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Abstract. Extending the construction of the algebra Ĝ(M) of scalar valued Colombeau func-

tions on a smooth manifold M (cf. [4]), we present a suitable basic space for eventually obtaining

tensor valued generalized functions on M , via the usual quotient construction. This basic space

canonically contains the tensor valued distributions and permits a natural extension of the clas-

sical Lie derivative. Its members are smooth functions depending—via a third slot—on so-called

transport operators, in addition to slots one (smooth n-forms on M) and two (points of M) from

the scalar case.

In the following, we generalize the construction of the full Colombeau algebra Ĝ(M)
(see [4]) to the tensor valued case. Let M denote an (orientable) smooth paracompact
Hausdorff manifold of dimension n; always let p ∈ M , f ∈ C∞(M), u ∈ D′(M), ω ∈
Â0(M)(⊆ Ωnc (M)); R ∈ Ê(M) (notation as in [4]). Recall the scalar case setting:

Smooth functions : f ∈ C∞(M) Distributions : u ∈ D′(M)

f(p) u(ω) = 〈u, ω〉

SLOT 1 SLOT 2

Colombeau
generalized functions :

R ∈ Ê(M)

R(ω, p)

SLOTS 1, 2
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Embedding smooth functions f by σ resp. distributions u by ι into Ê(M) is effected
by using slot 1 resp. slot 2, by means of the formulas (well-known from [2] resp. [4])

(σf)(ω, p) := f(p) (1)

(ιu)(ω, p) := u(ω) = 〈u, ω〉. (2)

Starting from Ê(M), the Colombeau algebra Ĝ(M) is then constructed by passing to
quotients of moderate by negligible elements, as usual in Colombeau theory. On the level
of quotients resp. classes, σ and ι become equal on C∞(M). However, we do not actually
perform this last step of the construction at the moment, the question of appropriate
basic spaces being our main focus.

For a long period the guiding intuitive idea of the authors of [2] towards obtaining a
suitable basic space for tensor valued generalized functions on M had been the following:

for scalars on M use Ê(M), the candidate which had proven successful in [2];

for tensors on M perform an appropriate “afterward” tensorial construction based on
the ready-made space Ê(M).

All efforts along these lines essentially led to some version of “coordinate-wise embed-
ding” ιrs of distributional tensor fields of type (r, s) (r contravariant, s covariant indices).
This way of proceeding, however, is ultimately barred due to a consequence of the famous
Schwartz type impossibility result: Viewing ι as a map embedding D′(M) into Ĝ(M) as
in [2], we have, in general,

ι(fu) 6= ι(f) · ι(u) (f ∈ C∞(M), u ∈ D′(M)), (3)

that is, ι is not C∞(M)-linear.
To get an impression of what a tensorial construction as just indicated should look like

and in which way the above Schwartz type result poses an unsurmountable obstacle to the
approach of coordinate-wise embedding we review the situation for tensorial distributions
(of type (r, s), say) on M . To this end, denote by TrsM the bundle of (r, s)-tensors over
M and by T rs (M) the linear space of smooth sections of TrsM , i.e. of smooth tensor fields
of type (r, s) on M . The linear space D′rs(M) of tensorial distributions of type (r, s) on
M can be defined in several equivalent ways; for our present purpose, we prefer

D′rs(M) := (T sr (M)⊗C∞(M) Ωnc (M))′

(compare section 3.1.3 of [1] where—due to not assuming orientability of M—densities
on M take the place of n-forms, yielding a slightly more general setting).

Now it is a fundamental result that tensorial distributions can be viewed as tensor
fields with (scalar) distributional coefficients ([1], 3.1.15), i.e.,

D′rs(M) ∼= D′(M)⊗C∞(M) T rs (M). (4)

A formula completely analogous to (4) is valid (though trivial) on the level of smooth
objects:

T rs (M) ∼= C∞(M)⊗C∞(M) T rs (M). (5)

(4) and (5) are interlaced by natural isomorphisms: Denoting the embedding of smooth
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regular objects into distributional ones as

ρ : C∞(M)→ D′(M)

ρrs : T rs (M)→ D′rs(M)

we obtain the following commutative “TD-diagram”:

T rs (M)
∼=−−−−→ C∞(M)⊗C∞(M) T rs (M)

ρr
s

y yρ⊗id

D′rs(M)
∼=−−−−→ D′(M)⊗C∞(M) T rs (M)

This certainly encourages us to try the definition

Ĝrs (M) := Ĝ(M)⊗C∞(M) T sr (M) (6)

yielding the reassuring “TG-diagram”

T rs (M)
∼=−−−−→ C∞(M)⊗C∞(M) T rs (M)

σr
s

y yσ⊗id

Ĝrs (M)
∼=−−−−→ Ĝ(M)⊗C∞(M) T rs (M)

Combining the TD- and the TG-diagrams into one (and omitting the C∞(M)-subscript
at the ⊗ sign, as well as all occurrences of “(M)”) results in

-

? ?

-

J
J
J
JĴ









�

-









�

J
J
J
JĴ

T r
s C∞ ⊗ T r

s

∼=

∼=

∼=Ĝr
s Ĝ ⊗ T r

s

ρr
s ρ⊗ id

? 1 ? ? 2 ?

σr
s σ ⊗ idD′rs D′ ⊗ T r

s

where the arrows denoted by 1 resp. 2 still are waiting to be defined—the former
providing the desired embedding of tensor distributions into generalized tensors. Now,
1 certainly would have to be induced by 2 , and for the latter, due to σ = ι ◦ ρ, the

only sensible choice is ι ⊗ id. However, we have to remember that our ⊗ signs actually
read ⊗C∞(M). Therefore, we have to check carefully whether mappings giving rise to a
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commutative “DG-diagram”

D′rs(M)
∼=−−−−→ D′(M)⊗C∞(M) T rs (M)

ιrs ??

y yι⊗id ??

Ĝrs (M)
∼=−−−−→ Ĝ(M)⊗C∞(M) T rs (M)

actually exist. Unfortunately, the answer is no! To be sure, on the level of vector space
tensor products,

ι⊗ id : D′(M)⊗ T rs (M)→ Ĝ(M)⊗ T rs (M)

is well-defined. Yet it does not induce a corresponding map on the level of C∞(M)-module
tensor products (which would be what we actually need) since it is not balanced into
Ĝ(M)⊗C∞(M) T rs (M) by the Schwartz type theorem:

(ι⊗ id)((f · u)⊗ t) = ι(f · u)⊗ t

is different in general (cf. (3)) from

(ι⊗ id)(u⊗ (f · t)) = ι(u)⊗ (f · t) = (ι(u) · f)⊗ t = (σ(f) · ι(u))⊗ t = (ι(f) · ι(u))⊗ t.

It is instructive to take a look at the coordinate version of the preceding (geometrically
phrased) impossibility result. As we will show, the attempt to build upon ι⊗id is reflected
by trying to embed tensor fields coordinate-wise. Again we will arrive at a contradiction,
demonstrating that coordinate-wise embedding has to be abandoned completely when
spaces of tensor valued Colombeau functions—allowing for a canonical embedding of
distributions—are to be constructed.

For localizing, assume that M can be described by a single chart. Then T rs (M)
has a C∞(M)-basis consisting of (smooth) tensor fields, say, e1, . . . , em ∈ T rs (M) with
m = nr+s. By (6), every u ∈ D′rs(M) can be written as u = ui ⊗ ei (using summation
convention) with ui ∈ D′(M). The geometrical requirement of ι ⊗ id being well-defined
on the level of module tensor products corresponds to (ι ⊗ id)(u) being independent of
basis representation of u. Thus consider a change of basis given by ei = aji êj , with aji
smooth. Then u = ûj ⊗ êj with ûj = ajiu

i. Applying ι⊗ id to either representation of u,
we obtain

(ι⊗ id)(ui ⊗ ei) = ι(ui)⊗ (aji êj) = (ι(ui)aji )⊗ êj = (σ(aji )ι(u
i))⊗ êj = (ι(aji )ι(u

i))⊗ êj
resp.

(ι⊗ id)(ûj ⊗ êj) = ι(ajiu
i)⊗ êj

which are different in general due to ι(aji )ι(u
i) 6= ι(ajiu

i) (cf. (3)). It should be clear now
that relying on coordinate-wise embedding is betting on the wrong horse.

To circumvent this Schwartz type obstacle, the following alternative approach (due
mainly to J. A. Vickers and J. P. Wilson, cf. [5]) turned out to be successful eventually:
Introduce, in addition to slots 1 and 2, some slot 3 “inside” of R, i.e. intervene “before”
R actually acts by assigning some tensor to its argument(s).

From now on, let us write “t” (for “tensor”) rather than “R”. Thus the new idea
directs us to replace R(ω, p) by

t(ω, p,A)
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(A having been fed into slot 3) in a way that t becomes a member of some space Êrs (M)
of (smooth) tensor valued functions, to be defined appropriately. This latter space then
will serve as the basic space for tensors of type (r, s), consisting of functions having three
slots as above.

Observe that this strategy includes “redefining” also the scalar case, in a way that
the ”old” 2-slot version from [2] resp. [4] has to be upgraded to the “new” 3-slot version.
So, strictly speaking the algebra Ĝ(M) of (scalar) valued generalized functions discussed
in [2] resp. [4] in fact differs (by the absence/presence of slot 3) from the algebra Ĝ0

0(M)
introduced (as the special case r = s = 0 of Ĝrs (M)) at the end of this article.

Now let us explain and motivate which kind of objects we should expect to feed into
slot 3. As to ω and p, we take ω ∈ Â0(M) resp. p ∈M , as we did previously for R ∈ Ê(M).
A, on the other hand, has to be taken as a member of Γc(TO(M,M)), the latter denoting
the space of compactly supported smooth sections of the bundle TO(M,M) of “transport
operators” over M ×M . More explicitly, A is a compactly supported smooth map

A : M ×M →
⊔

(p,q)∈M×M

L(TpM,TqM)

where L(TpM,TqM) denotes the space of all linear maps from the tangent space at p
to M into the tangent space at q of M , and the disjoint union above carries the bundle
structure suggested by the obvious local coordinate respresentations. Thus we have, for
p, q ∈M ,

A(p, q) : TpM → TqM (linear)

where A(p, q) smoothly depends on p and q.
The new basic space Êrs (M) will be defined as a certain subspace (to be specified

later) of
C∞(Â0(M)×M × Γc(TO(M,M)),TrsM),

or, with B̂(M) := Γc(TO(M,M)), of

C∞(Â0(M)×M × B̂(M),TrsM).

So there remains the question: Why do we introduce slot 3 and how do transport
operators enter the scene? The answer is twofold:

• Because it works (in German, we say “Der Zweck heiligt die Mittel”, i.e. “The end
justifies [sanctifies, literally] the means” in situations like this), i.e. the resulting
space Êrs (M) permits sensible definitions of

– induced actions of diffeomorphisms µ : M → N ,

– natural extensions of Lie derivatives LX ,

– moderate and negligible elements and, finally

– a space of generalized tensor fields Ĝrs (M) having all the desired properties.

• The introduction of the A-slot for tensors is highly plausible—which the remaining
part of this article is devoted to convince the reader of.

Let us begin by reviewing the scalar case of embedding a (regular) distribution given
by a continuous function g on M into the basic space Ê(M), using formula (2) for the
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embedding ι: Pick g ∈ C(M) ⊆ D′(M) and think of some n-form ω which approximates
the Dirac measure δp around p ∈M ; in sloppy notation, ω(q) ≈ δp(q) for p, q ∈M . Then

(ιg)(ω, p) =
∫
M

g(q)ω(q)

collects values of g around p and forms a smooth average (note that
∫
ω = 1!) as value

for (ιg)(ω, p). Here, q 7→ g(q) is a scalar valued function on M .
Now, if g takes tensors of type (r, s) as values, i.e., if g is a continuous section of TrsM ,

q 7→ g(q) ∈ (Trs)qM,

then the g(q)’s do not live in the same linear space for different q!
In order to average them around p, we first have to “gather” them in p, i.e. to shift

each g(q) from (Trs)pM to (Trs)qM . This is accomplished by A in the following way: For

g(q) = w1(q)⊗ . . .⊗ wr(q)⊗ β1(q)⊗ . . .⊗ βs(q) ∈ (Trs)qM

(where wi(q) ∈ TqM , βj(q) ∈ T∗qM for i = 1, . . . , r, j = 1, . . . , s) we set

Brs(q, p)(g(q)) := A(q, p)w1(q)⊗ . . .⊗ (A(p, q))adβs(q) ∈ (Trs)pM.

(The notation Ars(p, q) has to be saved for later use.) So we may form

(ιrsg)(ω, p,A) :=
∫
M

Brs(q, p)(g(q))ω(q) ∈ (Trs)pM. (7)

In what follows, we will again simply write ιg for ιrsg. Let us check the status of the
objects in the above integrand carefully:

• Brs(q, p)(g(q)) is an (r, s)-tensor at p, depending (smoothly) on q;
• ω(q) (which q viewed as variable) is a compactly supported n-form on M with unit

integral.

So it seems that the integral on the right hand side of (7) is one of a “new” type (of course,
only modulo the previous knowledge of the reader), yet it is perfectly well-defined—just
write it out in a chart in the obvious way and check compatibility with chart changes.

As one can show, ιg as defined above depends smoothly on ω, p,A. (In fact, the
proof of this statement represents one of the technically most demanding parts of the
forthcoming paper [3].) Thus for each fixed pair (ω,A) we have that

(ιg)(ω,A) := [p 7→ (ιg)(ω, p,A)]

defines a smooth tensor field of type (r, s) on M , due to (ιg)(ω, p,A) ∈ (Trs)pM .
This strongly suggests the following choice for Êrs (M):

Êrs (M) := {t ∈ C∞(Â0(M)×M × B̂(M),TrsM) | t(ω, p,A) ∈ (Trs)pM}.

In particular, p 7→ t(ω, p,A) is a member of T rs (M) for any fixed ω,A. As to the in-
evitability of requiring smoothness in all three variables for the members of the basic
space, see the remarks following formula (2) in [4].

Now, finally, we are going to pass from embedding continuous g’s to embedding dis-
tributional tensor fields u ∈ D′rs(M) into Êrs (M).

By definition ofD′rs(M), u takes (finite sums of) tensors t̃⊗ω (t̃ ∈ T sr (M), ω ∈ Ωnc (M))
as arguments.
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Now what we need is a good formula for (ιu)(ω, p,A). For a definition of ιu in terms
of u we require something that u can properly act upon. We already have ω ∈ Ωnc (M)
from slot 1, so we still to have to make some t̃ ∈ T sr (M) enter the scene.

Fortunately, any t ∈ T rs (M) (t = (ιg)(ω,A) in the case at hand) is completely deter-
mined by specifying all contractions t · t̃ ∈ C∞(M) where t̃ runs through T sr (M). Hence
we consider (ιg)(ω,A) · t̃ defined pointwise by

((ιg)(ω,A) · t̃)(p) = (ιg)(ω, p,A) · t̃(p)

=
∫
M

Brs(q, p)(g(q)) · t̃(p) ω(q)

=
∫
M

g(q) · (Brs(q, p))ad(t̃(p)) ω(q)

= 〈 g( . )︸︷︷︸
∈D′rs(M)

, (Brs( . , p))ad(t̃(p))︸ ︷︷ ︸
∈T s

r (M) for fixed p

⊗ ω( . )︸︷︷︸
∈Ωn

c (M)

〉

(Note that in the third expression of the above calculation, Brs(q, p)(g(q)) and t̃(p) are
tensors of types (r, s) and (s, r), respectively, hence their contraction is a scalar resp. a
smooth function on M . Therefore, the integrals above are usual integrals over n-forms
rather than of the “new” type discussed above.)

In the last expression above, we are now free to replace the regular distribution g

by any u ∈ D′rs(M). This leads to our definition of ι, finally: Denoting (Brs(q, p))ad :
(Tsr)pM → (Tsr)qM by Ars(p, q), we are led to define

(ιu)(ω, p,A) · t̃(p) := ((ιu)(ω,A) · t̃)(p)
:= 〈 u ,Ars(p, . )(t̃(p)) ⊗ ω(.) 〉

to obtain the desired embedding ι = ιrs : D′rs(M)→ Êrs (M).
With this definition of ιrs, the requirement µ̂ ◦ ιrs = ιrs ◦ µ∗ (for a diffeomorphism

µ : M → N) leads to a sensible definition of µ̂ : Êrs (N) → Êrs (M). The latter, in turn,
induces L̂X : Êrs (M) → Êrs (M) satisfying L̂X ◦ ιrs = ιrs ◦ LX and L̂X ◦ µ̂ = µ̂ ◦ Lµ∗X
(compare [4] for the scalar case).

Corresponding to the above form of ιrs extending formula (2) to the tensor case, we
also have the (much simpler) analog of (1) for embedding smooth tensor fields into the
new basic space:

σrs(f)(ω, p,A) := f(p) (f ∈ T rs (M)).

Preserving the product of smooth functions in the present context amounts to preserving
the tensor product of smooth tensor fields on M when passing to generalized functions
via the embedding under discussion. This crucial goal of the Colombeau approach again is
achieved by an appropriate quotient construction of moderate modulo negligible members
of the basic space.

For a detailed account of the preceding introductory presentation, as well as for an
elaboration of the following concluding statement, we refer to the forthcoming paper [3].

With the test for moderateness and negligibility from the scalar case ([2]) suitably
adapted to cope with slot 3, we finally arrive at (Êrs )m(M), N̂ r

s (M) and

ιrs : D′rs(M) ↪→ Ĝrs (M) := (Êrs (M))m / N̂ r
s (M),
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together with appropriate actions of diffeomorphisms and Lie derivaties on Ĝrs (M) which
naturally extend the corresponding notions on D′rs(M).
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the GF 07 conference in Bȩdlewo, in particular to Swiet lana Minczewa-Kamińska and to
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