FUNCTION SPACES VIII BANACH CENTER PUBLICATIONS, VOLUME 79 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2008

AN OPERATOR CHARACTERIZATION OF L^p-SPACES IN A CLASS OF ORLICZ SPACES

MACIEJ BURNECKI

Institute of Mathematics and Computer Science, Wrocław University of Technology Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland E-mail: mburn@im.pwr.wroc.pl

Abstract. We consider an embedding of the group of invertible transformations of [0, 1] into the algebra of bounded linear operators on an Orlicz space. We show that if this embedding preserves the group action then the Orlicz space is an L^p -space for some $1 \le p < \infty$.

1. Introduction. Let us denote the Lebesgue measure on the σ -algebra of Borel subsets of [0,1] by m. We call a Borel mesurable function $\tau : [0,1] \to [0,1]$ a transformation if it is nonsingular, that is, if m(A) = 0 implies $m(\tau^{-1}(A)) = 0$. Transformations equal almost everywhere are identified. A transformation is called invertible if it is injective, onto [0,1]and its inverse, which is Borel measurable (see [4], § 39, V, Theorem 1), is nonsingular. We denote by G the group of all invertible transformations.

Let $\phi : [0, \infty) \to [0, \infty)$ be convex, $\phi(x) = 0$ iff x = 0, and let ϕ satisfy the condition Δ' globally (which means that there exists c > 0 such that $\phi(xy) \le c\phi(x)\phi(y)$ for x, y > 0). It is shown in [2], Proposition 2.1, that if $\tau \in G$ and ω_{τ} stands for the Radon–Nikodym derivative of the measure $m \circ \tau^{-1}$ with respect to m then the formula

$$T_{\tau}^{(\phi)}(f) = (f \circ \tau^{-1})(\phi^{-1} \circ \omega_{\tau})$$

defines a bounded linear operator $T_{\tau}^{(\phi)}$ on the Orlicz space $L^{\phi}(m)$ (for information on Orlicz spaces see, for example, [5]). This is a generalization of a similar formula for L^{p} -spaces (compare [3], § 5).

If $\phi(x) = \lambda x^p$ for $x \in [0, \infty)$, where $\lambda > 0$ and $p \ge 1$ (the case of $(L^p(m), \lambda || \cdot ||_p)$), then the embedding $\tau \mapsto T_{\tau}^{(\phi)}$ of G into $\mathcal{L}(L^{\phi}(m))$ preserves the group action with constant λ . This is a consequence of the formulas given at the beginning of the proof below. The embedding in question need not preserve the group action for Orlicz spaces in general

²⁰⁰⁰ Mathematics Subject Classification: Primary 46E30; Secondary 47B37.

Key words and phrases: measurable transformation, L^p -space, Orlicz space, bounded linear operator.

The paper is in final form and no version of it will be published elsewhere.

(for an example see [2], Remark 2.3.4). We are going to show that the preservation of the group action characterizes, in fact, L^p -spaces.

2. The characterization. We write χ_X for the characteristic function of a subset X of [0,1]. As usual, the set of non-negative integers is denoted by \mathbb{N} . The symbol $|\overline{PQ}|$ stands for the length of the interval \overline{PQ} , where $P, Q \in \mathbb{R}^2$.

Let $p_n, q_n \in (0, \infty)$ be chosen so that the set $\{(p_n, q_n) : n \in \mathbb{N}\}$ is dense in $(0, \infty)^2$. Choose $P_n = (x_n, y_n)$, $Q_n = (y_n, z_n)$ in $[0, 1]^2$ with the following properties:

- (a) $P_0 = Q_0 = (0, 0),$
- (b) $0 < |\overline{P_n P_{n+1}}| \le 1/2^{n+1}$ and $0 < |\overline{Q_n Q_{n+1}}| \le 1/2^{n+1}$ for $n \in \mathbb{N}$,
- (c) $\tan \triangleleft (OX, \overline{P_n P_{n+1}}) = p_n$ and $\tan \triangleleft (OX, \overline{Q_n Q_{n+1}}) = q_n$ for $n \in \mathbb{N}$.

Set $\alpha_{\infty} = \lim_{n \to \infty} \alpha_n$ for a convergent sequence (α_n) in \mathbb{R} or in \mathbb{R}^2 .

Define $\pi, \rho: [0,1] \to [0,1]$ by the following conditions:

- 1. the graph of π^{-1} consists of the intervals $\overline{P_n P_{n+1}}$ and of the interval $\overline{P_{\infty}(1,1)}$,
- 2. the graph of ρ^{-1} consists of the intervals $\overline{Q_n Q_{n+1}}$ and of the interval $\overline{Q_{\infty}(1,1)}$.

Clearly, $\pi, \rho \in G$.

LEMMA. Let π, ρ be as defined above and $0 < \lambda < \infty$. If $\phi : [0, \infty) \to [0, \infty)$ is convex, $\phi(x) = 0$ iff x = 0, and ϕ satisfies the condition Δ' globally then the following two conditions are equivalent:

- 1. $T_{\pi \circ \rho}^{(\phi)}(\chi_{[0,1]}) = \lambda T_{\pi}^{(\phi)} \circ T_{\rho}^{(\phi)}(\chi_{[0,1]});$ 2. there exists $1 \le p < \infty$ such that $\phi(x) = \lambda x^p$ for $x \in [0,\infty).$

Proof. We show that (1) implies (2). For $f \in L^{\phi}(m)$ and arbitrary $\tau, \sigma \in G$ we have

$$T_{\tau\circ\sigma}^{(\phi)}(f) = (f\circ\sigma^{-1}\circ\tau^{-1})\phi^{-1}\circ((\omega_{\sigma}\circ\tau^{-1})\omega_{\tau}),$$

$$T_{\tau}^{(\phi)}\circ T_{\sigma}^{(\phi)}(f) = (f\circ\sigma^{-1}\circ\tau^{-1})(\phi^{-1}\circ\omega_{\sigma}\circ\tau^{-1})(\phi^{-1}\circ\omega_{\tau}).$$

Hence

$$T^{(\phi)}_{\tau\circ\sigma}(\chi_{[0,1]}) = \phi^{-1} \circ ((\omega_{\sigma} \circ \tau^{-1})\omega_{\tau})$$

and

$$T_{\tau}^{(\phi)} \circ T_{\sigma}^{(\phi)}(\chi_{[0,1]}) = (\phi^{-1} \circ \omega_{\sigma} \circ \tau^{-1})(\phi^{-1} \circ \omega_{\tau}).$$

Let now $\tau = \pi$ and $\sigma = \rho$. We obtain

$$T_{\pi \circ \rho}^{(\phi)}\left(\chi_{[0,1]}\right) = \sum_{n=0}^{\infty} \chi_{(x_n, x_{n+1})} \phi^{-1}(p_n q_n) + a \chi_{(x_\infty, 1)}$$

and

$$\lambda T_{\pi}^{(\phi)} \circ T_{\rho}^{(\phi)} \left(\chi_{[0,1]} \right) = \lambda \sum_{n=0}^{\infty} \chi_{(x_n, x_{n+1})} \phi^{-1}(p_n) \phi^{-1}(q_n) + b \chi_{(x_{\infty}, 1)}$$

for some $a, b \in \mathbb{R}$. This gives

$$\phi^{-1}(p_n q_n) = \lambda \phi^{-1}(p_n) \phi^{-1}(q_n)$$

for every $n \in \mathbb{N}$.

Since $\{(p_n, q_n) : n \in \mathbb{N}\}$ is dense in $(0, \infty)^2$ and ϕ is continuous and increasing, there exists $0 such that <math>\phi^{-1}(t) = t^{1/p}/\lambda$ for $t \in (0, \infty)$ (compare [1], 2.1.2). By the convexity of ϕ , we have $1 \le p < \infty$.

In particular, when $\lambda = 1$ and all invertible transformations are considered, we obtain the following theorem.

THEOREM. Let $\phi : [0, \infty) \to [0, \infty)$ be convex, $\phi(x) = 0$ iff x = 0, and let ϕ satisfy the condition Δ' globally. Then the following two conditions are equivalent:

- 1. the embedding $\tau \mapsto T_{\tau}^{(\phi)}$ of G into $\mathcal{L}(L^{\phi}(m))$ preserves the group action (with constant 1);
- 2. there exists $1 \le p < \infty$ such that $\phi(x) = x^p$ for $x \in [0, \infty)$.

Acknowledgments. The author whould like to thank Professor Zbigniew Lipecki for many helpful remarks which have improved the text significantly.

References

- [1] J. Aczel, Vorlesungen über Funktionalgleichungen und ihre Anwendungen, Berlin, 1961.
- M. Burnecki, Invertible transformations acting on Orlicz spaces, Arch. Math. (Basel) 70 (1998), 319–330.
- [3] J. R. Choksi and S. Kakutani, Residuality of ergodic measurable transformations and of ergodic transformations which preserve an infinite measure, Indiana Univ. Math. J. 28 (1979), 453-469.
- [4] K. Kuratowski, *Topology*, Vol. 1, PWN, Warszawa, 1966.
- [5] M. M. Rao and Z. D. Ren, *Theory of Orlicz Spaces*, Marcel Dekker, New York, 1991.