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Abstract. The sub-Laplacian on the Heisenberg group is first decomposed into twisted Lapla-

cians parametrized by Planck’s constant. Using Fourier–Wigner transforms so parametrized, we

prove that the twisted Laplacians are globally hypoelliptic in the setting of tempered distri-

butions. This result on global hypoellipticity is then used to obtain Liouville’s theorems for

harmonic functions for the sub-Laplacian on the Heisenberg group.

1. The sub-Laplacian on the Heisenberg group. The aim of this paper is to study
the growth properties of harmonic functions for the sub-Laplacian L on the Heisenberg
group H. The main results are seen in the perspective of Liouville’s theorems for the
sub-Laplacian L on the Heisenberg group H. We first decompose the sub-Laplacian L
into a family of twisted Laplacians Lτ on C, τ ∈ R \ {0}. Then using τ -Fourier–Wigner
transforms of τ -Hermite functions that we define in Section 3, we give formulas for the
heat kernel and Green function of the twisted Laplacian Lτ for every τ in R \ {0}. These
formulas are analogues of the ones for L1, which can be found in [15]. The Green function
of Lτ is then used to prove that Lτ is globally hypoelliptic in the setting of tempered
distributions as in [15]. Using the global hypoellipticity of Lτ for every τ in R \ {0}, the
main results on the growth properties of harmonic functions for the sub-Laplacian L can
be established easily.

Basic information on the classical Fourier–Wigner transforms can be found in [12]
among others.
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In Section 2, we show how to transform the sub-Laplacian L to a family of twisted
Laplacians Lτ on C parametrized by τ in R\{0}. This has the advantage of reducing the
number of independent variables of the sub-Laplacian from three to two and can be seen
as a method of descent and the parameter can be looked at as Planck’s constant. The
τ -Fourier–Wigner transforms of τ -Hermite functions are developed in Section 3, which
can then be used in Section 4 to construct the heat kernel of Lτ . The Green function
of Lτ is constructed in Section 5, which is used to show that Lτ is globally hypoelliptic
in the setting of tempered distributions. Liouville’s theorems for the sub-Laplacian L on
the Heisenberg group H are given in Section 6.

In an attempt to make the paper as self-contained and accessible as possible, we first
recall the basic formulas and notions pertaining to the sub-Laplacian on the Heisenberg
group. If we identify R2 with the complex plane C via the obvious identification

R2 3 (x, y)↔ z = x+ iy ∈ C,

and we let
H = C× R,

then H becomes a non-commutative group when equipped with the multiplication · given
by

(z, t) · (w, s) =
(
z + w, t+ s+

1
4

[z, w]
)
, (z, t), (w, s) ∈ H,

where [z, w] is the symplectic form of z and w defined by

[z, w] = 2 Im(zw).

Let h be the Lie algebra of left-invariant vector fields on H. Then a basis for h is given
by X, Y and T , where

X =
∂

∂x
+

1
2
y
∂

∂t
,

Y =
∂

∂y
− 1

2
x
∂

∂t
,

and

T =
∂

∂t
.

The sub-Laplacian L on H is defined by

L = −(X2 + Y 2).

A simple computation gives

L = −∆− 1
4

(x2 + y2)
∂2

∂t2
+
(
x
∂

∂y
− y ∂

∂x

)
∂

∂t
, (1)

where

∆ =
∂2

∂x2
+

∂2

∂y2
.

Details on the Heisenberg group H and the sub-Laplacian L can be found in [1, 10, 11].
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Since the symbol σ(L) of L is given by

σ(L)(x, y, t; ξ, η, τ) =
(
ξ +

1
2
yτ

)2

+
(
η − 1

2
xτ

)2

for all (x, y, t) and (ξ, η, τ) in R3, it is easy to see that L is a nowhere elliptic partial
differential operator on R3. Since

[X,Y ] = T,

it follows from a well-known result of Hörmander in [7] that L is hypoelliptic. It is worth
pointing out in this connection that the bracket generating hypothesis in Hörmander’s
theorem is exactly the same as the hypothesis in Chow’s connectivity theorem in [4],
which in the setting of the Heisenberg group H tells us that any two points in H can be
connected by a horizontal smooth curve c, i.e., the vector field ċ lies in the span of the
so-called horizontal vector fields X and Y on H. Details can be found in [3].

A function u on H is said to be harmonic for the sub-Laplacian L if

(Lu)(z, t) = 0, (z, t) ∈ H.

2. Twisted Laplacians. Let ∂
∂z and ∂

∂z be partial differential operators on R2 given by

∂

∂z
=

∂

∂x
− i ∂

∂y

and
∂

∂z
=

∂

∂x
+ i

∂

∂y
.

Let τ ∈ R \ {0}. Then we define the partial differential operators Zτ and Zτ by

Zτ =
∂

∂z
+

1
2
τz, z = x− iy,

and

Zτ =
∂

∂z
− 1

2
τz, z = x+ iy.

The partial differential operators Zτ and Zτ , and the identity operator I form a basis for
a Lie algebra in which the Lie bracket of two elements is their commutator. In fact, −Zτ
is the formal adjoint of Zτ . Let Lτ be the partial differential operator on R2 defined by

Lτ = −1
2

(ZτZτ + ZτZτ ).

Then Lτ is an elliptic partial differential operator on R2 given by

Lτ = −∆ +
1
4

(x2 + y2)τ2 − i
(
x
∂

∂y
− y ∂

∂x

)
τ. (2)

Thus, Lτ is the ordinary Hermite operator −∆ + 1
4 (x2 + y2)τ2 perturbed by the partial

differential operator −iNτ , where

N = x
∂

∂y
− y ∂

∂x

is the rotation operator. As such, we call Lτ the twisted Laplacian. If τ = 1, then we
recover the twisted Laplacian studied in detail in [5, 13, 14, 15].
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For every τ in R \ {0}, the twisted Laplacian Lτ can be written as

Lτ =
(
Dx −

1
2
τy

)2

+
(
Dy +

1
2
τx

)2

.

Its symbol σ(Lτ ) is given by

σ(Lτ )(x, y; ξ, η) =
(
ξ − 1

2
τy

)2

+
(
η +

1
2
τx

)2

for all (x, y) and (ξ, η) in R2. Thus, Lτ is elliptic, but not globally elliptic. It is not
even globally elliptic in the sense defined in Section 25 of [9]. The globally hypoellipticity
in the setting of tempered distributions of Lτ is made precise in Section 5 and is a
consequence of the estimates on the Green function Gτ of Lτ . Detailed discussions on
global hypoellipticity of pseudo-differential operators can be found on page 70 of the book
[2] and also in the paper [8].

Let τ ∈ R. Then we define for all every function f in L1(H), the function fτ on C by

fτ (z) = (2π)−1/2

∫ ∞
−∞

eitτf(z, t) dt, z ∈ C,

provided that the integral exists. fτ (z) is in fact the inverse Fourier transform of f(z, t)
with respect to t evaluated at τ. It is to be noted that the Fourier transform F̂ of a
function F in L1(Rn) is defined by

F̂ (ξ) = (2π)−n/2
∫

Rn
e−ix·ξF (x) dx, ξ ∈ Rn.

Let u be a tempered distribution on H = C×R such that u is equal to a C∞ function
on C× R and ǔ(z, τ) is a tempered function of τ on R for each fixed z in C, where ǔ is
the inverse Fourier transform of u with respect to the “second” variable t. For almost all
τ in R, we define uτ on C by

uτ (z) = ǔ(z, τ), z ∈ C.

Then the fundamental connection between the twisted Laplacians Lτ , τ ∈ R \ {0}, and
the sub-Laplacian L is given by

(Lu)τ = Lτu
τ (3)

for almost all τ in R \ {0}. The equation (2.2) follows from the most basic properties of
Fourier transforms and tempered distributions.

3. τ-Fourier–Wigner transforms of τ-Hermite functions. Let f and g be functions
in the Schwartz space S(R) on R. Then for τ in R \ {0}, the τ -Fourier–Wigner transform
Vτ (f, g) of f and g is defined by

Vτ (f, g)(q, p) = (2π)−1/2|τ |1/2
∫ ∞
−∞

eiτqyf

(
y +

p

2

)
g

(
y − p

2

)
dy

for all q and p in R. In fact,

Vτ (f, g)(q, p) = |τ |1/2V (f, g)(τq, p), q, p ∈ R,

where V (f, g) is the classical Fourier–Wigner transform of f and g.
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For τ ∈ R \ {0} and for k = 0, 1, 2, . . . , we define ek,τ to be the function on R by

ek,τ (x) = |τ |1/4ek(
√
|τ |x), x ∈ R.

For j, k = 0, 1, 2, . . . , we define ej,k,τ on R2 by

ej,k,τ = Vτ (ej,τ , ek,τ ).

The connection between {ej,k,τ : j, k = 0, 1, 2, . . . } and {ej,k : j, k = 0, 1, 2, . . . }
studied in [15] is given by the following formula.

Theorem 3.1. For τ ∈ R \ {0} and for j, k = 0, 1, 2, . . . ,

ej,k,τ (q, p) = |τ |1/2ej,k
(

τ√
|τ |
q,
√
|τ |p

)
, q, p ∈ R.

Proof. For τ ∈ R \ {0} and for j, k = 0, 1, 2, . . . ,

ej,k,τ (q, p) = Vτ (ej,τ , ek,τ )(q, p)

= (2π)−1/2|τ |1/2
∫ ∞
−∞

eiτqyej,τ

(
y +

p

2

)
ek,τ

(
y − p

2

)
dy

= (2π)−1/2|τ |
∫ ∞
−∞

eiτqyej

(√
|τ |
(
y +

p

2

))
ek

(√
|τ |
(
y − p

2

))
dy

= (2π)−1/2|τ |1/2
∫ ∞
−∞

eiτqy/
√
|τ |ej

(
y +

√
|τ |p

2

)
ek

(
y −

√
|τ |p

2

)
dy

= |τ |1/2ej,k
(

τ√
|τ |
q,
√
|τ |p

)
for all q and p in R.

Theorem 3.2. {ej,k,τ : j, k = 0, 1, 2, . . . } forms an orthonormal basis for L2(R2).

Theorem 3.2 follows from Theorem 3.1 and Theorem 21.2 in [12] to the effect that
{ej,k : j, k = 0, 1, 2, . . . } is an orthonormal basis for L2(R2).

Theorem 3.3. For j, k = 0, 1, 2, . . . ,

Lτej,k,τ = (2k + 1)|τ |ej,k,τ .

Theorem 3.3 can be proved using Theorem 3.1 and Theorem 22.2 in [12] telling us
that for j, k = 0, 1, 2, . . . , ej,k is an eigenfunction of L1 corresponding to the eigenvalue
2k + 1.

Now, for every real number λ, we introduce the twisted convolution f ∗λ g of two
measurable functions f and g on C given by

(f ∗λ g)(z) =
∫

C
f(z − w) g(w) eiλ[z,w]dw, z ∈ C,

provided that the integral exists. Then we have the following formula, which is the main
tool for the construction of the heat kernel of Lτ .

Theorem 3.4. For τ ∈ R \ {0} and for nonnegative integers α, β, µ and ν,

eα,β,τ ∗−τ/4 eµ,ν,τ = (2π)1/2|τ |−1/2δβ,µeα,ν,τ ,

where δβ,µ is the Kronecker delta.
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When τ = 1, the formula is the same as that in Theorem 4.1 in [15]. Theorem 3.4 can
be proved using the formula for τ = 1 and Theorem 3.1.

4. The heat kernel of Lτ . Using Theorem 3.3 and the spectral theorem, we get for all
functions f in L2(R2),

e−uLτ f =
∞∑
k=0

∞∑
j=0

e−(2k+1)|τ |u(f, ej,k,τ )ej,k,τ , u > 0,

where ( , ) is the inner product in L2(R2). So, for u > 0,

e−uLτ f =
∞∑
k=0

e−(2k+1)|τ |u
∞∑
j=0

(f, ej,k,τ )ej,k,τ

and our first task is to compute
∑∞
j=0(f, ej,k,τ )ej,k,τ . To this end, we note that for k =

0, 1, 2, . . . ,

f ∗−τ/4 ek,k,τ =
∞∑
j=0

∞∑
l=0

(f, ej,l,τ )ej,l,τ ∗−τ/4 ek,k,τ

=
∞∑
j=0

∞∑
l=0

(f, ej,l,τ )(2π)1/2|τ |−1/2δl,kej,k,τ

= (2π)1/2|τ |−1/2
∞∑
j=0

(f, ej,k,τ )ej,k,τ .

Hence, for k = 0, 1, 2, . . . ,
∞∑
j=0

(f, ej,k,τ )ej,k,τ = (2π)−1/2|τ |1/2(f ∗−τ/4 ek,k,τ ).

Therefore

e−uLτ f = (2π)−1/2|τ |1/2
∞∑
k=0

e−(2k+1)|τ |uek,k,τ ∗τ/4 f, u > 0.

Now, using Theorem 3.1 and Mehler’s formula, we get for all z = (q, p) in C and for
u > 0,

(2π)−1/2|τ |1/2
∞∑
k=0

e−(2k+1)|τ |uek,k,τ (q, p)

= (2π)−1/2|τ |e−|τ |u
∞∑
k=0

e−2k|τ |uek,k

(
τ√
|τ |
q,
√
|τ |p

)
= (2π)−1|τ |e−|τ |u 1

1− e−2|τ |u e
−|τ | |z|2 1

4
1+e−2|τ|u

1−e−2|τ|u

=
1

4π
τ

sinh(τu)
e−

1
4 |τ | |z|

2coth(τu).

So, the heat kernel κu,τ , u > 0, of Lτ is given by

κu,τ (z, w) =
1

4π
τ

sinh(τu)
e−

1
4 |τ | |z−w|

2coth(τu)ei
τ
4 [z,w], z, w ∈ C.
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5. The Green function and global hypoellipticity of Lτ . We can obtain a formula
for the Green function Gτ of the twisted Laplacian Lτ by integrating the heat kernel of
Lτ from 0 to ∞ with respect to time u. Indeed, for all z and w in C, we get

Gτ (z, w) =
1

4π

(∫ ∞
0

τ

sinh(τu)
e−

1
4 |τ | |z−w|

2coth(τu)du

)
ei
τ
4 [z,w]

=
1

4π

(∫ ∞
1

1
(v2 − 1)1/2

e−
1
4 |τ | |z−w|

2vdv

)
ei
τ
4 [z,w]

=
1

4π
K0

(
1
4
|τ | |z − w|2

)
ei
τ
4 [z,w],

where K0 is the modified Bessel function of order 0 given by

K0(x) =
∫ ∞

0

e−x cosh δdδ, x > 0.

Using the Green function Gτ and the proof of Theorem 6.1 in [15], we have the
following result on the global hypoellipticity of Lτ , τ ∈ R \ {0}.

Theorem 5.1. For every τ in R \ {0}, the twisted Laplacian Lτ is globally hypoelliptic
in the sense that

u ∈ S ′(R2), Lτu ∈ S(R2)⇒ u ∈ S(R2),

where S ′(R2) is the space of all tempered distributions on R2.

Remark 5.2 In fact, it is proved in [5] that for every τ in R\{0}, the twisted Laplacian
Lτ is also globally hypoelliptic in Gelfand–Shilov spaces. More precisely, let µ and ν be
positive real numbers such that µ+ ν ≥ 1. Then

u ∈ S ′(R2), Lτu ∈ Sµν (R2)⇒ u ∈ Sµν (R2).

The paper [6] contains similar results for degenerate elliptic operators that include the
twisted Laplacians.

6. Liouville’s theorems for the sub-Laplacian. The following theorem is a version
of Liouville’s theorem for the sub-Laplacian L on the Heisenberg group H.

Theorem 6.1. Let u ∈ S ′(H) be such that

(Lu)(z, t) = 0, (z, t) ∈ H,

and ǔ(z, τ) is a tempered function of τ on R for each fixed z in C, where ǔ is the inverse
Fourier transform of u with respect to the “second” variable t. Then

u(z, t) = 0, (z, t) ∈ H.

Proof. Using a result of Hörmander in [7], u is a tempered distribution on H that is given
by a C∞ function on H = C× R. So, by (2), we see that for almost all τ in R,

(Lτuτ )(z) = (Lu)τ (z) = 0, z ∈ C.

By Theorem 5.1 on the global hypoellipticity of Lτ , τ ∈ R \ {0},

ǔ(z, τ) = uτ (z) = 0, z ∈ C,
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for almost all τ ∈ R. Hence
u(z, t) = 0, (z, t) ∈ H,

as asserted.

Remark 6.1. The assumption that ǔ(z, τ) is a tempered function of τ on R for each
fixed z in C cannot be dropped completely. As an example, let u be the function on H
given by

u(z, t) = 1, (z, t) ∈ H.

Then (Lu)(z, t) = 0, (z, t) ∈ H, but u is a tempered distribution on H such that ǔ(z, τ)
is the Dirac delta in τ for all z in C.

We can give another version of Liouville’s theorem to cover the example in Remark
6.1.

Theorem 6.2. Every bounded harmonic function u of the form

u(z, t) = v(z)e−imt, (z, t) ∈ H,

for the sub-Laplacian L on the Heisenberg group H, where m is a real number, has to be
a constant function.

Proof. Using the formula (1) for the sub-Laplacian L, we get

(Lu)(z, t) = −(∆v)(z)e−imt +
1
4
|z|2v(z)m2e−imt − i(Nv)(z)me−imt = 0

for all (z, t) in H. So, using the formula (2) for the twisted Laplacians Lτ , τ ∈ R \ {0},
we get

Lmv = 0

if m 6= 0 and
L0v = −∆v = 0.

By the global hypoellipticity of the twisted Laplacians given by Theorem 5.1, we get
v = 0 if m 6= 0. If m = 0, then by the classic Liouville’s theorem for the Laplacian ∆, we
see that v has to be a constant function and this completes the proof of the theorem.
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