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Abstrat. In this work, we begin with a survey of omposition operators on the Hardy spae H2and on the Wiener algebra A+ of absolutely onvergent Taylor series, with speial emphasis ontheir ompatness, or invertibility, or isometri harater. The main results are due respetivelyto J. Shapiro and D. Newman.In a seond part, we present more reent results, due to Gordon and Hedenmalm on the onehand, and to Bayart, the author et al. on the other hand, onerning the analogues of H2 and
A+ in the setting of Dirihlet series. We are led to the intermediate study of Taylor series inseveral, or ountably many, variables. We �nish with some open problems.0. Introdution. The ontext in whih omposition operators are generally studied isthe following: Ω is an open set of C (oasionally of C

d), H(Ω) is the set of holomorphifuntions f : Ω → C, endowed with its natural topology of ompat onvergene, X is aBanah spae ontinuously embedded in H(Ω), and φ is a holomorphi self-map of Ω (inshort φ ∈ H
(
Ω,Ω)

). The omposition operator Cφ with symbol φ is then formally de�nedby Cφ(f) = f ◦φ, and maps in partiular X to H(Ω). And the question is: when does Cφmap X to itself? (Then, Cφ is automatially bounded, by the losed graph Theorem).The answer depends very muh on the spae X and on the map φ, and a big amount ofresearh work has been devoted to this question, in the last twenty years, with speialemphasis on the onnetions between the operator-theoreti properties of Cφ : X → X,and the analyti properties of φ : Ω → Ω. We refer to the books [S2℄, [CoMCl℄ and tothe artiles whih they quote; the ase of Hardy or of Bergman spaes is studied there ingreat detail. We an also have two di�erent Banah spaes X and Y ⊂ H(Ω), and studythe Cφ's mapping X to Y ; see the interesting paper [HJ℄ in this diretion.In this rather short survey, we shall deliberately restrit ourselves to four spaes Xand to four theoretial aspets of the operator Cφ, namely:2000 Mathematis Subjet Classi�ation: Primary 47B33; Seondary 30B50, 42B35.Key words and phrases: omposition operators, Taylor series, Dirihlet series.The paper is in �nal form and no version of it will be published elsewhere.[261℄ © Instytut Matematyzny PAN, 2007



262 H. QUEFFÉLEC1) Boundedness;2) Compatness;3) Automorphi harater;4) Isometri harater.Other important theoretial aspets, like spetrum, hyperyliity, et. will be leftaside.Our four spaes will be two Hilbert spaes and two Banah algebras:1) The Hardy-Hilbert spae H2 of analyti funtions f(z) =
∑∞

0 anz
n with square-summable oe�ients: ‖f‖2 =

∑∞
0 |an|2 <∞. We often write f̂(n) instead of an.2) The Wiener-Banah algebra A+ of analyti funtions f(z) =

∑∞
0 anz

n with sum-mable oe�ients: ‖f‖ =
∑∞

0 |an| <∞.3) The Hardy-Dirihlet Hilbert spaeH2 of analyti funtions f admitting a Dirihletseries expansion f(s) =
∑∞

1 ann
−s with square-summable oe�ients: ‖f‖2 =∑∞

1 |an|2 <∞.4) The Wiener-Dirihlet algebra A+ of analyti funtions admitting a Dirihlet seriesexpansion f(s) =
∑∞

1 ann
−s with summable oe�ients:

‖f‖ =
∑∞

1 |an| <∞.As we shall see, the funtional properties ofH2 andH2, or of A+ and A+, are quitedi�erent; in partiular, to study this last spae, we will be led to the intermediatestudy of the spaes A+(Tk), A+(T∞), of absolutely onvergent Taylor series in k(resp. in�nitely many) omplex variables.Two general and easy properties will be frequently used:
(1) Cφ1◦φ2

= Cφ2
◦ Cφ1

for any φ1, φ2 : Ω → Ω.

(2) C∗
φ(Ka) = Kφ(a) for any a ∈ Ω.(Here, X is a Hilbert spae of analyti funtions on Ω, with reproduing kernel K, and

C∗
φ is the adjoint of Cφ).A word on the notations and on the ontent: when proofs are given in full detail inexisting papers, we generally omit, or brie�y sketh, them. Conversely, when they areonly skethed in the literature, we add some detail, for the onveniene of the reader.
D will denote the open unit disk; we will frequently write the omplex number s withRiemann's notation:

s = σ + it, σ = ℜs, t = ℑs.
Cθ will denote the open half-plane ℜs > θ, where θ is a given real number.The paper is divided into six setions: in Setion 1, we study the Hardy spae H2; inSetion 2, we study the Wiener algebra A+; Setion 3 introdues to the Dirihlet seriessetting; Setions 4 and 5 study the Dirihlet analogues H2, A+ of H2 and A+; �nally,Setion 6 is devoted to some onluding remarks and questions.1. The Hardy spaes H2. Let us �rst �x some notation, and reall some basi fats:
φ will always denote an analyti self-map of D; m will denote the Haar measure ofthe irle T, and we shall write ∫

. . . dm for ∫ 2π

0
. . . dθ

2π ; AutD = {λφa} is the group of



COMPOSITION OPERATORS 263automorphisms of D, with λ ∈ T, a ∈ D, φa(z) = z−a
1−āz ; φ is inner if |φ∗(eiθ)| = 1 m-a.e.,where φ∗(eiθ) is the radial limit of φ at eiθ; then, φ∗ maps T to itself; �nally, if a ∈ D,

Pa : T → R+ denotes the Poisson kernel at a: Pa(eit) = 1−|a|2
|eit−a|2 . The following fats arelassial:

(3) H2 is a Hilbert spae of funtions holomorphi in D.
(4) Ka(z) =

1

1−āz is the reproduing kernel of H2 at a; Ka

‖Ka‖
w→ 0 as |a| <→ 1.

(5) For any f ∈ H2, ‖f‖2 = sup
0<r<1

∫
|f(reiθ)|2dm =

∫
|f∗(eiθ)|2dm.If φ(0) = 0 and if u, v : D → R are subharmoni funtions suh that v = u ◦φ, we saythat v is subordinate to u, and we have the famous [S2℄:Theorem 1.1 (Littlewood's subordination priniple). If v is subordinate to u, then(6) ∫

v(reiθdm ≤
∫
u(reiθ)dm, for any 0 < r < 1.Sine u = |f |2 is subharmoni when f ∈ H2, (6) immediately gives(7) If φ(0) = 0, Cφ is a ontration of H2 to itself.Note that the onverse is true: (2) implies C∗

φ(1) = Kφ(0), so that (1− |φ(0)|2)−1/2 =

‖Kφ(0)‖ ≤ 1, and that φ(0) = 0.The ase φ(0) = a is handled by the following (easy to hek) observations of Nord-gren [No℄:(8) If φ is inner with φ(0) = a, we have φ∗(m) = Pam.In partiular, if f ∈ H2, we have that(9) ∫
|f

(
φ∗(eiθ)

)
|2dm =

∫
|f(eiθ|2Pa(eiθ)dm,and Nordgren used this to prove that(10) If φ is inner with φ(0) = a, we have ‖Cφ‖ = ‖Pa‖∞ =

(
1 + |a|
1 − |a|

)1/2

.The two fats (7), (10) ombine to give:(11) For any φ, Cφ maps H2 to itself, and ‖Cφ‖ ≤
(

1 + |φ(0)|
1 − |φ(0)|

)1/2

.Indeed, if φ(0) = a, we have φa◦φ(0) = 0 and φ = φ−a(φaφ), so that Cφ = Cφa◦φ Cφ−aand ‖Cφ‖ ≤ ‖Cφ−a
‖ =

( 1+|a|
1−|a|

)1/2
. The question of boundedness (not of the exat value of

‖Cφ‖! see [Co℄) is thus automatially settled; and J. Shapiro [S1℄ added the following niespei�ation to (10) (if T is an operator on H2, we denote by ‖T‖e its essential norm,i.e. its distane to ompat operators):Theorem 1.2 (J. Shapiro). If φ is inner with φ(0) = a, we have
‖Cφ‖e = ‖Cφ‖ =

(
1 + |a|
1 − |a|

)1/2

.



264 H. QUEFFÉLECProof. Let Kn(n = 0, 1, . . .) be the n-th partial sum operator: Knf(z) =
∑n

j=0 f̂(j)zj ,and let Rn = I − Kn be the omplementary orthogonal projetion; Rn is a norm-one,self-adjoint, operator, and Rnf → 0 for eah f ∈ H2, so that it easily follows (see [S1℄for the details) that, for any operator T , we have(12) ‖T‖e = lim
n→∞

‖TRn‖.Now, let f ∈ H2, with ‖f‖2 ≤ 1; if g(z) = zn+1f(z), we have Rng = g, so that (8)gives: ‖CφRn‖2 ≥ ‖CφRng‖2 = ‖Cφg‖2 =
∫
|g(eiθ)|2Pa(eiθ)dm =

∫
|f(eiθ)|2Pa(eiθ)dm =

‖Cφf‖2, showing that ‖CφRn‖2 = ‖Cφ‖2 for any n; now, (12) and (10) give the result.The integral formula (5) was adapted, through the Littlewood subordination priniple,to the study of boundedness for Cφ; for the study of ompatness, we need another integralrepresentation, whih is given by (see [S1℄, [S2℄):Theorem 1.3 (Littlewood-Paley identity). For any f ∈ H2, we have
‖f‖2 = |f(0)|2 +

∫

D

|f ′(z)|2dλ1(z),where dλ1(z) is the probability measure 2
π log 1

|z|dxdy on D.Using the hange of variables formula in the non-injetive ase [Fe℄, Theorem 1.3 easilyimplies the following:(13) ‖Cφf‖2 = |f
(
φ(0)

)
|2 +

∫

D

Nφ(w)

log 1
|w|

dλ1(w), for any f ∈ H2,where Nφ is the so-alled �Nevanlinna ounting funtion�:
Nφ(w) =

∑

φ(z)=w

log
1

|z|
(
Nφ(w) = 0 if w 6∈ φ(D)

)
.

Nφ satis�es the Littlewood inequality:(14) Nφ(w) ≤ log

∣∣∣∣
1 − w̄φ(0)

w − φ(0)

∣∣∣∣, w ∈ D.(13) and (14) show part of the followingTheorem 1.4. Let φ ∈ H(D,D). Then:a) If Cφ is ompat, we have lim|z|→1
1−|φ(z)|

1−|z| = ∞.b) The onverse of a) is true if φ is injetive, or �nitely valent.) If ‖φ‖∞ < 1, Cφ is ompat, and even in any Shatten lass Sp, p > 0.d) Cφ is Hilbert-Shmidt (∈ S2) if and only if ∫
dθ

1−|φ∗(eiθ)|dm <∞.Proof. a) We know from (4) that Ka/‖Ka‖ w→ 0, so ‖C∗
φ(Ka/‖Ka‖)‖ = ‖Kφ(a)‖/‖Ka‖

→ 0 as |a| → 1.b) φ is �nitely valent if there exists an integer p suh that, for any w ∈ D, the equation
φ(z) = w has at most p solutions (e.g. a Blashke produt of p Möbius fators is exatly
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p-valent); if moreover 1−|φ(z)|

1−|z| → ∞, we have
lim

|w|→1

Nφ(w)

log 1
|w|

= 0,whih is seen to be a su�ient ondition (in fat also neessary) for the ompatness of
Cφ by using (13) (see [S1℄). But (see [S2℄) there are in�nite Blashke produts B, forwhih CB is not ompat sine B is inner, and suh that lim|z|→1

1−|B(z)|
1−|z| = ∞.) This is trivial, sine the nth approximation number sn of Cφ is O(‖φ‖n

∞), so that∑
sp

n <∞ for any p > 0.d) Equivalently, we have
∫

dm(θ)

1 − |φ∗(eiθ)|2 =

∞∑

0

∫
|φ∗(eiθ)|2ndm = ‖φ‖2

HS <∞.Let us mention that b) was used by MaCluer and Shapiro [MClS℄ to prove theexistene of a surjetive (and �nitely valent) φ : D → D suh that Cφ is yet ompat.Theorem 1.4 has the importantCorollary 1.5. a) There are ompat omposition operators Cφ for whih ‖φ‖∞ = 1.b) There exist ompat, but non-Hilbert-Shmidt, omposition operators Cφ (then
‖φ‖∞ = 1).Proof. a) Let P be a polygon insribed in D, and let φ : D → P be a onformal mapping.We have ‖φ‖∞ = 1, and it is fairly easy (see [S2℄, or use the Shwarz-Christo�el formulae)to hek that ∫

dm
1−|φ∗(eiθ| <∞, so that Cφ is even Hilbert-Shmidt.b) This is more deliate, and we refer to [CoMCl℄ pp. 147�148 for the details.The general neessary and su�ient ondition (already mentioned in b) of The-orem 1.4) was found by Shapiro [S1℄, in a beautiful way:Theorem 1.6. A neessary and su�ient ondition for Cφ : H2 → H2 to be ompat isthat Nφ(w) = o(log 1

|w| ) as |w| <→ 1. More preisely, we have
‖Cφ‖e = lim

|w|→1

(
Nφ(w)

log 1
|w|

)1/2

.The haraterization of ompatness for omposition operators on H2 is thus seen tobe a signi�ant result, although it is ompletely solved. The situation is not so satisfatorywith Dirihlet series, as we shall see in Setion 4. Let us �nish with the somewhat simplerproblems of invertibility or isometry on H2.Theorem 1.7 ([MCl℄). For φ ∈ H(D,D), the following are equivalent:a) Cφ is Fredholm;b) Cφ is invertible;) φ ∈ AutD.Proof. a) ⇒ ). If φ(a) = φ(b) for some distint a, b ∈ D, the open mapping theoremshows the existene of disjoint sequenes (an), (bn) of distint points suh that φ(an) =



266 H. QUEFFÉLEC

φ(bn), with an → a, bn → b. Then, the funtions Kan
−Kbn

are linearly independent andin the kernel N of C∗
φ, so that dimN = ∞, ontraditing the Fredholm harater of C∗

φ,and showing that φ is injetive. If φ is not surjetive, a onnetedness argument showsthat the boundary of φ(D) intersets D, and we an �nd v ∈ D and a sequene (zn) suhthat |zn| → 1 and φ(zn) → v. Set T = C∗
φ, fn = Kzn

/‖Kzn
‖.

Tfn = Kφ(zn)/‖Kzn
‖ s→ 0, and fn

w→ 0. If L, S are a ompat and a bounded operator,we have STfn
s→ 0, whereas ‖(I + L)fn‖ → 1, preventing the relation ST = I + L, i.e.preventing T to be invertible modulo ompat operators, i.e. preventing [Ar℄ T to beFredholm. So φ is surjetive, and we are done, sine ) ⇒ b) and b) ⇒ a) are trivial.As onerns isometries, we haveTheorem 1.8. For φ ∈ H(D,D), the following are equivalent:a) Cφ : H2 → H2 is (similar to) an isometry.b) φ is inner and �xes the origin.Proof. b) ⇒ a) is an immediate onsequene of (8). Conversely, if Cφ is an isometry,we have, using (8) and (7), φ(0) = 0, and so 1 = ‖Cφ(z)‖2 =

∫
|φ∗(eiθ)|2P0(e

iθ)dm =∫
|φ∗(eiθ)|2dm, implying that φ is inner. If we only assume that Cφ is similar to anisometry, things are slightly more ompliated, and we refer to [J℄ or [B1℄.2. The Wiener algebra A+. We reall that A+ is the Banah algebra of funtions

f(z) =
∑∞

0 anz
n whih are analyti in D and have summable oe�ients: ‖f‖ =∑∞

0 |an| <∞.
A+ is a ommutative, unital, Banah algebra with spetrum D̄. In ontrast to thease of H2, if φ ∈ H(D,D), it is not automati that Cφ is bounded on A+, and we havethe following nie neessary and su�ient ondition due to Newman [Ne℄.Theorem 2.1. The following are equivalent:a) Cφ maps A+ to itself;b) φ ∈ A+ and ‖φn‖A+ = O(1) as n → ∞; this happens if and only if all maximumpoints θ0 of |φ(eiθ)| are �ordinary points�, i.e. if and only if we have, as t→ 0,(15) log φ(ei(θ0+t)) = α0 + α1t+ αkt

k + . . . ,where k > 1 and αk 6= 0 is not purely imaginary.Newman used this theorem to give the following two non-trivial examples:Example 1. φ(z) = 1+z−z2
√

5
⇒ Cφ maps A+ to A+, and ‖φ‖∞ = 1.Indeed, writing z ∈ T under the form z = c + is, c = cos t, s = sin t, we have

|1+z−z2| = |z̄+1−z| = |1−2is| =
√

1 + 4s2 ≤
√

5. The maximum points are θ0 = ±π
2 ,and they �pass� the riterion (15), see [Ne℄, p. 39.Example 2. φ(z) = 12+16z−3z2

25 ⇒ Cφ does not map A+ to itself.Indeed, ‖φ∞‖ = 1 and θ0 = 0 is the only maximum point, due to the identity(16) |12 + 16z − 3z2|2 + 36|z − 1|4 = 625,



COMPOSITION OPERATORS 267for any z of modulus one. In fat, if we write z = c+ is, c = cos t, s = sin t we have
|12 + 16z−3z2|2 + 36|z − 1|4 = |12z̄ + 16 − 3z|2 + 36|z − 1|4 = |9c+ 16 − 15is|2

+ 144(c− 1)2 = (9c+ 16)2 + 225s2 + 144(c− 1)2 = (81 + 144)c2

+ 288c− 288c+ 225s2 + 256 + 144 = 225 + 256 + 144 = 625.And θ0 = 0 fails to pass (see [Ne℄ p. 40) the riterion (2.1).Compatness was not studied by Newman, but we an easily [BFLQ1℄ prove thefollowing neessary and su�ient ondition, similar to the result of [S℄ and [B2℄ for thealgebras H∞ and H∞.Theorem 2.2 ([BFLQ1℄). For a non-onstant analyti funtion φ : D → D̄ induing abounded Cφ : A+ → A+, the following are equivalent: a) Cφ is ompat; b) ‖φ‖∞ < 1.Proof. It is easily seen that Cφ is ompat if and only if ‖φn‖A+ → 0; and we have, bythe spetral radius formula
‖φ‖∞ = lim

n→∞
‖φn‖1/n

A+ = inf
n≥1

‖φn|1/n
A+ ,giving the result.Newman proved that the omposition operators on A+ are very poor in automor-phisms (i.e. in invertible omposition operators) sine we haveTheorem 2.3. For a bounded Cφ : A+ → A+, the following are equivalent:a) Cφ is invertible;b) φ is a rotation: φ(z) = λz, with |λ| = 1.Proof. a) ⇒ b. As in the ase of H2, it is easy to see that we must have φ ∈ AutD, i.e.

φ(z) = λ z−a
1−āz , with λ ∈ T and a ∈ D.But here, a big di�erene with H2 ours:Lemma 2.4. Let φ ∈ A+, with φ(eit) = eig(t), g being a real C2, non-a�ne funtion.Then(17) ‖φn‖A+ ≥ δ

√
n, for some positive onstant δ.This is proved in [Kal℄ p. 76, as a onsequene of the van der Corput inequalities forintegrals, and is sharp: we also have ‖φn‖A+ ≤ C

√
n.Now, if φ(z) = λ z−a

1−āz and if Cφ maps A+ to itself, Theorem 2.1 shows that ‖φn‖A+ =

O(1), and sine φ(eit) is unimodular, Lemma 2.4 shows that g has to be a�ne, so that
a = 0, whih �nishes the proof of Theorem 2.3.The omposition operators on A+ are also poor in isometries, and Harzallah (see thebook of [Kal℄ p. 144) obtained the followingTheorem 2.5. For a bounded Cφ : A+ → A+, the following are equivalent:a) Cφ is isometri;b) φ is a monomial φ(z) = λzd, with |λ| = 1, and d ∈ N.



268 H. QUEFFÉLECWe have only to prove that a)⇒ b); this is now a speial ase of a more general result,whih we shall prove in Setion 5. We see in that setion that, unlike the ase of H2, themain problem here is not ompatness, but boundedness.3. General fats about Dirihlet series. Reall that a Dirihlet series is a series ofthe form(18) A(s) =

∞∑

1

ann
−s, with s = σ + it ∈ C.The analogue of the radius of onvergene for Taylor series is here the absissa ofonvergene, but one should bear in mind the fat that there are several suh absissas (seee.g. [Q2℄): the absissa σc of simple onvergene: (18) onverges for ℜs > σc, diverges for

ℜs < σc; the absissa σu of uniform onvergene: (18) onverges uniformly in ℜs ≥ σu+ε,not in ℜs ≥ σu − ε; the absissa σa of absolute onvergene: (18) onverges absolutelyin ℜs ≥ σa + ε, not in ℜs ≥ σa − ε; the absissa σh of holomorphy: A has an analytiextension to ℜs > σh, not to ℜs > σh − ε.Those absissas are related by σh ≤ σc ≤ σu ≤ σa, and we have (see [Q2℄)
σa ≤ σu +

1

2
(optimal);

σa ≤ σc + 1 (optimal).The di�erene σa − σc an take any value between 0 and 1: indeed, if 0 < α < 1 andif an = einα , the Euler-Malaurin summation formula shows that ∑n
k=1 e

ikα ∼ n1−α

iα einα ,so that σa = 1 and σc = 1 − α.The inequality σh ≤ σc may be strit, whereas a Taylor series always has a singularpoint on its irle of onvergene; more preisely:Proposition 3.1. There exists a Dirihlet series ∑∞
1 ann

−s = A(s) suh that σc = 0and σh = −∞.Proof. One possibility is to take the alternate Riemann series ∑∞
1 (−1)n−1/ns =

(1 − 21−s)ζ(s); the zero of the �rst fator kills the unique pole of zeta at 1, so that
σh = −∞, and learly σc = 0; any L-funtion assoiated with a non-prinipal haratermodulo q ≥ 3 has the same property; but perhaps the following example, shown to me byJ. Peyrière [P℄ some years ago, is the most elementary: let (εn)n≥0 be the Morse sequene,de�ned by ε0 = 1, ε2n = εn, ε2n+1 = −εn, for whih

∞∑

0

εnz
n = (1 − z)(1 − z2)(1 − z4) . . . for z ∈ D.Consider the Dirihlet series A(s) =

∑∞
0 εn/(n+ 1)s. Sine

1

(n+ 1)s
=

1

Γ(s)

∫ ∞

0

ts−1e−nte−tdt, ℜs > 0,we learly have(19) A(s) =
1

Γ(s)

∫ ∞

0

ts−1
∞∏

k=0

(1 − e−2kt)e−tdt, for ℜs > 1.



COMPOSITION OPERATORS 269The RHS of (19) is an entire funtion, sine the produt in the integrand has a zeroof in�nite order at t = 0; therefore, σh = −∞. If we set Sn = ε0 + · · · + εn, we have
S2n+1 =

∑n
k=0(ε2k + ε2k+1) =

∑n
k=0(εk − εk) = 0, so that |Sn| ≤ 1 for eah n, and anAbel summation by parts shows that σc = 0.In Setion 4, we shall enounter ℓ2-series A(s) =

∑∞
1 ann

−s with square-summableoe�ients; for suh series, σa ≤ 1
2 , sine we have by Cauhy-Shwarz: ∑∞

1 |ann
−s|

≤
(∑∞

1 |an|2
)1/2(∑∞

1 n−2σ)1/2. The existene of �exoti� suh series will be useful to us,under the form of the following theorem, in whih (εn) denotes a sequene of independent,symmetri, equidistributed, non-zero, square-integrable random variables de�ned on someprobability spae Ω.Theorem 3.2. a) Let (bn)n≥1 = n−1/2(log(n+ 1))−1 and Aω(s) =
∑∞

1 εn(ω)bnn
−s.Then, we have almost surely that σc(Aω) = 0 and that the line ℜs = 0 is a naturalboundary for the l2-series Aω.b) There exists a ℓ2-series A suh that σc = 1

2 and that the line ℜs = 1
2 is a naturalboundary for A.Proof. a) Sine ∑∞

1 b2nn
−2σ <∞ if and only if σ ≥ 0, the three series theorem [Re℄ showsthat σc(Aω) = 0 almost surely; and sine the variables Xn = εnbn are independent andsymmetri, a general result [Ka2℄ or [LiQ℄ shows that the vertial line ℜs = 0 is almostsurely a natural boundary for Aω.b) Instead of using a probabilisti method as in a), we shall now use a topologialmethod, i.e. we shall apply the Baire ategory theorem to the ompat spae Ω = {−1, 1}Nof all hoies of signs ω = (εn(ω))n≥1, εn(ω) = ±1, equipped with its natural topology.A subset E of Ω will be said to be quasi-sure if E ontains a dense Gδ set of Ω. Theresult will be a speial ase of the following theorem, where 0 ≤ λ1 < λ2 < . . . < λn < . . .,

λn → ∞.Theorem 3.3. Let the general Dirihlet series ∑∞
1 ane

−λns have the absissa of absoluteonvergene σa = α; then, the line ℜs = α is quasi-surely a natural boundary for the series
fω(s) =

∑∞
1 εn(ω)ane

−λns, ω ∈ Ω.Proof (see [Q1℄, whih ontains a slight mistake; replae σc by σa). Denote by Q the setof rational numbers, by E the set of ω ∈ Ω for whih ℜs = α is not a natural boundaryfor fω. We have(20) E =
⋃
Ea,r,N , where a = α+ it, t ∈ Q, r ∈ Q+, N integer ≥ 1,and where Ea,r,N is the set of ω's suh that ∑∞

1 εn(ω)ane
−λns has an analyti extension(still denoted by fω) to D(a, r) = {s : |s− a| < r}, with |fω| ≤ N for s ∈ D(a, r).A simple normal family argument shows that eah Ea,r,N is losed in Ω; let ω0 = (εn)be an interior point of Ea,r,N , andM an integer suh that εn(ω) = εn for eah n ≤M im-plies ω ∈ Ea,r,N ; if now ω ∈ Ω, write fω(s) =

[∑M
1 εnane

−λns+
∑∞

M+1 εn(ω)ane
−λns

]
+[ ∑M

1 (εn(ω)− εn)ane
−λns

]
= [fω′(s)]+ [g(s)], where ω′ ∈ Ea,r,N and where the Dirihletpolynomial g is an entire funtion. So that fω an be analytially extended to D(a, r),whith |fω(s)| ≤ N +

∑M
1 |an|e−λn(α−r) def

= C.



270 H. QUEFFÉLECNow, take 0 < ρ < r
3 , so that D̄(a+ ρ, 2ρ) ⊂ D(a, r). The Cauhy inequalities imply

|f (j)
ω (a+ ρ)|

j!
=

|
∑∞

1 anεn(ω)λj
ne

−λn(a+ρ)|
j!

≤ C

(2ρ)j
, j = 0, 1, . . .Sine supεn=±1 |

∑∞
1 εnzn| ≥ 1

2

∑∞
1 |zn| for any sequene (zn) of omplex numberssuh that ∑∞

1 |zn| <∞, we get
(∗)

∞∑

n=1

|an|jλj
ne

−λn(α+ρ)

j!
≤ 2C

(2ρ)j
.Take ρ < R < 2ρ, multiply eah term of (∗) by Rj , j = 0, 1, . . . , sum and permute toget

∞∑

n=1

|an|e−λn(α+ρ)eλnR ≤ 2C

∞∑

j=0

(
R

2ρ

)j

<∞.

Or ∑∞
n=1 |an|e−λn(α+ρ−R) <∞. But this is impossible sine α+ ρ−R < α. This ontra-dition shows that Ea,r,N is of empty interior; therefore, E is a dense Gδ set, and this endsthe proof of Theorem 3.3. To derive b) of Theorem 3.2, start from ∑∞

1
1√

n log(n+1)
n−s;the hoie an = εn(ω√

n log(n+1)
will work for some ω ∈ Ω (hosen �topologially�, not �atrandom� !)4. The Hardy-Dirihlet spae H2. This is the Hilbert spae of Dirihlet series f(s) =∑∞

1 ann
−s, with ‖f‖2 =

∑∞
1 |an|2 < ∞; it was introdued by Hedenmalm, Lindqvist,Seip [HLS℄ to study ompleteness problems in L2(0, 1); an orthonormal basis of H2 isformed by the en(s) = n−s,n = 1, 2, . . ., so that the reproduing kernel Ka of H2 at

a ∈ C1/2 is: Ka(s) =
∑∞

1 en(s)en(a) = ζ(s + ā), where ζ denotes the Riemann zetafuntion; this is enough to demonstrate that the funtional properties of H2 will be fairlydi�erent from those of the Hardy spae H2 !It will be onvenient to introdue the spae D of funtions whih are analyti in
C1/2, and representable by a onvergent Dirihlet series ∑∞

1 ann
−s for ℜs large enough(a typial example is f(s) = Ψ(s − a), where Ψ(s) = (1 − 21−s)ζ(s); f is entire, andrepresentable by ∑∞

1 (−1)n−1nan−s for ℜs > a).If f ∈ D, f(s) =
∑∞

1 ann
−s, we have f(s) → a1 as ℜs → ∞, so that there areanalyti funtions (s, es, . . .) analyti on C1/2 whih do not belong to D.This leads to a de�nition: An analyti funtion φ on C1/2 will be alled representableif φ(s) = c0s+ ϕ(s), where c0 is a non-negative integer and ϕ ∈ D.The following two results were proved in [GH℄: Reall that Cθ denotes the half-plane

ℜs > θ, and that N = {1, 2, . . .} and N0 = N ∪ {0}.Theorem 4.1. Let φ : C0 → C be an analyti funtion suh that k−φ ∈ D for k =

1, 2, . . . . Then, φ is representable.Theorem 4.2. An analyti self-map φ : C1/2 → C1/2 indues a bounded ompositionoperator Cφ : f 7→ f ◦ φ on H2 if and only if



COMPOSITION OPERATORS 271a) φ is representable: φ(s) = c0s+ ϕ(s), with c0 ∈ N0 and ϕ ∈ D.b) φ is �extendable� with �ontrolled range�, namely φ has an analyti extension to
C0, still denoted by φ, and suh thati) φ(C0) ⊂ C0 if c0 ≥ 1.ii) φ(C0) ⊂ C1/2 if c0 = 0.It will be onvenient to introdue also the set S of all ompletely multipliative fun-tions χ : N → T suh that χ(1) = 1; suh a funtion is ompletely determined by thesequene (χ(p1), χ(p2), . . .) ∈ T∞ of its values on prime numbers p1, p2, . . ., so S may andwill be identi�ed with T∞, equipped with its Haar measure m.If f(s) =

∑∞
1 ann

−s ∈ H2 and χ ∈ S, we write(21) fχ(s) =
∞∑

1

anχ(n)n−s.The following result is due to Helson [He℄. Using a theorem of Menho� [Al℄, one angive a simpli�ed proof [B3℄.Theorem 4.3. Let f(s) =
∑∞

1 ann
−s ∈ H2. Then, for almost all χ ∈ S, fχ has ananalyti extension to C0.Proof. Set fn(χ) = χ(n). The funtions fn : S → C are not independent random vari-ables, but they form an orthonormal system. For suh a system, the theorem of Menho�reads:

(∗) If c1, . . . , cn . . . are omplex numbers suh that ∑∞
1 |cn|2 log2 n < ∞, then∑∞

1 cnfn(χ) onverges for almost all χ.Applying (∗) with cn = ann
−s, s ∈ C0, and letting s take the values 1

2 ,
1
3 , . . ., weimmediately get Theorem 4.3.In Setion 2, the integral representations for the norm (e.g. the Littlewood-Paleyidentity) played an important role; suh representations are more di�ult to obtain here,but we still have (see [GH℄ and [B2℄):Proposition 4.4. a) Let u ∈ L1(R), with u ≥ 0 and ‖u‖1 = 1. Set ua(t) = a−1u(ta−1),

a > 0. If f(s) =
∑∞

1 ann
−s ∈ H2, the series being uniformly onvergent in C0, we have(22) ‖f‖2 =

∞∑

1

|an|2 = lim
a→+∞

∫ ∞

−∞
|f(it)|2ua(t)dt.b) For any f ∈ H2 and any Borel probability measure µ on R, we have(23) ‖f‖2 = |f(∞)|2 +

∫ ∞

0

∫

R

∫

T

σ|f ′χ(σ + it)|2dσdµ(t)dm(χ).We an now sketh the proof of Theorem 4.2.We �rst show that the onditions on φ are su�ient. If c0 ≥ 1, for a > 0, denote by
Ψa the onformal mapping s 7→ s−a

s+a of C0 onto D, and by λa the probability measure
a

π(a2+t2)dt on R, for whih one easily heks that λa = Ψ−1
a (m),m being the Haar measureof T.



272 H. QUEFFÉLECNow, let f(s) =
∑N

1 ann
−s be a Dirihlet polynomial, and a, b > 0; we have fromb) that ω = Ψb ◦ φ ◦ Ψ−1

a ∈ H(D,D) and F = f ◦ Ψ−1
b ∈ H2, the Hardy spae (F isbounded); by (1.9) of Setion 1, we have

∫
|F ◦ ω|2dm ≤ 1 + |ω(0)|

1 − |ω(0)|

∫
|F |2dm,equivalently(24) ∫

|f ◦ φ|2dλa ≤
1 + | φ(a)−b

φ(a)+b|

1 − | φ(a)−b
φ(a)+b|

∫
|f |2dλb.Observe (this is due to a)) that φ(a) ∼ c0a as a→ +∞, then take b = c0a, let a→ ∞and apply a) of Proposition 4.4 to u(t) = 1

π(1+t2) to get (‖ ‖ denoting the norm in H2)from (24): ‖f ◦ φ‖2 ≤ ‖f‖2.This shows that Cφ : H2 → H2 is even a ontration.If c0 = 0, things are slightly more ompliated. We use the inequality(25) ∫ α+1

α

∣∣∣
N∑

1

ann
it
∣∣∣
2

dt ≤ C
N∑

1

n|an|2,where α ∈ R and C is a numerial onstant, whih is an easy onsequene of the weightedHilbert inequality [MVau℄, [MVaa℄, in whih λ1, . . . , λN denote distint real numbers and
δn = infm 6=n |λm − λn|: ∣∣∣∣

∑

m 6=n

aman

λm − λn

∣∣∣∣ ≤ C0

∑ |an|2
δn

.One easily derives from (25) that(26) ∫
|f(σ + it)|2dλa(t) ≤ C‖f‖2, ∀f ∈ H2, ∀a > 0, ∀σ > 1

2
.In fat, with obvious notations,

∫
|f(σ + it)|2dλa(t) ≪

∑

k∈Z

∫ k+1

k

|f(σ + it)|2 a

a2 + t2
dt

≪
∑

k∈Z

a

a2 + k2

∫ k+1

k

|f(σ + it)|2dt≪
∑

k∈Z

a

a2 + k2

∞∑

n=1

nn−2σ|an|2(by (25) applied to f(σ + it) =
∑
ann

−σn−it)
≪

∑

k∈Z

a

a2 + k2
‖f‖2 ≪ ‖f‖2

∫
a dt

a2 + t2
≪ ‖f‖2.We now argue as in the ase c0 ≥ 1, but we take ω = Ψb◦τ ◦φǫ◦Ψ−1

a , F = f ◦τ−1◦Ψ−1
b ,where φǫ(s) = φ(s+ ǫ), ǫ > 0, and where τ (s) = s− 1/2. We get, using the inequality

∫
|F ◦ ω|2dm ≤ 1 + |ω(0)|

1 − |ω(0)|

∫
|F |2dm,the fats that F ◦ω = f ◦ φǫ ◦Ψ−1

a , λa = Ψ−1
a (m), λb = Ψ−1

b (m), and �nally (26) (where



COMPOSITION OPERATORS 273we let σ tend to 1
2 when f is a Dirihlet polynomial), that

∫
|f ◦ φε(it)|2dλa(t) ≤ 1 + |ω(0)|

1 − |ω(0)|

∫ ∣∣∣∣f
(

1

2
+ it

)∣∣∣∣
2

dλb(t) ≤ C
1 + |ω(0)|
1 − |ω(0)| ‖f‖

2.Write f ◦φ(s) =
∑∞

n=1 bnn
−s; f ◦φ is bounded in C0, so by a famous theorem of Bohr[Bo℄, the series ∑∞

1 bnn
−s onverges uniformly in eah half-plane Cε; so that if we let

a→ ∞ (keeping ε and b �xed) above, we get from (22), sine ω(0) = Ψb[φ(a+ ε)− 1
2 ] →

Ψb(c1 − 1
2 ) = zb ∈ D,

∞∑

1

|bn|2n−2ε ≤ C
1 + |zb|
1 − |zb|

‖f‖2 = Cb‖f‖2.Now, let ε tend to zero to get ‖f ◦ φ‖2 =
∑∞

1 |bn|2 ≤ Cb‖f‖2. One again, Cφ isbounded.We now show that the onditions on φ are neessary. We shall use the following fats(see [GH℄); �extension� will always mean �analyti extension�.Fat 1 ([GH℄ l.2 p. 315). If φ(s) = c0s+ϕ(s), with c0 ∈ N and ϕ ∈ D, maps Cθ to Cτ ,and if φχ(s) = c0s+ ϕχ(s), χ ∈ S, then φχ extends to a map: Cθ → Cτ .Just use the property that ϕχ(s) = limN→∞ ϕ(s + itN ), for some sequene (tN ) ofreal numbers.Fat 2 ([GH℄ Prop. 4.3, p. 321). If φ is representable and maps Cθ to C 1
2
, then

(f ◦ φ)χ(s) = fχc0 ◦ φχ(s), ∀f ∈ H2, ∀χ ∈ S.Fat 3 ([GH℄ Prop. 5.1, p. 322). If Cφ : H2 → H2 (with φ : C 1
2
→ C 1

2
), then for almostevery χ ∈ S, φχ has an analyti extension to C0.We know that φ is representable by Theorem 4.1; for eah integer n ≥ 2, (n−φ)χan be almost surely extended to C0, by Helson's theorem 4.3; and we have (n−φ)χ =

χ(n)c0n−φχ . It follows that φχ itself has almost surely an extension to C0.Now, suppose �rst that c0 ≥ 1. We know from Fat 3 that φχ an almost surely beextended to C0, and the main point is that φχ(C0) ⊂ C0; if this were not so, we would�nd s0 ∈ C0 with ℜφχ(s0) = 0 and φ′χ(s0) 6= 0, and Fat 2 would imply that the formula
fχc0 = (f ◦ φ)χ ◦ φ−1

χ gives an extension of fχc0 aross a small segment of the imaginaryaxis ℜs = 0; sine fχ and fχc0 have the same measure distribution, we see that, foreah f ∈ H2, the axis ℜs = 0 is not a boundary for fχ, with positive probability; butif we take f(s) =
∑

p
1√

p log pp
−s ∈ H2, p running over primes, the variables χ(p) aresymmetri and independent, and the onlusion a) of Theorem 3.2 is ontradited. Wethus have φχ : C0 → C0, and Fat 1 shows that φ = (φχ)χ̄ has an extension to C0, with

φ(C0) ⊂ C0.If c0 = 0, Fat 2 gives (f ◦ φ)χ = f ◦ φχ, for any f ∈ H. If φχ does not map C0to C 1
2
, the same reasoning shows that f an be extended aross a small segment of theaxis ℜs = 1

2 . Now, take f as in b) of Theorem 3.2 to get a ontradition.Having seen that boundedness of omposition operators Cφ on H2 is far from beingautomati (although a omplete desription of the piture is available through Theo-rem 4.2), in ontrast with the ase of the Hardy spae H2, we now turn to the problem



274 H. QUEFFÉLECof ompatness. Here, the situation is not yet fully understood, and to the best of myknowledge there are only two papers ([B2℄, [FQV℄) giving partial answers to the question.One natural thing is to try to take advantage of the integral representation 23 to extendthe result of J. Shapiro for H2. This was partially done by Bayart [B2℄ who introduedthe new ounting funtion(27) Nφ(s) =
∑

w∈φ−1(s)

ℜw if s ∈ φ(C0), Nφ(s) = 0 otherwise.This ounting funtion seems to be appropriate when c0 ≥ 1. In fat, we haveTheorem 4.5 ([B2℄). Let φ : C0 → C0, φ(s) = c0s+ ϕ(s), c0 ≥ 1. Then
Nφ(s) ≤ 1

c0
ℜs for all s ∈ C0.This is the analogue of Littlewood's inequality (14), where φ(0) = 0 beomes

φ(∞) = ∞.Theorem 4.6 ([B2℄). Let φ : C0 → C0, φ(s) = c0s+ ϕ(s), c0 ≥ 1. Suppose that:a) ℑϕ is bounded on C0;b) Nφ(s) = o(ℜs) if ℜs >→ 0.Then, Cφ is ompat on H2.We do not know whether the onverse is true; the equivalent of a) in Theorem 1.4beomes (using the properties of the reproduing kernel of H2):
(∗) If Cφ : H2 → H2 is ompat, ℜφ(a) >

1

2
for ℜs =

1

2
.But this has no interest: if φ(s) 6= s+ iτ , one an show that φ(C1/2) ⊂ C 1

2+ε for some
ε > 0, and if φ(s) = s+ iτ , Cφ is learly not ompat! At the end of this setion, we willrestrit ourselves to symbols φ : C1/2 → C1/2 of the following type:(28) φ(s) = c0s+ c1 +

d∑

j=1

cqj
q−s
j , cqj

6= 0,where 2 ≤ q1 < . . . < qd are �multipliatively independent�, i.e. eah integer n an bewritten as n = qα1
1 . . . qαd

d , αj ∈ N, in at most one way (e.g. q1 = 2, q2 = 6, q3 = 30).In that ase, the real numbers log q1, . . . , log qd are rationally independent, and theKroneker approximation theorem implies that
inf
t
ℜφ(σ + it) = c0σ + ℜc1 −

d∑

j=1

|cqj
|q−σ

j , for eah σ > 0.So that the boundedness ondition of Theorem 4.2 reads:
(29) If c0 ≥ 1, Cφ is bounded i� ℜc1 ≥ |cq1

| + · · · + |cqd
|.

(30) If c0 = 0, Cφ is bounded i� ℜc1 ≥ 1

2
+ |cq1

| + · · · + |cqd
|.A natural guess would be that Cφ is ompat if and only if the inequalities in (29)and (30) are strit; this is not quite the ase, and big di�erenes between the ases c0 ≥ 1,

c0 = 0 appear; we have the following results:



COMPOSITION OPERATORS 275Theorem 4.7 ([B2℄). Suppose that c0 ≥ 1. Then, the following are equivalent:a) ℜc1 > |cq1
| + · · · + |cqd

|;d) φ(C0) ⊂ Cε for some ε > 0;) Cφ is ompat.One only has to prove that ) ⇒ a). Improving the useless (∗), one shows that theompatness of Cφ implies: limℜs→0
ℜφ(s)
ℜs = +∞, and this easily implies a).If c0 = 0, the integer d plays a ruial role, omparable to the role whih it plays ina famous theorem of Pólya: let e1, . . . , ed be the anonial basis of Rd, X be a randomvariable suh that P (X = ±ej) = 1

2d , 1 ≤ j ≤ d, and (Sn) be the random walk on Zdassoiated to X, i.e. Sn = X1 + · · · +Xn, where the X ′
ns are independent opies of X;thenTheorem 4.8 ([Re℄). Let (Sn) be the above random walk on Zd. Then:a) If d = 1 or 2, (Sn) is almost surely reurrent, i.e. lim‖Sn‖ = 0 a.s.b) If d ≥ 3, (Sn) is almost surely transient, i.e. lim‖Sn‖ = ∞ a.s.In fat, ∑P (Sn = 0) = ∞ i� d ≤ 2. The analogue here will be the series ∑ ‖Cφ(n−s‖2and the Hilbert-Shmidt harater of Cφ aording to the values of d. We have morepreisely the following statements:Theorem 4.9 ([FQV℄). Suppose that d = 1 and c0 = 0. Then, the following are equiva-lent:a) ℜc1 > |cq1

| + 1
2 ;b) φ(C0) ⊂ Cε+ 1

2
for some ε > 0;) Cφ is ompat;d) Cφ is Hilbert-Shmidt.By analyzing CφC
∗
φ, if ℜc1 = |cq1

|+ 1
2 one is led to the equivalent study of C : H2 →

H2 given by
C(zi) =

∑

j≥0

(i+ j)!

i!j!
2−i−jzj ,and we see that C = MCh, where M : H2 → H2 is the multipliation operator by the

H∞-funtion
(1 − z/2)−1,and h : D → D is given by h(z) = 1

2−z . We have lim
r

<→1

1−h(r)
1−r = 1 < ∞, therefore (seeTheorem 1.4) Ch and hene C are not ompat; the assertion d) will be proved later.Theorem 4.10 ([FQV℄). Suppose that d = 2 and c0 = 0. Then:a) Cφ is always ompat;b) Cφ is Hilbert-Shmidt if and only if ℜc1 > 1

2 + |cq1
| + |cq2

|;) There are omposition operators on H2 whih are ompat and not Hilbert-Shmidt.



276 H. QUEFFÉLECThe most di�ult point is a); by analyzing CφC
∗
φ, if ℜc1 = 1

2 + |cq1
| + |cq2

|, one isled to the equivalent study of an operator C : H2(T2) → H2(T2) whih is no longer aomposition operator as in Theorem 4.9, but the operator f 7→
∫
C(u, v;x, y)f(u, v)du dvassoiated with the kernel

C(u, v;x, y) =
1

4 − a(eix + e−iu) − b(eiy + e−iv)on T4, with a, b > 0 and a + b = 2. One shows that C ∈ L2(T4), so that the assoiatedoperator C is Hilbert-Shmidt, whih implies that Cφ is in the Shatten lass S4, and afortiori is ompat; b) is proved later; an example for ) is provided by φ(s) = 3
2 + 2−s+3−s

2 ;it is interesting to ompare with b) of orollary 1.5.Theorem 4.11 ([FQV℄). Suppose that d ≥ 3. Thena) If c0 ≥ 1, Cφ is Hilbert-Shmidt if and only if ℜc1 ≥ 1
2 +

∑d
j=1 |cqj

|.b) If c0 = 0, Cφ is Hilbert-Shmidt if and only if Cφ is bounded. In partiular, thereare omposition operators Cφ on H2, with c0 = 0 and infℜs>0 ℜφ(s) = 1
2 , whihare Hilbert-Shmidt.The proof uses the following:Lemma 4.12. Let d be an integer ≥, δ1, . . . , δd > 0, n ≥ 1, and

Sn =
∑

i1+···+id=n

(
n!

i1! . . . id!

)2

δ2i1
1 . . . δ2id

dbe the sum of the squares of the multinomial oe�ients. Then, as n→ ∞:(31) Sn ∼ λn− d−1
2 (δ1 + · · · + δd)

2n,where λ > 0 is a onstant independent from n.Proof. For equal δj 's, this is nothing but Pólya's theorem, and the general ase is similar;we an assume δ1 + · · · + δd = 1; denote by Qd the unit ube [
−1

2 ,
1
2

]d of Rd and set
e(x) = e2iπx, c(x) = cos 2πx, s(x) = sinπx. Parseval's relation gives
(∗) Sn =

∫

Qd

|δ1e(θ1) + · · · + δde(θd)|2ndθ1 . . . dθd.Now, we have
∣∣∣

d∑

j=1

δje(θj)
∣∣∣
2

=

d∑

j=1

δ2j + 2
∑

1≤j<k≤d

δjδkc(θj − θk)

=

d∑

j=1

δ2j + 2
∑

1≤j<k≤d

δjδk − 2
∑

1≤j<k≤d

δjδk
(
1 − c(θj − θk)

)

= 1 − 4
∑

1≤j<k≤d

δjδks
2(θj − θk).



COMPOSITION OPERATORS 277Make the hange of variable θk−θ1 = ϕk, 2 ≤ k ≤ d, and use the translation-invarianeto get
Sn =

∫

Qd−1

(
1 − 4

∑

2≤k≤d

δ1δks
2(ϕk) − 4

∑

2≤j<k≤d

δjδks
2(ϕj − ϕk)

)n

dϕ2 . . . dϕd

= n− d−1
2

∫
√

nQd−1

(
1 − 4

∑

2≤k≤d

δ1δks
2

(
Ψk√
n

)
− 4

∑
δjδks

2

(
Ψj − Ψk√

n

))n

dΨ2 . . . dΨd

(where ∑ is an abbreviation for ∑

2≤j<k≤d

)

=: n− d−1
2

∫

Rd−1

fn(Ψ2, . . . ,Ψd)dΨ2 . . . dΨd,where we have
0 ≤ fn(Ψ2, . . . ,Ψd) ≤ exp(

−4nδ1

d∑

k=2

δks
2

(
Ψk√
n

))
1√nQd−1

(Ψ2, . . . ,Ψd)

≤ exp( − 16
d∑

k=2

δ1δkΨ2
k

)
, beause |s(x)| ≥ 2|x| for |x| ≤ 1

2
.Moreover, fn(Ψ2, . . . ,Ψd) → g(Ψ2, . . . ,Ψd) as n→ ∞, with

g(Ψ2, . . . ,Ψd) = exp(
−4

d∑

k=2

δ1δkΨ2
k − 4

∑

2≤j<k≤d

δjδk(Ψj − Ψk)2
)
.

Lebesgue's dominated onvergene theorem now shows that Sn ∼ λn− d−1
2 , with λ =∫

Rd−1 g(Ψ2, . . . ,Ψd)dΨ2 . . . dΨd > 0.It is now easy to omplete the proofs of Theorems 4.9, 4.10, 4.11 with the help of thefollowing simple lemma:Lemma 4.13. Let b > 1 be �xed, and let a > 0 tend to in�nity. Then
∑

k≥1

(log k)a

kb
∼

∫ ∞

1

(log t)a

tb
dt =

Γ(a+ 1)

(b− 1)a+1
,

where Γ is the Euler gamma funtion.Regardless of the value of c0, and using the independene of the qj 's, we get
∞∑

n=1

‖Cφ(n−s)‖2 =
∑

i1,...,id≥0

δ
2i1
1 . . . δ

2id

d

(i1! . . . id!)2

∞∑

n=1

(log n)2(i1+···+id)

n2γ1
,

where γ1 = ℜc1 and δj = |cqj
|. So that, using Lemmas 4.12 and 4.13, we get with obviousnotations:
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∞∑

n=1

‖Cφ(n−s)‖2 ≈
∑

i1,...,id≥0

δ
2i1
1 . . . δ

2id

d

(i1! . . . id!)2
(2i1 + · · · + 2id)!

(2γ1 − 1)2(i1+···+id)

=
∞∑

l=1

(2l)!

(2γ1 − 1)2l(l!)2

∑

i1+...+id=l

(
l!

i1! . . . id!

)2

δ2i1
1 . . . δ2id

d

=

∞∑

l=1

Cl
2l

(2γ1 − 1)2l
Sl≈

∞∑

l=1

4l

√
l(2γ1 − 1)2l

1

l
d−1
2

(δ1+. . .+δd)
2l

=

∞∑

l=1

l−d/2

(
2(δ1 + . . .+ δd)

2γ1 − 1

)2l

.Now, if d = 1 or 2, the last series onverges if and only if 2γ1 − 1 > 2(δ1 + . . .+ δd), whileif d ≥ 3, it onverges if and only if 2γ1 − 1 ≥ 2(δ1 + . . .+ δd). This �nishes the proof.Let us mention (see [FQV℄) that Theorem 4.11 holds for more general symbols φ(s) =

c0s + c1 +
∑∞

j=1 cqj
q−s
j , where ∑

|cqj
| < ∞, cqj

6= 0, and at least three of the qj 's areindependent; Cφ is Hilbert-Shmidt as soon as it is bounded. Nevertheless, the generalpiture for ompatness is not lear, in spite of Theorem 4.6, all the more as φ is neverinjetive if c0 = 0 [Fa℄. We hope to ome bak to this problem of ompatness in anotherwork.In ontrast with the ase of the unit disk, there are very few invertible or isometriomposition operators on H2. Indeed we have [B1℄:Theorem 4.14. Let Cφ : H2 → H2 be bounded. Then, the following are equivalent:a) Cφ is invertible;b) Cφ is Fredholm;) φ(s) = s+ iτ , where τ ∈ R.Theorem 4.15. Let Cφ : H2 → H2 be bounded, with φ(s) = c0s+ϕ(s). Assume that theDirihlet series of ϕ onverges uniformly on C0. Then, the following are equivalent:a) Cφ is isometri;b) Cφ is similar to an isometry;) φ(s) = c0s+ iτ , where c0 ≥ 1 and τ ∈ R.5. The Wiener-Dirihlet algebra A+. This is the Banah algebra of Dirihlet series
f(s) =

∑∞
1 ann

−s, with ‖f‖ =
∑∞

1 |an| < ∞. This algebra is ommutative and unital,and an be interpreted as a spae of analyti funtions on C0; as we already mentioned inSetion 4, the study of funtion spaes formed by Dirihlet series has been the subjet ofsome reent interest (see [B1℄, [B2℄, [FQ℄, [FQV℄, [HLS℄, [GH℄, [MCa℄ for example). Now,a method due to Bohr (see [Q2℄ for other appliations) identi�es the algebra A+ withthe algebra A+(T∞) formed by absolutely onvergent Taylor series in ountably manyvariables (this allows one to identify the spetrum of A+ as D̄∞). Let us reall the waythis identi�ation is arried out. Let (pj)j≥1 be the inreasing sequene of prime numbers
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(p1 = 2, p2 = 3, . . .). A funtion f in A+(T∞) an be written as

f(z) =
∑

α∈N
(∞)
0

aαz
α, with ‖f‖A+(T∞) =

∑

α

|aα| <∞,

where, as usual, we set α = (α1, . . . , αr, 0, 0, . . .) and zα = zα1
1 . . . zαr

r for z = (zj)j≥1.Then ∆ : A+ → A+(T∞) is de�ned by(32) ∆
( ∞∑

n=1

ann
−s

)
=

∞∑

n=1

anz
α1
1 . . . zαr

r , n = pα1
1 . . . pαr

r .

∆ is an isometri isomorphism; for s ∈ C0, f ∈ A+, g ∈ A+(T∞), we set
z[s] = (p−s

j )j≥1 ∈ D∞; ‖f‖∞ = sup
s∈C0

|f(s)|; ‖g‖∞ = sup
z∈D∞

|g(z)|.With those notations, ∆ has the two following properties (see [B2℄):(33) ∆f(z[s]) = f(s), for any f ∈ A+ and any s ∈ C0;(34) ‖∆f‖∞ = ‖f‖∞, for eah f ∈ A+.When we study omposition operators Cφ : A+ → A+ assoiated with an analyti
φ : C0 → C0, Theorem 4.1 indiates that φ has to be representable, whih we assume oneand for all in the sequel (as well as the fat that φ is non-onstant, to avoid trivialities).A big di�erene with the ase of the Wiener algebra at one appears: in the latter ase,the identity funtion z ∈ A+, so that if we want Cφ to map A+ to itself, we have toassume that φ itself belongs to A+; here, the identity funtion s does not belong to A+,and in fat we do not know if the ondition φ ∈ A+ is neessary for Cφ to map A+ toitself; we have the following Theorems 5.1 and 5.2, whih may be viewed as analogues ofTheorems 2.1 and 2.2 respetively, with φn being replaed by n−φ (see [BFLQ1℄):Theorem 5.1. Let φ : C0 → C0. Thena) Cφ maps A+ to itself if and only if n−φ ∈ A+ for n ∈ N, and ‖n−φ‖ ≤ C for eah

n ∈ N.b) If φ(s) = c0s+
∑∞

1 cnn
−s with ∑∞

1 |cn| <∞, then Cφ maps A+ to itself as soonas ℜc1 ≥
∑∞

2 |cn|, regardless of the value of c0.Theorem 5.2. Let φ : C0 → C0. Thena) Cφ : A+ → A+ is ompat if and only if ‖n−φ‖ → 0 as n→ ∞.b) If Cφ is ompat, we have φ(C0) ⊂ Cδ for some δ > 0. The onverse is true if
φ(s) = c0s+ ϕ(s), with ϕ ∈ A+.a) is proved exatly as Theorem 2.2. The existene of δ in b) is easy: set δ =

infs∈C0
ℜφ(s); we have n−δ = ‖n−φ‖∞ ≤ ‖n−φ‖, so n−δ → 0 by a), and δ is positive;onversely, if δ > 0 and ϕ ∈ A+, we use the following fats:Fat 1. If φ(s) = c0s + ϕ(s) maps Cθ to Cτ and ϕ is non-onstant, ϕ maps Cθ to

Cτ−c0θ ([GH℄).Fat 2. If v ∈ A+ and r ≥ 1, then r−v ∈ A+, and ‖r−v‖ ≤ r‖v‖.



280 H. QUEFFÉLECThis is a simple and well-known property of the norm in a Banah algebra. Now, let
φ(s) = c0s + ϕ(s), with φ(C0) ⊂ Cδ and ϕ ∈ A+. We have ϕ(C0) ⊂ Cδ by Fat 1, andif Ψ = 2−ϕ, the spetral radius formula and Bohr's method (see the beginning of thissetion) give

lim
j→∞

‖Ψj‖1/j = sup
h∈SpA+

|h(Ψ)| = sup
s∈C0

|Ψ(s)| ≤ 2−δ,and in partiular ‖Ψj‖ → 0; any integer n ≥ 2 an be written as n = 2jr, j ∈ N,
1 ≤ r ≤ 2, so that

‖n−φ‖ = ‖n−ϕ‖ = ‖2−jϕr−ϕ‖ ≤ ‖Ψj‖‖r−ϕ‖ ≤ ‖Ψj‖2‖ϕ‖,using Fat 2 and r ≤ 2. Therefore, ‖n−φ‖ → 0, and Cφ is ompat by Part a) of theTheorem.Note that the assumption φ(C0) ⊂ Cδ holds if ℜc1 > ∑∞
2 |cn|.However, onditions like ∑∞

2 |cn| ≤ ℜc1 (or < ℜc1) are not neessary to have bound-edness or ompatness, as shown by the following examples,Theorem 5.3. Let φ(s) = c0s+ c1 + crr
−s + cr2r−2s, where r ≥ 2, and cr, cr2 > 0.a) If(35) ℜc1 >
(cr)

2

8cr2

+ cr2 ,then Cφ : A+ → A+ is ompat.b) If Cφ : A+ → A+ is bounded (resp. ompat) and moreover cr ≤ 4cr2 , we musthave ℜc1 ≥ (cr)2

8c
r2

+ cr2 (resp. we must have (35)).) If ℜc1 = (cr)2

8c
r2

+ cr2 , then Cφ maps A+ to itself if and only if cr 6= 4cr2 .Proof. W.l.o.g., we assume r = 2. It is easy to hek that(36) If c2 ≤ 4c4 (resp. > 4c4),we have inf
s∈C0

ℜφ(s) = ℜc1 −
c22
8c4

− c4(resp. inf . . . = ℜc1 + c4 − c2). Therefore, a) and b) follow from Theorem 5.2, sine
c2
2

8c4
+ c4 > c2 − c4 if c2 > 4c4. But, one may give a more informative proof, whih hasother appliations (see Setion 6).Let H0, H1, . . . be the sequene of Hermite polynomials, whose generating funtion is

∞∑

k=0

Hk(λ)

k!
xk = exp(2λx− x2).

It is possible to show [BFLQ1℄ that putting α = ℜc1 − c2
2

8c4
− c4, we have:

(37)
∞∑

k=0

|Hk(λ)|
k!

xk ≤ C(1 + x)1/2 exp(x2 + λ2/2), where C is a onstant;
(38) ‖n−φ‖ = n−ℜc1

∞∑

k=0

|Hk(λn)|
k!

xk
n ≤ C(logn)1/4n−α,
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√
c4 log n, and λn = − −c2

2
√

c4

√
log n;(39) If c2 ≤ 4c4, ‖n−φ‖ ≥ n−α for n ≥ 1.And those estimates learly give an alternative proof of a) and b).For ), if c2 > 4c4, we have infs∈C0

ℜφ(s) > 0 by (36), and we are done. If c2 ≤ 4c4,we have
‖2−jφ‖A+ = ‖Ψj‖A+(T),where Ψ(z) = exp[−(c1 + c2z + c4z

2) log 2], and ‖Ψ‖∞ = 1.We then apply to Ψ the Newman riterion (15) on ordinary points: if |ψ(eiθ0)| = 1,the oe�ient α2 of t2 in the Taylor expansion of log Ψ(ei(θ0+t)) is α2 = c2

2 e
iθ0 +2c4e

2iθ0 ,so that
ℜα2 =

c2
2

cos θ0 + 2c4(2 cos2 θ0 − 1).Now, sine ℜc1 =
c2
2

8c4
+ c4, one easily heks that |Ψ(eiθ0)| = 1 implies cos θ0 = −c2

4c4
, sothat

ℜα2 =
c22
8c4

− 2c4.Now, if c2 6= 4c4, ℜα2 6= 0, θ0 is an ordinary point, ‖Ψj‖A+ is bounded, ‖2−jφ‖ andtherefore ‖n−φ‖ (see the proof of Theorem 5.2) are bounded, and Cφ itself is bounded.If c2 = 4c4, we have θ0 = π(mod2π), log Ψ(ei(θ0+t)) = d0 + d1t+ 0 · t2 + α3t
3 + . . ., with

α3 = (i log 2) 2c4

3 6= 0 and ℜα3 = 0, so that θ0 is not an ordinary point, and ‖2−jφ‖,
‖n−φ‖ are not bounded. In partiular, φ(s) = ia + c(3 + 4.2−s + 4−s), with a ∈ R and
c > 0, provides an example of a symbol φ suh that ∑

|cn| < ∞ and φ(C0) ⊂ C0, but
Cφ is not bounded on A+.This shows that the situation as onerns boundedness and ompatness is not yetfully understood. Let us now turn to the automorphisms and isometries; we �rst studythe ase of the algebras A+(Tk), 1 ≤ k <∞, or A+(T∞).Theorem 5.4 ([BFLQ1℄). Assume that the map φ : Dk → D̄k indues a bounded op-erator Cφ : A+(Tk) → A+(Tk). Then, Cφ is an automorphism if and only if φ(z) =

(ε1zσ(1), . . . , εkzσ(k)) for some permutation σ of {1, . . . , k} and some omplex signs
ε1, . . . , εk.Proof. Suppose that Cφ is an automorphism; φj = Cφ(zj) ∈ A+(Tk), for 1 ≤ j ≤ k,therefore φ has a ontinuous extension φ : D̄k → D̄k; Cφ being surjetive, φ is injetive;Osgood's Theorem [Na℄ implies that det φ′(z) 6= 0 ∀z ∈ Dk, therefore φ is an openmapping on Dk, and φ(Dk) ⊂ Dk; it is easy to hek that φ : D̄k → D̄k is onto, therefore
φ(Dk) = Dk, and φ is an analyti automorphism of Dk. Therefore, we know that [Na℄ φseparates the variables:(40) φ(z) =

(
εj

zσ(j) − aj

1 − ājzσ(j)

)

1≤j≤kwhere aj ∈ D, |εj | = 1, and σ is a permutation of {1, . . . , k}.
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(
εj

(
z − aj

1 − ājz

))n∥∥∥∥
A+

= ‖φn
j ‖A+(Tk) = O(1),and this implies, as in the proof of Theorem 2.3, that aj = 0, whih �nishes the proof.We onjeture that the same result holds for A+(T∞), but we are only able to provethe following (whih will yet be su�ient for the ase of A+): it is onvenient to denoteby B = D∞ ∩ c0 the open unit ball of the Banah spae c0; then we have:Theorem 5.5. Let φ = (φj)j : B → B be an analyti map suh that Cφ maps A+(T∞)to itself. Assume that Cφ is an automorphism, and that moreover we have for eah k :

φk(z) = zdk

k uk(z), where dk is a integer ≥ 1 and uk(0) 6= 0; then, φ(z) = (εjzj)j, forsome sequene of omplex signs εj .Proof (see [BFLQ1℄). Let K = D̄∞; φ is a homeomorphism of K, and the assumptionsallow us to show that Ψ = φ−1 maps B to B; φ is thus an analyti automorphism of B,and a theorem due to Harris [Ha℄, the so-alled analyti Banah-Stone Theorem showsthat the analogue of (40) holds, namely(41) φ(z) =

(
εj

zσ(j) − aj

1 − ājzσ(j)

)

j≥1where (aj) ∈ B, |εj | = 1, and σ is a permutation of N.As before, we must have aj = 0 for eah j, and �nally the assumption φk(z) = zdk

k uk(z)implies that σ is the identity.The ase of isometries goes as follows (see [BFLQ1℄:Theorem 5.6. Assume that φ = (φj) : Dk → D̄k indues a omposition operator Cφ :

A+(Tk) → A+(Tk). Then, Cφ is an isometry if and only if there exists a square (k × k)matrix A = (aij), with aij ∈ N0 and det A 6= 0, and omplex signs ε1, . . . , εk suh that(42) φi(z) = εi z
ai1
1 . . . zaik

k , 1 ≤ i ≤ k, z = (z1, . . . , zk) ∈ Dk.Proof. If α = (α1, . . . , αk) ∈ Nk
0 , let φα = φα1

1 . . . φαk

k . If f(z) =
∑
aαz

α ∈ A+(T∞),we write aα = f̂(α) and denote by Sp f (the spetrum of f) the set of α's for whih
f̂(α) 6= 0. One has the following fats:Fat 1. Cφ is an isometry if and only if :a) φi = εiFi, 1 ≤ i ≤ k, where |εi| = 1, F̂i ≥ 0, and Fi(e) = 1 = ‖Fi‖∞, with

e = (1, 1, . . . , 1);b) if α, α′ ∈ Nk
0 are distint, the spetra of φα and φα′ do not interset.Fat 2. if φ = (φi) and if one of the φi's is not a monomial, we an �nd distintelements α, α′ ∈ N
k
0 suh that the spetra of φα and φα′ interset.Fat 2 needs some arithmetial disussion, but one we have these fats, Theorem 5.6is lear.In the ase of A+(T∞), we have no suh pleasant statement: for example, if

I1, . . . , Im, . . . are disjoint subsets of N with more than one element, cij positive num-bers suh that ∑
j∈Ii

cij = 1 for eah i ≥ 1, and if the map φ = (φi) is de�ned by
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φi(z) =

∑
j∈Ii

cijzj , then Cφ is an isometry by Fat 1 (whih holds for A+(T∞)), andyet no φi is a monomial. Under the additional assumption that φ maps T
∞ to itself, wehave a more satisfatory statement, namelyTheorem 5.7. Let φ : D̄∞ → D̄∞ a map induing a omposition operator Cφ : A+(T∞)

→ A+(T∞), and suh that moreover φ(T∞) ⊂ T∞. Then:a) There exists a matrix A = (aij)i,j≥1, with aij ∈ N0 and ∑
j aij < ∞ for eah i,and omplex signs εi suh that φ = (φi) and(43) φi(z) = εi

∞∏

j=1

z
aij

j , i = 1, 2, . . .b) Cφ is an isometry if and only if A∗ = (aji) is injetive on Z(∞).The main point is the following group-theoretial property [R℄.Theorem 5.8 (Beurling-Helson). Let G be a disrete abelian group, with onneted dualgroup Γ. Let φ ∈ A(Γ), the Wiener algebra of Γ, without zeros on Γ, and suh that
‖φn‖A(Γ) ≤ C for some onstant C = (n = 0,±1,±2, . . .). Then, φ is a�ne, i.e. thereexists a omplex number a with |a| = 1 and an element x of G suh that φ(γ) = aγ(x)for any γ ∈ Γ.Reall that A(Γ) = {φ : Γ → C : φ(γ) =

∑∞
1 anγ(xn), with xn ∈ G and ∑∞

1 |an|
<∞}; we set ‖φ‖A(Γ) =

∑∞
1 |an|. What the lemma says is the following: take for example

G = Z, Γ = T, φ ∈ A+(T). The assumption ‖φn‖ ≤ C for n ∈ N does not say too muhon φ, as the example φ(z) = 1+z−z2
√

5
of Setion 2 shows; but the assumption ‖φn‖ ≤ Cfor n ∈ Z says muh more; and preisely, if we assume that φ ∈ A+(T) satis�es ‖φn‖ ≤ Cfor n ∈ N and |φ(eit)| = 1, we automatially have ‖φn‖ ≤ C for n ∈ Z, sine for n ∈ Nwe have ‖φ−n‖ = ‖φ̄n‖ = ‖φn‖. Now, if we use this lemma with G = Z(∞), the diretsum of ountably many opies of Z, and Γ = T∞, the omplete diret sum of ountablymany opies of T, we get (43).b) follows easily, letting A and A∗ at on Z(∞) by the formulas A(α) = B, A∗(α) = γ,with βi =

∑
j aijαj , γj =

∑
i aijαi.We then have, if Cφ is an isometry: Cφ(zα) = φα = εαzA∗(α), and we know fromthe proof of Theorem 5.6 that the φα's have disjoint supports, therefore the A∗(α)'s aredistint.If we ombine both properties (automorphism, isometry), we get the following (reallthat B is the open unit ball of c0).Theorem 5.9. Let φ = (φj) : B → B be an analyti funtion whih indues a ompo-sition operator Cφ on A+(T∞). If Cφ is an isometri automorphism of A+(T∞), then

φ(z) = (εjzσ(j))j, for some permutation σ of N and some sequene (εj)j of omplex signs.This follows from an inspetion of the proof of Theorem 5.5; if Ψ = φ−1 does not map
B to B, we �nd distint integers j1, j2 suh that the spetra of φj1 and φj2 interset,whih prevents Cφ from being isometri.



284 H. QUEFFÉLECNow, we return to the ase of the Wiener-Dirihlet algebra A+, for whih the state-ments are more satisfatory than for A+(T∞).Theorem 5.10. Let Cφ : A+ → A+ be a omposition operator. The following are equiv-alent:a) φ is a vertial translation: φ(s) = s+ iτ, τ ∈ R.b) φ is a automorphism.Proof. b) ⇒ a). We write φ(s) = c0s + ϕ(s). Cφ being surjetive, φ is injetive, and
c0 ≥ 1, by a well-known result [Fa℄ of the theory of analyti, almost-periodi funtions.We will now use the transfer operator ∆ introdued at the beginning of Setion 5, bysetting fk(s) = p

−φ(s)
k ∈ A+, φk = ∆fk and(44) φ̃ = (φ1, φ2, . . .).We have from (33): φ̃(z[s]) = (∆fk(z[s])) = (fk(s)) = z[φ(s)], and ‖φk‖∞ = ‖fk‖∞ by(34). Moreover, no φk is onstant, so the open mapping theorem implies that |φk(z)| < 1for z ∈ B, i.e. φ̃(z) ∈ D∞ for z ∈ B. Let us show that in fat φ̃(z) ∈ B. We have

fk(s) = p−c0s
k p

−ϕ(s)
k = p−c0s

k gk(s), with ‖gk‖A+ = ‖Cϕ(p−s
k )‖A+ ≤ C. So that φk(z) =

zc0

k ∆gk(z), and by (34),
|φk(z)| ≤ |zk|c0‖∆gk‖∞ = |zk|c0‖gk‖∞ ≤ |zk|c0‖gk‖A+ ≤ C|zk|c0 .Therefore, φ̃ maps B to B. Moreover, setting T = ∆Cφ∆−1 : A+(T∞) → A+(T∞), oneeasily heks that T is nothing but the omposition operator Cφ̃ assoiated with φ̃. Forthis φ̃, we are fortunately in a position to apply Theorem 5.5: indeed we have that T isan automorphism and that

φk(z) = zc0

k ∆gk(z),with
∆gk(0) = lim

ℜs→∞
p
−ϕ(s)
k = p−c1

k 6= 0,and we know that c0 ≥ 1.Theorem 5.5 now implies that φ̃(z) = (εjzj)j , for some sequene (εj) of omplex signs.If we test this equality at the points z[s] = (p−s
j )j , s ∈ C0, and if we use (33), we get

p
−φ(s)
j = εjp

−s
j , s ∈ C0, j ∈ N.Taking the moduli, we obtain ℜφ(s) = ℜs. Sine φ(s) − s is analyti in the domain C0this implies φ(s) − s = iτ , with τ ∈ R.Theorem 5.11. Let Cφ : A+ → A+ be a omposition operator. The following are equiv-alent:a) φ(s) = c0s+ iτ , with c0 ∈ N and τ ∈ R.b) Cφ is an isometry.Proof. b) ⇒ a). Here, we do not need the transfer operator ∆, but learly the method ofproof of Theorem 5.5 works to show that(45) If m and n are distint integers, the spetra of m−φ and n−φ are disjoint.



COMPOSITION OPERATORS 285This automatially implies c0 6= 0, otherwise 1 ∈ Sp(n−φ) for eah n. Now if φ(s) =

c0s + c1 + ω(s), with ω(s) = crr
−s + cr+1(r + 1)−s + . . ., r ≥ 2 and cr 6= 0, one easilyheks that (nr)c0 ∈ Sp(n−φ)∩Sp(nr)−φ for large n, ontraditing (45). Therefore, ω = 0and we are done.The results of this setion are mainly taken from [BFLQ1℄.6. Conluding remarks and questions. 1) Let φ = (φ1, . . . , φk) : D̄k → D̄k, non-onstant, with Cφ : A+(Tk) → A+(Tk). If k = 1, we must have φ(D) ⊂ D, and this isused impliitly in the proof of Theorem 2.2; but if k > 1, some omponent of φ (e.g.

φ(z1, z2) = ( 1
2z1, 1)) might be a unimodular onstant, and the analogue of Theorem 2.2 is(46) If φ = (φ1, . . . , φk) : D̄k → D̄k indues a bounded operator Cφ on A+(Tk),

Cφ is ompat if and only if eah omponent φj is either onstant or suh that
‖φj‖∞ < 1.2) Our knowledge of ompat, or even Hilbert-Shmidt, omposition operators Cφ on

H2 is far from being satisfatory. Bayart [B2℄ proved the following:Theorem 6.1. Let Cφ : H2 → H2 be bounded. Then:a) If Cφ is Hilbert-Shmidt, we must have φ(C0) ⊂ C 1
2
.b) If φ(C0) ⊂ C 1

2+ε for some ε > 0, then Cφ is Hilbert-Shmidt.We have already seen in Theorem 4.11 that the assumption of b) is not neessary, al-though it is neessary (see Theorems 4.9, 4.10) for symbols φ(s) = c0s+c1+
∑d

j=1 cqj
q−s
j ,where q1, . . . , qd are independent and d = 1 or 2.Using the properties of Hermite polynomials (see Setion 5), we were able to prove[BFLQ2℄:Theorem 6.2. Let r ∈ N, r ≥ 2, and φ(s) = c0s+c1 +crr

−s +cr2r−2s, with cr, cr2 > 0.Then, the following are equivalent:a) Cφ : H2 → H2 is Hilbert-Shmidt.b) φ(C0) ⊂ C 1
2+ε for some ε > 0.3) An irritating question is the following: if φ(s) = c0s+ ϕ(s), with ϕ ∈ D, and if weknow that Cφ : A+ → A+, is it true that ϕ ∈ A+?Theorem 5.3 might indiate that this is not so; on the other hand, it would be in-teresting, in this Theorem, to treat the ase of omplex oe�ients cr, cr2 . Here, reentestimates due to Rusev [Ru℄ might help.4) The estimate ‖φn‖A+ ≥ δ

√
n of Lemma 2.4 is best possible. In fat (see [4℄, p. 76),it is fairly easy to see that ‖φn‖A+ ≤ C

√
n if φ = eig and g is C∞ (say), and a similaromputation in dimension k (i.e. if we work with A+(Tk)) easily gives the estimate

‖φn‖A+(Tk) ≤ Ckn
k/2. Conversely, if φ is not a�ne, we probably have ‖φn‖A+(Tk) ≥ δ

√
n.When do we have the �best� minorization ‖φn‖A+(Tk) ≥ δnk/2? In general, it would beinteresting to have a preise quantitative version of Beurling-Helson's lemma 5.8 when φis not a�ne.5) In the proof of Theorem 5.10, we used the fat that an analyti almost-periodifuntion ∑

ane
−λns, uniformly onvergent in a strip a < ℜs < b, is never injetive on



286 H. QUEFFÉLECthis strip. Now, an an almost-periodi funtion f : R → C be injetive? (Of ourse,if f is real-valued, this is impossible: if f is injetive, it is monotoni, therefore notalmost-periodi).6) The ugly Theorem 5.5 is yet su�ient to desribe the omposition automorphismsof A+ (observe in passing that Bayart's diret approah for H2 does not seem to workhere, whih explains our �detour� through A+(T∞)). Is the natural statement true, i.e. isit true that Cφ is an automorphism of A+(T∞) if and only if φ(z) = (εjzσ(j))j for somepermutation σ of N and some sequene (εj) of omplex signs?7) It is not true in general that the omposition operator Cφ̃ on A+(T∞) orrespondsto a omposition operator Cφ on A+, in (44) of the proof of Theorem 5.10; for example,if φ̃ = (φi), with
φi(z) =

z2i−1 + z2i

2
, i = 1, 2, . . . ,the equation φ̃(z[s]) = z[φ(s)] would give

p−s
2i−1 + p−s

2i

2
= p

−φ(s)
i , i = 1, 2, . . . ;taking equivalents of both members as s→ ∞ would give that

φ(s)

s
→ log p2i−1

log p2i
,and it is impossible to have that, even for one i, sine φ(s)

s → c0 ∈ N0 !Aknowledgments. The author thanks J. Zemánek and Y. Tomilov for giving him theopportunity to ome to the Workshop on Operator Theory in Warsaw in April 2004, andto write this survey.
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