H0. Then for any integer j ≥ 1, we set

Fj(z) = 〈F z, hj〉H0
=

∫ ∞

0

F (tz)hj(t)
dt

t
, z ∈ Σθ.

Clearly each function Fj belongs to H∞(Σθ).

Let A be a sectorial operator of type ω ∈ (0, π) on X, and assume for simplicity that

A has dense range. For any F ∈ H∞
0 (Σω+), we define a square function by letting

(7.3) ‖x‖F = sup
n≥1

∥∥∥
n∑

j=1

εj Fj(A)x
∥∥∥

Rad(X)
, x ∈ X.

Here we used the Rad(X)-norms defined in 1.D.

Theorem 7.3. Let X and A be as above. Assume that A is R-sectorial of R-type ω. Let

F and G be nonzero functions in H∞
0 (Σθ), for some θ > ω.

(1) There is a constant K > 0 such that for any f ∈ H∞
0 (Σθ),

‖f(A)x‖F ≤ K ‖f‖∞,θ ‖x‖G, x ∈ X.



216 C. LE MERDY

(2) There is a constant K > 0 such that

K−1‖x‖G ≤ ‖x‖F ≤ K‖x‖G, x ∈ X.

Let F ∈ H∞
0 (Σω+). As before, we say that A satisfies a square function estimate (SF )

if there is a constant K > 0 such that ‖x‖F ≤ K‖x‖ for any x ∈ X. On the other hand,

let G ∈ H∞
0 (Σω+); we say that A satisfies a dual square function estimate (SdG) if there

is a constant K > 0 such that
∥∥∥
n∑

j=1

Fj(A)xj

∥∥∥
X

≤ K
∥∥∥
n∑

j=1

εj xj

∥∥∥
Rad(X)

for any n ≥ 1 and any x1, . . . , xn in X. Connections between these estimates and H∞

functional calculus are given by the following set of results.

Theorem 7.4. Let X and A be as above, and let θ > ω.

(1) If A has a bounded H∞(Σθ) functional calculus, then A satisfies a square function

estimate (SF ), and a dual square function estimate (SdG) for any F,G in H∞
0 (Σθ+).

(2) There exists a pair (F,G) of nonzero functions in H∞
0 (Σω+) such that:

• If A satisfies (SF ) and (SdG), then A has a bounded H∞(Σθ) functional calcu-

lus.

• If A satisfies (SdG), then there is a constant K > 0 such that

‖x‖ ≤ K‖x‖F , x ∈ X.

(3) If A has a bounded H∞(Σθ) functional calculus, then there exist a function F in

H∞
0 (Σθ+) and a constant K > 0 such that

K−1‖x‖ ≤ ‖x‖F ≤ K‖x‖, x ∈ X.

(4) The following assertions are equivalent.

(i) For any θ ∈ (ω, π), A has a bounded H∞(Σθ) functional calculus.

(ii) For every F,G in H∞
0 (Σω+), A satisfies (SF ) and (SdG).

Remark 7.5. (1) In the above theorem, the main statements are (1) and (2). Indeed

taking them for granted, (3) and (4) are straightforward consequences. If further X has

property (∆), it follows from Theorems 2.7 and 7.3 that in (4) above, (i) and (ii) are also

equivalent to:

(iii) The operator A is R-sectorial of R-type ω and for every nonzero F ∈ H∞
0 (Σω+),

there is a constant K > 0 such that

K−1‖x‖ ≤ ‖x‖F ≤ K‖x‖, x ∈ X.

(2) Assume that X is reflexive and recall that A∗ is a sectorial operator of type ω.

Assume further that X is K-convex (see e.g. [49]). Then there is an isomorphic identifi-

cation Rad(X)∗ ≈ Rad(X∗), and we easily deduce that for any G ∈ H∞
0 (Σω+), A has a

dual square function estimate (SdG) if and only A∗ has a square function estimate (SG̃).

Here G̃ is defined as in (2.6).
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7.C. Comparing the abstract and the concrete approach. We let X and A be as in the

previous subsection.

Assume that X = H is a Hilbert space. Let F ∈ H∞
0 (Σω+). Since (hj)j is an or-

thonormal basis of H0 = L2(Ω0), the mapping U : L2(Ω0) → ℓ2 taking any h ∈ H to the

sequence (〈h, hj〉)j is a unitary. Then U ⊗ IH extends to another unitary

UH : L2(Ω0;H) → ℓ2(H).

Let x ∈ H, and assume that xF (t) = F (tA)x belongs to L2(Ω0;H). Then it is not hard

to see that UH(xF ) = (Fj(A)x)j . Using (2.10), we deduce that

sup
n≥1

∥∥∥
n∑

j=1

εj Fj(A)x
∥∥∥

Rad(H)
=

( ∞∑

j=1

‖Fj(A)x‖2
H

) 1
2

= ‖xF ‖L2(Ω0;H) =

(∫ ∞

0

‖F (tA)x‖2 dt

t

) 1
2

.

This shows that the square function defined by (7.3) coincides with the original one given

by (3.1).

Assume now that Λ is a Banach lattice with a finite cotype, and let X ⊂ Λ be a

subspace. In that case there exists a constant K > 0 such that

(7.4) K−1
∥∥∥
n∑

k=1

εk xk

∥∥∥
Rad(X)

≤
∥∥∥
( n∑

k=1

|xk|2
)1/2∥∥∥

Λ
≤ K

∥∥∥
n∑

k=1

εk xk

∥∥∥
Rad(X)

for any finite family x1, . . . , xn in X (see e.g. [39, 1.d.6]). Arguing as above and using

(7.4) instead of (2.10), one can show that for any F ∈ H∞
0 (Σω+), the square function

defined by (7.1) and the one defined by (7.3) are equivalent. This result includes the case

when X = Lp(Ω) for 1 ≤ p <∞.

Likewise, using the noncommutative Khintchine inequalities [40, 50], one can show

that if X = Lp(M) is a noncommutative Lp-space for some 1 ≤ p <∞, then the square

function defined by (7.3) and the one defined by (6.3) or (6.4) are equivalent for any

F ∈ H∞
0 (Σω+).

Using these equivalence results, and Remark 7.5 (2), we can thus regard Theorems

3.1, 3.2, 5.1, 5.2, 6.1, 7.1, or Corollary 7.2, as consequences of Theorems 7.3 and 7.4.
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