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Abstract. We discuss continuity properties of the Weyl product when acting on classical

modulation spaces. In particular, we prove that Mp,q is an algebra under the Weyl product

when p ∈ [1,∞] and 1 ≤ q ≤ min(p, p′).

1. Introduction. The aim of this paper is to investigate algebraic properties of the
Weyl product on classical modulation spaces1, i. e. unweighted modulation spaces. These
investigations go back to [10], where similar properties are done for general modulation
spaces (weighted modulation spaces). In fact, in [10] a general result is presented, which
contains most of the existing results in this context (cf. [12, 14, 15]), concerning condi-
tions that are necessary and sufficient for modulation spaces to be algebras under this
product.
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DOI: 10.4064/bc88-0-12 [153] c© Instytut Matematyczny PAN, 2010



154 A. HOLST, J. TOFT AND P. WAHLBERG

The (classical) modulation spaces Mp,q, p, q ∈ [1,∞], as introduced by Feichtinger
in [2], consist of all tempered distributions whose short-time Fourier transforms (STFT)
have finite mixed Lp,q norm. It follows that the parameters p and q to some extent
quantify the degrees of asymptotic decay and singularity of the distributions in Mp,q.
From the construction of these spaces, it turns out that modulation spaces and Besov
spaces in some sense are rather similar, and sharp embeddings between these spaces can
be found in [16, 18].

In [14], Sjöstrand introduced the modulation space M∞,1, which contains non-smooth
functions, as a symbol class. He proved that the symbol class M∞,1 corresponds to an
algebra of operators which are bounded on L2. Gröchenig and Heil thereafter proved in
[7, 6] that such operators are continuous on all modulation spaces Mp,q, p, q ∈ [1,∞].
This extends Sjöstrand’s result since M2,2 = L2. Some generalizations to operators with
symbols in a broader class of classical modulation spaces were then obtained in [8, 16], and
in [17, 19] some further extensions involving weighted modulation spaces are presented.

Within the theory of pseudo-differential operators, the Weyl quantization seems to be
natural to use in many contexts. In fact, such operators can be formulated in a way which
is independent of the choice of symplectic coordinates, a property which is important
in quantum mechanics. It also seems that the most natural way to pass from classical
mechanics to quantum mechanics, is to use Weyl quantization, where the observable
a(x, ξ) in classical mechanics corresponds to the Weyl operator aw(x,D) in quantum
mechanics (with ”good” approximation).

Here we recall that if a ∈ S (R2d), then the Weyl quantization aw(x,D) with symbol
a is defined by the formula

aw(x,D)f(x) = (2π)−d
∫ ∫

a((x+ y)/2, ξ)ei〈x−y,ξ〉f(y) dydξ, (1)

where f ∈ S (Rd). The definition in (1) extends to any a ∈ S ′(R2d), and then at(x,D)
is continuous from S (Rd) to S ′(Rd). (See also [11].)

Next assume that a, b ∈ S ′(R2d) are such that the composition aw(x,D) ◦ bw(x,D)
makes sense as a continuous operator from S (Rd) to S ′(Rd). Then by the Schwartz
kernel theorem and the Weyl quantization, there is a unique distribution c ∈ S ′(R2d)
such that cw(x,D) = aw(x,D)◦bw(x,D). In this case we define the Weyl product between
a and b as a#b = c. Hence, the Weyl product is the multiplication between symbol pairs
defined by (a, b) 7→ a#b, and it follows that it is well-defined if, for example, a ∈ S ′(R2d)
and b ∈ S (R2d). The Weyl product can also be defined for other pairs of tempered
distributions a, b ∈ S ′(R2d).

Especially we are concerned with finding sufficient conditions on pj , qj ∈ [1,∞], in
order for the map

S (R2d)×S (R2d) 3 (a, b) 7→ a#b ∈ S (R2d) (2)

to be uniquely extendable to a map from Mp1,q1(R2d) ×Mp2,q2(R2d) to Mp0,q0(R2d),
which is continuous in the sense that for some constant C > 0,

‖a#b‖Mp0,q0 ≤ C‖a‖Mp1,q1‖b‖Mp2,q2 , (3)

when a ∈Mp1,q1(R2d) and b ∈Mp2,q2(R2d).
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One of Sjöstrand’s results can then be formulated as M∞,1(R2d)#M∞,1(R2d) ⊆
M∞,1(R2d). Sjöstrand’s result was refined in [15], where the inclusion

Mp,1(R2d)#Mq,1(R2d) ⊆Mr,1(R2d), 1/p+ 1/q ≥ 1/r, p, q, r ∈ [1,∞],

was proved. Further results on the algebraic properties of the modulation spaces consid-
ered as symbol classes were obtained by Labate in [12] from which it follows that

Mp(R2d)#Mp(R2d) ⊆Mp(R2d), Mp′
(R2d)#Mp(R2d) ⊆Mp′

(R2d), p ∈ [1, 2].

Here we set Mp = Mp,p, and p′ ∈ [1,∞] denotes the conjugate exponent of p ∈ [1,∞],
i. e. 1/p + 1/p′ = 1. We note that if p = 2, then it follows that M2 is an algebra under
the Weyl product. Since M2 = L2, it therefore follows that L2 also is an algebra under
this product, which was at first proved by Pool in [13].

In Section 3 we prove a general result, extending all these results (cf. Theorem 3.1,
which agrees with Theorem 0.3′ in [10] after general (weighted) modulation spaces in the
latter result is replaced by classical (non-weighted) modulation spaces). We also remark
that the results in [10] comprise and generalize all results in this context that we are aware
of, when the weights involved are bounded by certain polynomials. Furthermore it seems
that the arguments in [10] also work in more general cases, e.g. for weights moderated
by subexponential, or sometimes also by exponential functions.

2. Modulation spaces. In this section we recall some basic facts about classical mod-
ulation spaces and pseudo-differential operators.

We start by discussing some properties of the symplectic Fourier transform and related
objects. The even-dimensional vector space R2d is a (real) symplectic vector space with
the (standard) symplectic form

σ(X,Y ) = σ
(
(x, ξ); (y, η)

)
= 〈y, ξ〉 − 〈x, η〉

where 〈·, ·〉 denotes the usual scalar product on Rd.
The symplectic Fourier transform for a ∈ S (R2d) is defined by the formula

(Fσa)(X) = â(X) = π−d
∫
a(Y )e2iσ(X,Y ) dY.

Then F−1
σ = Fσ is continuous on S (R2d), and extends as usual to a homeomorphism

on S ′(R2d), and to a unitary map on L2(R2d). The (symplectic) short-time Fourier
transform (STFT) of a ∈ S ′(R2d) with respect to a window function χ ∈ S (R2d) is
defined by

Vχa(X,Y ) = Fσ

(
a τXχ

)
(Y ), X, Y ∈ R2d. (4)

Here and in what follows τX is the translation operator, defined by τXf(Y ) = f(Y −X).
Then Vχa is smooth and polynomially bounded (cf. [6]). The STFT of a ∈ S ′(R2d)
enjoys the orthogonality relation

(Vχ1a, Vχ2ϕ) = (a, ϕ)(χ1, χ2), ϕ, χ1, χ2 ∈ S (R2d),

where (·, ·) = (·, ·)L2(R2d) denotes the extension of the L2-product on C∞0 (R2d) to a
product between appropriate function and distribution spaces, and their duals (cf. [5]).
We also set 〈a, ϕ〉 = (a, ϕ) for appropriate distributions a and ϕ on R2d.
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Next assume that p, q ∈ [1,∞] and that χ ∈ S (R2d) \ {0} is fixed (but arbitrary).
Then the classical modulation space Mp,q(R2d) is defined as the set of a ∈ S ′(R2d) such
that

‖a‖Mp,q =
(∫ (∫

|Vχa(X,Y )|p dX
)q/p

dY

)1/q

(5)

is finite. Here the Lp-norm or Lq-norm should be replaced by the L∞-norm when p =∞
or q = ∞. For simplicity we set Mp,p = Mp, and let M p,q(R2d) be the completion of
S (R2d) in the norm ‖ · ‖Mp,q .

In the following proposition we collect some properties of modulation spaces that are
important in this paper. We omit the proof, since it can be found in [1, 2, 6, 16].

Proposition 2.1. Assume that p, q ∈ [1,∞]. Then the following statements are true:

(i) the space Mp,q(R2d) is a Banach space which is independent of χ ∈ S (R2d) \ {0},
and different χ give rise to equivalent norms;

(ii) if p1, p2, q1, q2 ∈ [1,∞] and p1 ≤ p2, q1 ≤ q2 then

S (R2d) ⊆Mp1,q1(R2d) ⊆Mp2,q2(R2d) ⊆ S ′(R2d); (6)

(iii) the L2-product (·, ·) on C∞0 (R2d) extends to a continuous sesquilinear form on
Mp,q(R2d) ×Mp′,q′(R2d). Furthermore, ‖a‖ = sup |(a, b)|, with supremum taken
over all b ∈ C∞0 (R2d) such that ‖b‖Mp′,q′ ≤ 1, is a norm equivalent to ‖a‖Mp,q . If
p, q <∞, then the dual space of Mp,q can be identified with Mp′,q′ through the form
(·, ·);

(iv) M p,q ⊆ Mp,q with equality if and only if p <∞, q <∞. Furthermore, S (R2d) is
weakly dense in Mp,q(R2d) provided (p, q) 6= (1,∞) and (p, q) 6= (∞, 1).

The next result concerns (complex) interpolation and modulation spaces. Again we
omit the proof, since it can be found in [4].

Proposition 2.2. Assume that 0 ≤ θ ≤ 1 and p, q, p1, p2, q1, q2 ∈ [1,∞] are such that
1
p

=
1− θ
p1

+
θ

p2
,

1
q

=
1− θ
q1

+
θ

q2
.

Then (M p1,q1 ,M p2,q2)[θ] = M p,q.

Next we recall some results for pseudo-differential operators with symbols in modu-
lation spaces. If pj , qj ∈ [1,∞], j = 0, 1, 2, are such that

1
p1
− 1
p2

=
1
q1
− 1
q2

= 1− 1
p0
− 1
q0
, q0 ≤ p2, q2 ≤ p0,

and a ∈ Mp0,q0(R2d), then it is proved in [8, 16] that aw(x,D) extends uniquely to
a continuous operator from Mp1,q1(Rd) to Mp2,q2(Rd). Some extensions of this result
which involves weighted modulation spaces can be found in [17, 19]. Moreover, each a

in Mp,q(R2d) gives rise to L2-bounded Weyl operators if and only if p ∈ [1,∞] and 1 ≤
q ≤ min(2, p′). (Cf. [9].) Some Schatten-von Neumann properties for pseudo-differential
operators with symbols in modulation spaces can be found in [7, 16, 19].

3. Continuity of the Weyl product on modulation spaces. In this section we
discuss algebraic properties of the Weyl product acting on modulation spaces, and prove
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a general result on continuity of the Weyl product when acting on classical modulation
spaces (cf. Theorem 3.1 below).

The following result agrees with Theorem 0.3′ in [10], if all weight functions in the
latter theorem are trivially equal to 1.

Theorem 3.1. Assume that pj , qj ∈ [1,∞], j = 0, 1, 2, satisfy
1
p1

+
1
p2

+
1
q1

+
1
q2

= 1 +
1
p0

+
1
q0
, q1, q2 ≤ q0,

0 ≤ 1
p1

+
1
p2
− 1
p0
≤ 1
pj
,

1
qj
≤ 1
q1

+
1
q2
− 1
q0
, j = 0, 1, 2.

Then the map (2) extends uniquely to a continuous map from Mp1,q1(R2d)×Mp2,q2(R2d)
to Mp0,q0(R2d), and for some constant C > 0, the bound (3) holds for every a ∈
Mp1,q1(R2d) and b ∈Mp2,q2(R2d).

For the proof we recall that M2 = L2 is an algebra under the Weyl product, i. e.
‖a#b‖L2 ≤ C‖a‖L2‖b‖L2 . (See e. g. [5].)

Proof. By Theorem 4.1 in [15], the result follows for qj = 1, and by duality the result also
follows for 1/p1 + 1/p2 = 1/p0, and q0 = q1 = q′2 =∞ or q0 = q′1 = q2 =∞. By Proposi-
tion 2.2 and interpolation, the result holds for q1 = 1 and q2 = q0, or q2 = 1 and q1 = q0.
Furthermore, the result holds for pq = qj = 2, since the Weyl product is continuous on
L2 = M2. The result now follows for general pj and qj by interpolating these results,
using Proposition 2.2. (See Theorem 0.3′ and its proof in [10] for further details.)

We finish the section by listing some immediate consequences of Theorem 3.1.

Corollary 3.2. Assume that p ∈ [1,∞] and 1 ≤ q ≤ min(p, p′). Then the Weyl product
extends to a continuous multiplication from Mp,q×Mp,q to Mp,q, and there exists C > 0
such that

‖a#b‖Mp,q ≤ C‖a‖Mp,q‖b‖Mp,q ,

holds for all a ∈Mp,q and b ∈Mp,q, i. e. Mp,q is an algebra under the Weyl product.

We note that the condition 1 ≤ q ≤ min(p, p′) in Corollary 3.2 is also necessary in
order for Mp,q to be an algebra under the Weyl product (cf. [10, Theorem 3.6]).

Remark 3.3. Assume that p, q, r, s ∈ [1,∞] are such that s ≤ 2, r ≤ s′ and (1/p, 1/q)
belongs to the square with corners at

(1/s′, 1/s′), (1/s′, 1/s), (1/s, 1/s′), and (1/s, 1/s).

By Theorem 3.1 it follows that

Mp,q#Mr,s ⊆Mp,q, Mr,s#Mp,q ⊆Mp,q. (7)

(Cf. Remark 2.17 in [10].) If in addition s ≤ r, then it follows in particular that Mr,s is
a Banach algebra and Mp,q is an Mr,s-module under the Weyl product.

On the other hand, in Section 3 in [10] it is proved that the module properties in
Remark 3.3 are sharp in the sense that (7) fails when s′ < r, and that Mr,s is not an
algebra when r < s.
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http://dx.doi.org/10.1007/BF01308667
http://dx.doi.org/10.1007/BF01272884
http://dx.doi.org/10.1016/j.jfa.2007.07.007
http://dx.doi.org/10.1007/s006050170028
http://dx.doi.org/10.1063/1.1704817
http://dx.doi.org/10.1016/j.jfa.2003.10.003
http://dx.doi.org/10.1023/B:AGAG.0000023261.94488.f4

	Introduction
	Modulation spaces
	Continuity of the Weyl product on modulation spaces

