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Abstra
t. A new set of su�
ient 
onditions under whi
h every sequen
e of independent iden-ti
ally distributed fun
tions from a rearrangement invariant (r.i.) spa
e on [0, 1] spans there aHilbertian subspa
e are given. We apply these results to resolve open problems of N. L. Carothersand S. L. Dilworth, and of M. Sh. Braverman, 
on
erning su
h sequen
es in 
on
rete r.i. spa
es.1. Introdu
tion. Let X be a r.i. spa
e on [0, 1], and let {fk}

∞
k=1 ⊂ X be a sequen
eof independent identi
ally distributed random variables (i.i.d.r.v.'s). In this arti
le, weare 
on
erned with the question under whi
h 
onditions on the spa
e X, there exists a
onstant C > 0 su
h that the inequality
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)1/2 (1.1)holds for every n ∈ N and {ak}
n
k=1 ⊂ R. It is 
onvenient to re
all �rst some relevantresults from [Br, Chapter 3℄. Note that only the right inequality in (1.1) is of interest,sin
e the left inequality holds for an arbitrary r.i. X [Br, Lemma 1, p. 52℄. The (easy) setof 
onditions on X and f1 ne
essary for (1.1) to hold is listed in [Br, p. 71℄ (all unexplainednotions from the Bana
h fun
tion spa
e theory are de�ned in the next se
tion, see also[LT℄):2000 Mathemati
s Subje
t Classi�
ation: 46A30, 60G50.Key words and phrases: rearrangement invariant spa
e, i.i.d. sequen
e.The paper is in �nal form and no version of it will be published elsewhere.[27℄ 
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28 S. V. ASTASHKIN AND F. A. SUKOCHEV(a) the Köthe bidual X×× 
ontains the Orli
z spa
e LN generated by the fun
tion
N(t) = et2 − 1;(b) f1 ∈ L2;(
) Ef1 :=

∫ 1

0
f1(x)dx = 0.To present a set of su�
ient 
onditions for (1.1) to hold, we need �rst some notationsfrom [Br, Chapter 3℄. For a sequen
e a = (ak)∞k=1 and a r.v. f on [0, 1], we set

Qaf(t) =
∞
∑

k=1

λ{s ∈ [0, 1] : |akf(s)| > t}, t > 0, (1.2)where λ is Lebesgue measure. The r.v. f is said to have the property A2(X) (brie�y,
f ∈ A2(X)) if for all a ∈ l2 the r.i. spa
e X 
ontains all r.v.'s g satisfying the 
ondition
λ{s ∈ [0, 1] : |g(s)| > t} ≤ CQaf(t) (t > 0) for some C > 0. For the de�nition anddetailed dis
ussion of the so-
alled Kruglov property, see next se
tion.Theorem ([Br℄). If X has the Kruglov property and {fk}

∞
k=1 is a sequen
e of i.i.d.r.v.'ssu
h that f1 ∈ A2(X), f1 ∈ L2 and Ef1 = 0, then (1.1) holds.The proof of this result given in [Br℄ is rather indire
t and based on �ne estimates ofin�nitely divisible distributions in r.i. spa
es. The novelty of our approa
h here is twofold.Firstly, we observe that sequen
es {fk}

∞
k=1 of independent mean zero r.v.'s in a r.i. spa
e

X with the Kruglov property behave very similarly to the sequen
es of their disjointtranslates {f̄k(·) := fk(·−k+1)}∞k=1 in some r.i. spa
e Z2
X on the semi-axis (0,∞) [AS3℄.More pre
isely, in this 
ase there exists a 
onstant C > 0 su
h that for every sequen
e ofr.v.'s {fk}

∞
k=1 ⊂ X as above, we have
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∥
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∥
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. (1.3)Here, the r.i. spa
e Z2
X 
onsists of all measurable fun
tions f on (0,∞), su
h that
‖f‖Z2

X
:= ‖f∗χ[0,1]‖X + ‖f∗χ[1,∞)‖L2[1,∞) < ∞, (1.4)where f∗(s) is the non-in
reasing rearrangement of |f(s)| (see next se
tion). The 
on-ne
tion of the Kruglov property with the estimates similar to (1.3) explained in detailin [AS1, AS2, AS3℄ allows us to signi�
antly straighten the arguments in the proof of(1.1) and avoid using in�nitely divisible distributions. It is �tting to mention that undera somewhat stronger assumption that X ⊃ Lp for p < ∞, the inequality (1.3) had beenobtained earlier in [JS℄, where it is also shown that the left hand side inequality in (1.3)holds in every r.i. spa
e X.To see that the theorem above is an easy 
orollary of the right hand side inequality(1.3), let {fk}

∞
k=1 be a sequen
e of i.i.d.r.v.'s su
h that f1 ∈ A2(X), f1 ∈ L2 and Ef1 = 0.A standard argument shows that (1.1) is an immediate 
orollary of the following impli-
ation: a = (ak)∞k=1 ∈ l2 ⇒

∑∞
k=1 akfk ∈ X. Now, if f̄a =

∑∞
k=1 akf̄k, then we obtainfrom the de�nition (1.2)

Qaf1(t) = λ{s > 0 : |f̄a(s)| > t} (t > 0).



SEQUENCES OF INDEPENDENT IDENTICALLY DISTRIBUTED FUNCTIONS 29Therefore, the assumption f1 ∈ A2(X) implies f∗
aχ[0,1] ∈ X and similarly the assumption

f1 ∈ L2 guarantees that f̄a ∈ L2(0,∞) for every a = (ak)∞k=1 ∈ l2. At last, the de�nitionof the spa
e Z2
X (see (1.4)) yields f̄a ∈ Z2

X , and due to (1.3), we 
on
lude ∑∞
k=1 akfk ∈ X.The se
ond novelty of our approa
h is related to the study of the 
lass of r.i. spa
es

X su
h that (1.1) holds for every sequen
e of i.i.d.r.v.'s {fk}
∞
k=1 ⊂ X. To study thequestion when f ∈ A2(X) for any given f ∈ X, we employ interpolation methods. Aninterpolation type assumption on X whi
h we use here is very easy to verify in 
on
retesituations and, in fa
t, it allows us to 
ompletely eliminate from 
onsideration a rathervague 
ondition f ∈ A2(X).Our approa
h allows us to answer in full two open questions from [CD℄ and [Br℄. Thenegative answer to the question raised in [Br, p. 71℄ on whether the 
onditions (a)�(
)are su�
ient to guarantee that (1.1) holds is given in Corollary 3.6 below. There, we alsoanswer negatively the question [CD℄ whether an arbitrary i.i.d. sequen
e of r.v.'s spans aHilbertian subspa
e in the spa
e L2,q, 0 < q < 2. We note that a negative answer to thequestion of N. L. Carothers and S. J. Dilworth has been announ
ed in [N℄, but the proofgiven there is in
omplete.In view of the ne
essity of 
onditions (a)�(
) above, we shall assume below that

X ⊆ L2 and that the sequen
e {fk}
∞
k=1 
onsists of mean zero r.v.'s. The main result ofthis arti
le is Theorem 3.1 below.2. De�nitions and preliminaries2.1. Rearrangement invariant spa
es. A Bana
h spa
e X of real-valued Lebesgue mea-surable fun
tions (with identi�
ation λ-a.e.) on the interval J , where J = [0, 1] or [0,∞),will be 
alled rearrangement invariant (r.i.) if(i) X is an ideal latti
e, that is, if y ∈ X, and if x is any measurable fun
tion on Jwith 0 ≤ |x| ≤ |y| then x ∈ X and ‖x‖X ≤ ‖y‖X ;(ii) if y ∈ X, and if x is any measurable fun
tion on J with x∗ = y∗, then x ∈ X and

‖x‖X = ‖y‖X .Here, x∗ denotes the non-in
reasing, right-
ontinuous rearrangement of x given by
x∗(t) = inf{τ ≥ 0 : n|x|(τ ) ≤ t}, t > 0,where n|x|(τ ) := λ{s ≥ 0 : |x(s)| > τ}.The Köthe dual X× of an r.i. spa
e X on the interval J 
onsists of all measurablefun
tions y for whi
h

‖y‖X× := sup

{
∫

J

x(t)y(t) dt : x ∈ X, ‖x‖X ≤ 1

}

< ∞.If X∗ denotes the Bana
h dual of X, it is known that X× ⊂ X∗ and X× = X∗ if andonly if X is separable. The norm ‖ · ‖X on X is said to be a Fatou norm if the unit ballof X is 
losed in E with respe
t to almost everywhere 
onvergen
e. The norm on the r.i.spa
e X is a Fatou norm if and only if the natural embedding X →֒ X×× of X into itsKöthe bidual is an isometry.



30 S. V. ASTASHKIN AND F. A. SUKOCHEVAn important 
hara
teristi
 of a r.i. spa
e X is the so-
alled fundamental fun
tion
ϕX(t) = ‖1(0,t]‖X , where we denote by 1e the indi
ator fun
tion of a measurable set
e ⊂ [0,∞).Every in
reasing 
on
ave fun
tion ϕ on [0, 1], ϕ(0) = 0, generates the Lorentz spa
e
Λ(ϕ) endowed with the norm

‖x‖Λ(ϕ) =

∫ 1

0

x∗(t)dϕ(t).It is easy to 
he
k that ϕΛ(ϕ)(t) = ϕ(t).We also re
all the de�nition of the (Lorentz) spa
es Lp,q: x ∈ Lp,q if and only if thequasi-norm
‖x‖p,q =











q

p

(
∫ 1

0

(x∗(t)t1/p)q dt

t

)1/q

, q < ∞,

sup x∗(t)t1/p, q = ∞,is �nite. Lp,q-spa
es play a signi�
ant role in the interpolation theory [KPS℄, [LT℄. Theexpression ‖·‖p,q is a norm if 1 ≤ q ≤ p and is equivalent to a (Bana
h) norm if q > p ≥ 1.Let X be a r.i. spa
e on [0, 1]. We shall also work with a r.i. spa
e X(Ω, µ) of r.v.'son a probability spa
e (Ω, µ) given by
X(Ω, µ) := {f ∈ L1(Ω, µ) : f∗ ∈ X}, ‖f‖X(Ω,µ) := ‖f∗‖X .Here, the de
reasing rearrangement f∗ is 
al
ulated with respe
t to the measure µ on Ω.We denote by S(Ω) (= S(Ω, µ)) the linear spa
e of all measurable �nite a.e. fun
tionson a given measure spa
e (Ω, µ) equipped with the topology of 
onvergen
e lo
ally inmeasure.For basi
 properties of rearrangement invariant spa
es, we refer to the monographs[KPS℄, [LT℄.2.2. Interpolation fun
tors. Throughout this paper, we denote by −→

X = (X0, X1) a (
om-patible) Bana
h 
ouple [KPS℄, [LT℄, [BK℄. The sum X0 +X1 and the interse
tion X0∩X1are equipped with the usual norms:
‖x‖X0+X1

= inf{‖x0‖X0
+ ‖x1‖X1

: x = x0 + x1, x0 ∈ X0, x1 ∈ X1},

‖x‖X0∩X1
= max{‖x‖X0

, ‖x‖X1
}.Let −→X = (X0, X1) and X be a Bana
h spa
e su
h that X0 ∩X1 ⊆ X ⊆ X0 + X1. Wesay that X is an interpolation spa
e between X0 and X1 if any bounded linear operator

A : X0 + X1 → X0 + X1 whi
h maps Xi boundedly into Xi (i = 0, 1) also maps Xboundedly into X. The set of all interpolation spa
es between X0 and X1 will be denotedby Int(X0, X1).The K-fun
tional K(t, x;
−→
X ) is de�ned for x ∈ X0 + X1 and t > 0 by setting

K(t, x;
−→
X ) = inf{‖x0‖X0

+ t‖x1‖X1
: x = x0 + x1, x0 ∈ X0, x1 ∈ X1}.Let Φ be a Bana
h latti
e over ((0,∞), dt

t ) satisfying the 
ondition min(1, t) ∈ Φ.Denote by (X0, X1)
K
Φ the set of all elements x ∈ X0 + X1 su
h that K(t, x, X0, X1) ∈ Φendowed with the norm ‖x‖(X0,X1)K

Φ
= ‖K(t, x;

−→
X )‖Φ.



SEQUENCES OF INDEPENDENT IDENTICALLY DISTRIBUTED FUNCTIONS 31It is well known that the map (X0, X1) 7→ (X0, X1)
K
Φ is an interpolation fun
tor (seee.g. [BK, 3.3.12℄). The latter means, in parti
ular, that if −→X = (X0, X1) is a Bana
h
ouple, then the spa
e (X0, X1)

K
Φ ∈ Int(X0, X1). This interpolation method is 
alled the

K-method and the latti
e Φ is 
alled the parameter of the K-method.A 
ouple of Bana
h spa
es −→X = (X0, X1) is said to be a K-monotone 
ouple if thereexists a 
onstant C > 0 su
h that for any x, y ∈ X0 + X1 with K(t, x;
−→
X ) ≤ K(t, y;

−→
X ),

t ∈ (0,∞), there exists a linear operator A : X0 + X1 → X0 + X1 su
h that x = Ay andsu
h that A is bounded in X0 and X1 with maxi=0,1 ‖A‖Xi→Xi
≤ C.2.3. The Kruglov property and the operator K in r.i. spa
es. Let f be a r.v. on [0, 1] andletFf be its distribution fun
tion. By π(f) we denote any r.v. on [0, 1] whose 
hara
teristi
fun
tion is given by

ϕπ(f)(t) = exp

(
∫ ∞

−∞

(eitx − 1)dFf (x)

)

,or, equivalently a r.v. ∑N
i=1 fi, where fi's are independent 
opies of f and N is a Poissonrandom variable with parameter 1 independent of the sequen
e {fi}.Definition. An r.i. spa
e X is said to have the Kruglov property (we write: X ∈ K) ifand only if f ∈ X ⇔ π(f) ∈ X.This property has been studied and extensively used by M. Sh. Braverman [Br℄, whonoted, in parti
ular, that only the impli
ation f ∈ X ⇒ π(f) ∈ X is non-trivial, sin
ethe impli
ation π(f) ∈ X ⇒ f ∈ X is always satis�ed [Br, p. 11℄. Note that an r.i. spa
e

X ∈ K if X ⊇ Lp for some p < ∞ [Br, Theorem 2, p. 16℄. Moreover, Kruglov's theorem[K℄ gives that exponential Orli
z spa
es LNp
, where Np(u) is equivalent to the fun
tion

eup

− 1 for su�
iently large u > 0, also possess this property if 0 < p ≤ 1.In [AS2℄ (see also [AS1℄) we de�ned the operator K on S([0, 1], λ) whi
h is 
loselylinked with the Kruglov property. From a te
hni
al viewpoint, it is more 
onvenient toassume that this operator takes its values in S(Ω,P) , where (Ω,P) :=
∏∞

k=0([0, 1], λk)(here, λk is Lebesgue measure on [0, 1] for every k ≥ 0). Let {En} be a sequen
e ofpairwise disjoint subsets of [0, 1], m(En) = 1
e·n! , n ∈ N. For a given f ∈ S([0, 1], λ), weset

Kf(ω0, ω1, ω2, . . . ) :=
∞
∑

n=1

n
∑

k=1

f(ωk)χEn
(ω0).Let also δ : (Ω,P) → ([0, 1], λ) be a measure preserving isomorphism. For every g ∈

S(Ω,P), we set T (g)(x) := g(δ−1x), x ∈ [0, 1]. Note that T is a rearrangement-preservingmapping between S(Ω,P) and S([0, 1], λ). So, the distribution fun
tion of TKf is thesame as the distribution fun
tion of Kf. The operator TK a
ts on S([0, 1], λ) and, by anabuse of language, we shall refer to the latter operator as K.It is important to note that the operator K (= TK) maps an r.i. spa
e X boundedlyinto itself if and only if X has the Kruglov property [AS2, Lemma 3.3℄. In [AS2℄, thea
tion of the linear operator K on various 
lasses of r.i. spa
es is studied. In [AS3℄,we have studied series of independent mean zero r.v.'s in r.i. spa
es with the Kruglovproperty.



32 S. V. ASTASHKIN AND F. A. SUKOCHEV3. Results and proofs. Our main results are the following.Theorem 3.1. If X is a r.i. spa
e on [0, 1] su
h that X ∈ Int(L2, L∞) and either(i) K : X → X, or(ii) X has Fatou norm and K : X → X××,then there exists c > 0 su
h that for any i.i.d. mean zero sequen
e {fk}
∞
k=1 ⊂ X and forevery a = (ak)∞k=1 ∈ l2, the following inequality holds:

∥

∥

∥

∞
∑

k=1

akfk

∥

∥

∥

X
≤ c‖f1‖X‖a‖2. (3.1)Proof. For any given a = (ak)∞k=1 ∈ l2, we de�ne a linear operator Ta : S(0, 1) → S(0,∞)by setting

Taf(t) =

∞
∑

k=1

akf(t − k + 1)1(k−1,k](t).Noting, that for every f ∈ L2 (respe
tively, f ∈ L∞) we have
‖Taf‖2 =

( ∞
∑

k=1

a2
k

∫ k

k−1

f2(t − k + 1)dt

)1/2

= ‖a‖2‖f‖2(respe
tively, ‖Taf‖∞ = sup
k

|ak|‖f‖∞ ≤ ‖a‖2‖f‖∞)

(3.2)
we 
on
lude that Ta a
ts boundedly from L2(0, 1) into Z2

L2
(= L2(0,∞)) (respe
tively,from L∞(0, 1) into L∞(0,∞)). Combining the inequality

‖g‖Z2
L∞

≤ 2‖g‖L∞(0,∞)∩L2(0,∞)(in fa
t, Z2
L∞

= L∞(0,∞) ∩ L2(0,∞)) with (3.2), we obtain:
‖Taf‖Z2

L∞

≤ 2‖a‖2‖f‖∞, ∀f ∈ L∞(0, 1), (3.3)i.e. Ta a
ts boundedly from L∞(0, 1) into Z2
L∞

. In order to �interpolate� inequalities (3.2)and (3.3) and extend them to an arbitrary r.i. spa
e X ∈ Int(L2, L∞), we will need thefollowing auxiliary lemmas, the �rst of them is proved in [A, Lemma 4℄.Lemma 3.2. For any Bana
h 
ouple (X0, X1) and an arbitrary parameter Φ of the
K-method the following equality holds:

(X0, X0 ∩ X1)
K
Φ = (X0, X1)

K
Φ ∩ X0.Sin
e the 
ouple (L2, L∞) is K-monotone [LS℄ and sin
e X ∈ Int(L2, L∞), we haveby [BK, Theorem 3.3.20℄ that there exists a parameter Φ of the K-method su
h that

X = (L2, L∞)K
Φ . (3.4)Lemma 3.3. If the parameter Φ is su
h that (3.4) holds, then

Z2
X(0,∞) = (L2(0,∞), L∞(0,∞))K

Φ ∩ L2(0,∞)up to norm equivalen
e.Proof. Set
V := (L2(0,∞), L∞(0,∞))K

Φ and W := V ∩ L2(0,∞).



SEQUENCES OF INDEPENDENT IDENTICALLY DISTRIBUTED FUNCTIONS 33The proje
tion Pf(t) = f1[0,1](t), f ∈ S(0,∞) a
ts from Lp(0,∞) onto Lp with norm 1,for every 1 ≤ p ≤ ∞. Hen
e, for every f ∈ W , we have ‖f‖W ≥ ‖f∗
1[0,1]‖V = ‖f∗

1[0,1]‖X .This yields immediately ‖f‖W ≥ 2−1‖f‖Z2
X
.In order to prove the 
onverse inequality, we note �rst that X ⊂ L2 (by assumption)and so for some c ≥ 1, we have ‖f‖2 ≤ c‖f‖X , ∀f ∈ X. Hen
e,

‖f‖L2(0,∞) ≤ c‖f∗
1[0,1]‖X + ‖f∗

1[1,∞)‖L2
≤ c‖f‖Z2

Xand
‖f‖V ≤ ‖f∗

1[0,1]‖X + ‖f∗
1[1,∞)‖(L2∩L∞)(0,∞)

≤ ‖f∗
1[0,1]‖X + f∗(1) + ‖f∗

1[1,∞)‖L2(1,∞)

≤ (1 + ‖1[0,1]‖
−1
X )‖f∗

1[0,1]‖X + ‖f∗
1[1,∞)‖L2(1,∞)

≤ (1 + ϕX(1)
−1

)‖f‖Z2
X

,where ϕX(u) is the fundamental fun
tion of X. Finally, we have
‖f‖W ≤ max(c, 1 + ϕX(1)−1)‖f‖Z2

Xand the lemma is proved.We 
ontinue the proof of Theorem 3.1. Combining (3.2), (3.3) and Lemmas 3.2 and3.3, we see that there exists c1 > 0 depending only on the spa
e X su
h that
‖Taf‖Z2

X
≤ c1‖a‖2‖f‖X , ∀f ∈ X, a ∈ l2. (3.5)On the other hand, the assumptions on the spa
e X made in Theorem 3.1 allow us touse [AS3, Theorem 1℄. In parti
ular, for any sequen
e {fk}

n
k=1 ⊂ X of i.i.d. mean zeror.v.'s and for any n ∈ N, we have

∥

∥

∥

n
∑

k=1

akfk

∥

∥

∥

X
≤ c2

∥

∥

∥

n
∑

k=1

akf̄k

∥

∥

∥

Z2
X

, ∀a1, a2, . . . , an ∈ R. (3.6)Sin
e the fun
tions fk, k = 1, 2 . . . are identi
ally distributed the same holds also for thefun
tions ∑n
k=1akf̄k and Tanf1, where an = (an

k), an
k = ak (k ≤ n) and an

k = 0 (k > n).So (3.5) and (3.6) yield the following inequality
∥

∥

∥

n
∑

k=1

akfk

∥

∥

∥

X
≤ c1c2‖f1‖X‖a‖2, n = 1, 2, . . . .Sin
e the last inequality is equivalent to (3.1), the theorem is proved.The 
ondition that (1.1) holds for an arbitrary sequen
e {fk}

∞
k=1 ⊂ X of i.i.d. meanzero r.v.'s is formally weaker than the assertion of of Theorem 3.1. Nevertheless, thefollowing result holds.Theorem 3.4. Let X be a r.i. spa
e on [0, 1]. Any sequen
e {fk}
∞
k=1 ⊂ X of i.i.d. meanzero r.v.'s spans a Hilbertian subspa
e in X if and only if the inequality (3.1) holds forany su
h sequen
e and some 
onstant c > 0, whi
h depends only on X.Proof. We only need to show that if X is a r.i. spa
e su
h that any sequen
e {fk}

∞
k=1 ⊂ Xof i.i.d. mean zero r.v.'s spans a Hilbertian subspa
e in X, then we have the inequality(3.1). Following [N℄, we de�ne the set A(X) of all sequen
es a = (ak)∞k=1 su
h that the



34 S. V. ASTASHKIN AND F. A. SUKOCHEVseries ∑∞
k=1akfk 
onverges in X for any sequen
e {fk}

∞
k=1 ⊂ X of i.i.d. mean zero r.v.'s.Note that the set X0 := {f ∈ X :

∫ 1

0
f(x)dx = 0} is a 
losed subspa
e in X.For any a = (ak)∞k=1 ∈ A(X), we de�ne a linear operator Tn

a : X0 → X(Ω, µ) bysetting
Tn

a f(ω1, ω2, . . .) =
n

∑

k=1

akf(ωk), n ∈ N.Here, Ω = [0, 1]∞ and µ =
∏∞

k=1λk. Sin
e ‖Tn
a f‖X(Ω,µ) ≤

∑n
k=1|ak|‖f‖X , the operator

Tn
a is bounded for every n ∈ N. Moreover, by the de�nition of A(X) we have

sup
n

‖Tn
a f‖X(Ω,µ) < ∞, ∀f ∈ X0.Therefore, applying the Bana
h-Steinhaus prin
iple, we obtain

sup
f∈X0,‖f‖X≤1

sup
n∈N

∥

∥

∥

n
∑

k=1

akf(ωk)
∥

∥

∥

X(Ω,µ)

< ∞for all a ∈ A(X), or equivalently
sup

{fk}∞

k=1,‖f1‖X≤1

∥

∥

∥

∞
∑

k=1

akfk

∥

∥

∥

X
< ∞, (3.7)where {fk}

n
k=1 is an arbitrary i.i.d. mean zero sequen
e of r.v.'s from X. Now, if wede�ne ‖a‖A(X) to be equal to the supremum in (3.7), then

∥

∥

∥

∞
∑

k=1

akfk

∥

∥

∥

X
≤ ‖a‖A(X)‖f1‖X . (3.8)Using standard arguments it is not hard to show that (A(X), ‖ · ‖A(X)) is a Bana
hspa
e. Moreover, it is easy to see that 
onvergen
e in A(X) implies pointwise 
onvergen
e.Applying the Closed Graph Theorem, we may 
on
lude that the embedding l2 ⊆ A(X)given by the assumption on of the theorem is 
ontinuous, in other words, ‖a‖A(X) ≤ c‖a‖2

(∀a ∈ l2). Now, inequality (3.1) follows dire
tly from (3.8). The theorem is proved.Corollary 3.5. Let X be a r.i. spa
e on [0, 1] su
h that inequality (1.1) holds for anysequen
e {fk}
∞
k=1 ⊂ X of i.i.d. mean zero r.v.'s. Then there exists c > 0 su
h thatfor any n ∈ N, any sequen
e of disjointly supported and identi
ally distributed fun
tions

{gk}
n
k=1 ∈ X, ‖g1‖X = 1 and any ak ∈ R, k = 1, 2, . . . , n the following inequality holds:

∥

∥

∥

n
∑

k=1

akgk

∥

∥

∥

X
≤ c

(

n
∑

k=1

a2
k

)1/2

. (3.9)In parti
ular,
∥

∥

∥

n
∑

k=1

ak1[ k−1
n

, k
n

]

∥

∥

∥

X
≤ cϕX(1/n)

(

n
∑

k=1

a2
k

)1/2

, (3.10)where ϕX is the fundamental fun
tion of the r.i. spa
e X.Proof. It is easy to see that there are sets {g+
k }n

k=1 and {g−k }n
k=1 of identi
ally distributedr.v.'s su
h that |gk| = g+

k + g−k , g+
k g−k = 0 and ∫ 1

0
g+

k (x)dx =
∫ 1

0
g−k (x)dx for any k =

1, 2, . . . , n. Setting g′k = g+
k − g−k , k = 1, 2, . . . , n we obtain an identi
ally distributed
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e of mean zero r.v.'s. Let {fk}
n
k=1 be a sequen
e of independent 
opies of g′k. Wehave ‖f1‖X = ‖g′1‖X = ‖g1‖X = 1, and by Theorem 3.4

∥

∥

∥

n
∑

k=1

akfk

∥

∥

∥

X
≤ c

(

n
∑

k=1

a2
k

)1/2

, ∀a1, a2, . . . , an ∈ R, (3.11)with some 
onstant c > 0 independent of {gk}
n
k=1. We now note that the proof of theleft hand side inequality (3) in by [JS, Theorem 1℄ does not use the assumption that anembedding Lp ⊆ X holds for some p < ∞ (see also [Br, Lemma 5, p.14-15℄). Therefore,applying this inequality to the sequen
e {fk}

n
k=1 of i.i.d. mean zero r.v.'s, we have

∥

∥

∥

n
∑

k=1

akfk

∥

∥

∥

X
≥

1

4

∥

∥

∥

n
∑

k=1

akg′k

∥

∥

∥

X
=

1

4

∥

∥

∥

n
∑

k=1

akgk

∥

∥

∥

X
. (3.12)Inequality (3.9) follows from (3.11) and (3.12), and inequality (3.10) is a 
onsequen
eof (3.9).Corollary 3.6. If a r.i. spa
e X $ L2 and ϕX(u) = u1/2, then there exists an i.i.d.mean zero sequen
e {fk}

∞
k=1 ⊂ X spanning a subspa
e in X whi
h is not isomorphi
 to l2.Proof. If every i.i.d. mean zero sequen
e of r.v.'s {fk}

∞
k=1 ⊂ X spans a subspa
e isomor-phi
 to l2, then by the pre
eding 
orollary, the inequality (3.10) would hold. In this 
ase(3.10) may be equivalently re-written as

∥

∥

∥

n
∑

k=1

ak1[ k−1
n

, k
n

]

∥

∥

∥

X
≤ c

∥

∥

∥

n
∑

k=1

ak1[ k−1
n

, k
n

]

∥

∥

∥

L2for any n ∈ N and any ak ∈ R, k = 1, 2, . . . , n. This immediately yields that L2 ⊆ X,and invoking the assumption, we 
on
lude that X = L2, whi
h is not the 
ase, sin
e bythe same assumption X 6= L2. The 
orollary is proved.Remark 3.7. In parti
ular, if X = L2,q, 1 ≤ q < 2, then it follows from Corollary 3.6that there exists an i.i.d. mean zero sequen
e {fk}
∞
k=1 ⊂ L2,q spanning a subspa
e in

L2,q whi
h is not isomorphi
 to l2. This answers in the negative a question from [CD,p. 157℄. The same answer was earlier stated in [N℄; however, the proof there is in
omplete.Similarly, the same example also demonstrates that the 
onditions (a)�(
) on a r.i. spa
e
X stated in the Introdu
tion are not su�
ient to guarantee that (1.1) holds for everyi.i.d. mean zero sequen
e {fk}

∞
k=1 ⊂ X of r.v.'s. This answers in the negative a questionin [Br, p. 71℄.Corollary 3.8. If a r.i. spa
e X has a Fatou norm, X $ L2 and ϕX(u) = u1/2, then

X /∈ Int(L2, L∞). In parti
ular, L2,q /∈ Int(L2, L∞) for every 1 ≤ q < 2.Proof. Sin
e X ⊃ L2,1 ⊃ Lr, r > 2, then by [AS2, Corollary 5.4℄, the operator K :

X → X×× is bounded. Therefore, if X ∈ Int(L2, L∞) then, by Theorem 3.4, every i.i.d.mean zero sequen
e {fk}
∞
k=1 ⊂ X of r.v.'s would span a Hilbertian subspa
e in X. This
ontradi
ts the assertion of Corollary 3.6.Remark 3.9. A proof of a similar result to that of the pre
eding 
orollary by a di�erentmethod may be found also in [MM, Theorem 5℄.



36 S. V. ASTASHKIN AND F. A. SUKOCHEVCorollary 3.10. Let ϕ be an in
reasing and 
on
ave fun
tion on [0, 1] su
h that t
1
2 ≤

C1 · ϕ(t), 0 < t ≤ 1 and
∞
∑

k=1

ϕ

(

tk

k!

)

≤ C2ϕ(t), 0 < t < 1, (3.13)for some 
onstants C1 and C2. Then every i.i.d. mean zero sequen
e of r.v.'s from theLorentz spa
e Λ(ϕ) spans in Λ(ϕ) a Hilbertian subspa
e if and only if there exists a
onstant C3 > 0 su
h that
( n

∑

k=1

(

ϕ

(

k

n

)

− ϕ

(

k − 1

n

))2)1/2

≤ C3ϕ

(

1

n

)

, n ∈ N. (3.14)Proof. First, we suppose that every i.i.d. mean zero sequen
e of r.v.'s from the Lorentzspa
e Λ(ϕ) spans in Λ(ϕ) a Hilbertian subspa
e. By the de�nition of the norm in theLorentz spa
e Λ(ϕ), we have
∥

∥

∥

n
∑

k=1

ak1[ k−1
n

, k
n

]

∥

∥

∥

Λ(ϕ)
=

n
∑

k=1

a∗
k

(

ϕ

(

k

n

)

− ϕ

(

k − 1

n

))

,where {a∗
k}

n
k=1 is the de
reasing rearrangement of the sequen
e {|ak|}

n
k=1. Thus, it followsfrom (3.10) that

n
∑

k=1

a∗
k

(

ϕ

(

k

n

)

− ϕ

(

k − 1

n

))

≤ cϕ

(

1

n

)

(

n
∑

k=1

a2
k

)1/2

for any n ∈ N and ak ∈ R, k = 1, 2, . . . , n. It is obvious that the last inequality isequivalent to (3.14).Conversely, suppose that (3.14) holds. Sin
e (3.13) means that the operator K sends
Λ(ϕ) into itself [AS2, Theorem 5.1℄, it follows from the proof of Theorem 3.1 that it issu�
ient to verify that for every sequen
e a = (ak)∞k=1 ∈ l2, the operator

Taf(t) =

∞
∑

k=1

akf(t − k + 1)1(k−1,k](t)is bounded from Λ(ϕ) into Z2
Λ(ϕ). Fix n ∈ N. By the assumption and (3.14), we have

‖Ta1[0, 1
n

]‖Z2
Λ(ϕ)

=
∥

∥

∥

n
∑

k=1

a∗
k1( k−1

n
, k

n
]

∥

∥

∥

Λ(ϕ)
+

∥

∥

∥

∞
∑

k=n+1

a∗
k1( k−1

n
, k

n
]

∥

∥

∥

L2(1,∞)

=

n
∑

k=1

a∗
k

(

ϕ

(

k

n

)

− ϕ

(

k − 1

n

))

+

(

1

n

∞
∑

k=n+1

(a∗
k)2

)
1
2

≤ C3ϕ

(

1

n

)

(

n
∑

k=1

(a∗
k)2

)
1
2

+ C1ϕ

(

1

n

)

(

∞
∑

k=n+1

(a∗
k)2

)
1
2

≤ (C1 + C3)ϕ

(

1

n

)

‖a‖l2 .If h ∈ (0, 1), then there exists n ∈ N su
h that (n+ 1)−1 < h ≤ n−1. Using the argument
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‖Ta1[0,h]‖Z2

Λ(ϕ)
≤ ‖Ta1[0, 1

n
]‖Z2

Λ(ϕ)

≤ (C1 + C3)ϕ
( 1

n

)

‖a‖l2 ≤ 2(C1 + C3)ϕ(h)‖a‖l2 .Combining this inequality with Corollary 1 to Lemma II.5.2 in [KPS℄, we see that Ta a
tsboundedly from Λ(ϕ) into Z2
Λ(ϕ) with the norm less or equal to 4(C1 + C3)‖a‖l2 .
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