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Abstract. In this article complete characterizations of the quasiasymptotic behavior of Schwartz

distributions are presented by means of structural theorems. The cases at infinity and the origin

are both analyzed. Special attention is paid to quasiasymptotics of degree −1. It is shown how

the structural theorem can be used to study Cesàro and Abel summability of trigonometric series

and integrals. Further properties of quasiasymptotics at infinity are discussed. A condition for

test functions in bigger spaces than S is presented which allows one to consider the respective

quasiasymptotics over them. An extension of the structural theorems for quasiasymptotics is

given. The author studies a structural characterization of the behavior f(λx) = O(ρ(λ)) in D′,

where ρ is a regularly varying function.

1. Introduction. The concept of the quasiasymptotic behavior of distributions was
introduced by B. I. Zavialov for tempered distributions in [29] and was studied compre-
hensively in [24]. Later this concept was slightly reformulated in [11, 12].

The quasiasymptotics of distributions have shown to be of importance in several areas
such as mathematical physics [24, 29], abelian and tauberian theory of integral transforms
[16, 24, 25], asymptotic behavior of solutions of partial differential equations [5, 8, 21, 24,
28], and summability of trigonometric series and integrals [6, 8, 21, 22, 26, 27].

Since its introduction, the study of the structure of the quasiasymptotics has de-
served a special place [5, 6, 10–16, 19, 22, 24]. S.  Lojasiewicz introduced the value of
a distribution at a point, and he provided the corresponding structural theorem for it.
V. S. Vladimirov, Yu. N. Drozhzhinov and B. I. Zavialov gave a complete structural the-
orem for quasiasymptotics at infinity of tempered distributions with support on cones.
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S. Pilipović gave partial structural theorems for one dimensional quasiasymptotics at the
origin and infinity. However, a complete structural theorem for quasiasymptotics has been
an open question for long time.

The purpose of this note is to report a solution for this open question in the one
dimensional case and discuss some of its consequences and generalizations. A complete
structural theorem for quasiasymptotics at the origin has been recently obtained by the
author and S. Pilipović in [23]. The case at infinity has been studied by the author in [20].
In this paper we summarize these new results. The proofs of the structural theorems will
be omitted since the details can be found in cited works [20, 23]. Therefore, the author
concentrates on studying some consequences and giving some extensions of them.

The plan of this article is as follows. In Section 2, the structural theorems will be
stated. We will then discuss in Section 3 a particular case of the structural theorems
within the context of summability of Fourier series and integrals. Actually, it should be
mentioned that many of the ideas to study the structure of quasiasymptotics, especially
in the case of degrees in Z−, were inspired by techniques previously applied by the
author and R. Estrada in [6, 21, 22] at studying the value of a distribution at a point
and distributional jump behaviors in connection with trigonometric series and integrals.
In Section 4, the structure of quasiasymptotics at infinity is applied to show that the
quasiasymptotic behavior holds in smaller spaces than S ′, namely in some spaces of the
type K′β . In Section 5, a generalization of the structural theorems for quasiasymptotics
is given, this is generalized to quasiasymptotically bounded distributions. The article is
ended by posing two important open questions concerning the quasiasymptotic behavior
of distributions, it is done in Section 6.

2. The structure of quasiasymptotics. The purpose of this section is to present
the structural theorems for quasiasymptotic behaviors of distributions. We first fix the
notation to be used and introduce the basic definitions. All of our spaces of functions
and distributions will be taken over the real line. The Schwartz spaces of test functions
and distributions over the real line are denoted by D and D′, respectively. The spaces
of smooth rapidly decreasing functions and its dual, the space of tempered distributions,
are denoted by S and S ′. The spaces E and E ′ are the test space of all C∞-functions and
its dual, the space of compactly supported distributions. The spaces D′+ and S ′+ denote
the subspaces of D′ and S ′, respectively, consisting of the distributions and tempered
distributions with support in [0,∞). We refer the reader to [9, 17, 24] for properties of
these spaces.

The main subject of this section is the so-called quasiasymptotic behaviors of distri-
butions at infinity and the origin which we now proceed to define [9, 11, 12, 16, 24, 25,
29]. There are several definitions in the literature. Let us start with the one from [11,
12]. Let ρ be a positive measurable function defined in some neighborhood of infinity
(respectively of the origin), we say that f ∈ D′ has quasiasymptotic behavior at infinity
in D′ (respectively at the origin in D′) if for some g ∈ D′, g 6= 0,

lim
λ→∞

〈
f(λx)
ρ(λ)

, φ(x)
〉

= 〈g(x), φ(x)〉 , φ ∈ D, (1)
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(respectively in the case at the origin the limit is taken as λ → 0+). In [24] the original
definition for the quasiasymptotic behavior at infinity is given only for f ∈ S ′+ and hence
the test function φ is allowed to be in S; there the function ρ is called an automodel
function but we will not follow this terminology. In [11–14], the definition is extended to
the form just presented here. It follows from the definition that ρ and g in (1) cannot
have an arbitrary form [9, 16, 24]. Indeed, ρ must be a regularly varying function [2, 18]
and g must be a homogeneous distribution [9] having degree of homogeneity equal to the
index of regular variation of ρ.

We briefly recall the concepts of regularly varying functions and homogeneous distri-
butions, in this way the notation will be fixed.

A real-valued measurable function ρ defined in some interval of the form [A,∞),
A > 0, is called regularly varying at infinity if ρ is positive near ∞ and there exists an
α ∈ R, called the index of regular variation of ρ, such that

lim
λ→∞

ρ(aλ)
ρ(λ)

= aα,

for any a > 0. If α = 0, then the function is called slowly varying at infinity ; the
letter L is commonly used for denoting slowly varying functions, we should follow this
convention in this article. Note that ρ is regularly varying if and only if it can be written
as ρ(λ) = λαL(λ), where L is slowly varying. In the same way one defines regularly and
slowly varying functions at the origin. We refer to [2, 18] for properties of such functions.

Since we are dealing with the one dimensional case, we know explicitly all the ho-
mogeneous distributions on the real line [9, p. 72]. One has that either a homogeneous
distribution has the form

g(x) = C−x
α
− + C+x

α
+, if α /∈ {−1,−2,−3, . . .},

for some constants C− and C+, or

g(x) = γδ(k−1)(x) + βx−k, if α = −k ∈ {−1,−2,−3, . . .},

for some constants γ and β, where here we are following the notation from [9]. When
k = 1, we sometimes denote the distribution x−1 by p.v.(1/x). Other special distributions
we will frequently use are the Heaviside function H, i.e., the characteristic function of
(0,∞), and the pseudofunctions Pf (H(x)/x) and Pf (H(−x)/x), also defined in [9].

As mentioned before, in the usual definition of the quasiasymptotic behavior the
distribution g is assumed to be different from 0, however in [20, 23] this definition is
extended by allowing g to be 0, this is done because the results about the structure of
the quasiasymptotics are also valid in this case. In order to introduce some language, we
state this definition.

Definition 2.1. Let L be slowly varying at infinity (respectively at the origin). We
say that f ∈ D′ has quasiasymptotic behavior at infinity in D′ with respect to λαL(λ)
(respectively at the origin), α ∈ R, if for some g ∈ D′,

lim
λ→∞

〈
f(λx)
λαL(λ)

, φ(x)
〉

= 〈g(x), φ(x)〉 , φ ∈ D, (2)
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(in the case at the origin λ→ 0+). If (2) holds, it is also said that f has quasiasymptotics
of degree α at infinity (the origin) with respect to the slowly varying function L.

We also express (2) by using the asymptotic notation

f(λx) = λαL(λ)g(x) + o(λαL(λ)) as λ→∞ in D′, (3)

which should always be interpreted in the weak topology of D′, i.e., in the sense of (2).
Sometimes one could have quasiasymptotics in other spaces of distributions. For instance,
if A and A′ are spaces of test functions and distributions, one writes A′ instead of D′ in
(3) if f ∈ A′ and (2) holds for all φ ∈ A.

We now want to make some comments about the previous known properties of the
structure of the quasiasymptotics available in the literature. This is valuable for the reader
since many important techniques can be found in the references.

We start with quasiasymptotics at infinity. The complete structural theorems for dis-
tributions from S ′+ can be found in [24]. In addition, in page 134 of the cited book, one
finds a decomposition theorem, which basically implies the structural theorem when the
degree of the quasiasymptotic behavior is not a negative integer with no restriction on the
support of the distribution. The details about how this is implied by the decomposition
theorem can be found in [11]. Therefore, in the case at infinity the only unknown struc-
tural theorem was for quasiasymptotics whose degrees are negative integers. In a recent
paper [22] a structural theorem for the quasiasymptotic behavior of degree -1 with respect
to the trivial slowly varying function, L ≡ 1, was obtained. The technique employed was
based on the concept of asymptotically homogeneous functions of degree 0 with respect
to the trivial slowly varying function, previously used in [6] to characterize  Lojasiewicz
point values of periodic distributions. In the case at the origin, only partial results were
known under restrictions on the degree of the quasiasymptotic and boundedness of L
[14]. The reader can also consult [15, 16, 19] for more about these structural results.

We now proceed to state the structural theorems. The details for the proofs will not
be supplied, they can be found in [20, 23], we just mention that the proofs were based on
the usage of asymptotically and associated asymptotically homogeneous functions. Since
they are involved in the statements of the structural theorems, we give the definitions.
The reader can find the main properties of such functions in the cited articles.

Definition 2.2. A function b is said to be asymptotically homogeneous of degree α at
infinity with respect to the slowly varying function L, if it is measurable and defined in
some interval [A,∞) , A > 0, and for each a > 0,

b(aλ) = aαb(λ) + o(L(λ)), λ→∞.

Definition 2.3. A function b is said to be associate asymptotically homogeneous of
degree 0 at infinity with respect to the slowly varying function L, if it is measurable and
defined in some interval [A,∞), A > 0, and there is a constant β such that

b(aλ) = b(λ) + β log aL(λ) + o(L(λ)), λ→∞,

for each a > 0.
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Remark 2.4. Related classes of functions having regular variation at infinity were intro-
duced by R. Bojanić and J. Karamata in [4], these classes include associate asymptotically
homogeneous functions. They are also studied in [1, 2, 18].

With the obvious modifications one defines asymptotically and associate asymptoti-
cally homogeneous functions at the origin.

The structure of the quasiasymptotics when the degree is not a negative integer is
described by the following theorem.

Theorem 2.5. Let f ∈ D′ have the quasiasymptotic behavior at infinity (at the origin)
in D′,

f(λx) = C−L(λ)
(λx)α−

Γ(α+ 1)
+ C+L(λ)

(λx)α+
Γ(α+ 1)

+ o(λαL(λ)), (4)

λ→∞ (respectively λ→ 0+). If α /∈ Z−, then there exist an integer m ∈ N, m+ α > 0,
an m-primitive F of f , i.e., F (m) = f , such that F is continuous (respectively continuous
on a neighborhood of 0) and

lim
x→±∞

Γ(α+m+ 1)F (x)
xm|x|αL(|x|)

= C±, (5)

(at the origin x→ 0±). Conversely, if these conditions hold, then (4) follows.

Remark 2.6. Theorem 2.5 in the case of quasiasymptotics at the origin admits an in-
teresting generalization whose proof is exactly the same as in [23]. The generalization is
as follows. Suppose that f is a distribution just defined on R \ {0} and (2) holds just for
φ ∈ D(R \ {0}) (here λ → 0+). If we assume that α /∈ Z−, then there are an m ∈ N,
m+ α > 0, and a distribution F , which is a continuous function on some neighborhood
of the origin, satisfying (5) (with the limit taken as x → 0±), such that F (m) = f on
R \ {0}. Consequently, by taking F (m), one obtains an extension of f to R which has
quasiasymptotic behavior at the origin. On the other hand if f is already defined on R,
then f0 = F (m) has quasiasymptotic behavior in D′ and

f(x) = f0(x) +
n∑
j=0

ajδ
(j)(x),

for some constants a0, a1, ..., an. It should be noticed that the results of this remark
extend the properties obtained by S.  Lojasiewicz in [10] about the limit of a distribution
at a point.

The case when α ∈ Z− is somehow more complicated, the complete information is
presented in the next theorem. We denote by lm the m-primitive of log |x| having the
property that l(j)m (0) = 0 for 0 ≤ j < m.

Theorem 2.7. Let f ∈ D′ and let k be a positive integer. Then f has the quasiasymptotic
behavior at infinity (at the origin) in D′,

f(λx) = γL(λ)δ(k−1)(λx) + (−1)k−1(k − 1)!βL(λ)(λx)−k + o(λ−kL(λ)),

λ → ∞ (respectively λ → 0+) if and only if there exist an m ∈ N, m > k, a function b

defined on (0,∞), being associate asymptotically homogeneous of degree 0 at infinity (at
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the origin) with respect to L and satisfying b(aλ) = b(λ) + β log aL(λ) + o(L(λ)), and a
continuous m-primitive F of f (respectively continuous near 0) such that

F (x) =
xm−kb(|x|)
(m− k)!

+ γ sgnx
xm−kL(|x|)
2(m− k)!

− β x
m−kL(|x|)
(m− k)!

m−k∑
j=1

1
j

+ o(|x|m−kL(|x|)) (6)

as x→ ±∞ (x→ 0±) in the ordinary sense. The last property is equivalent to

lim
x→∞

(m− k)!(ak−mF (ax)− (−1)m−kF (−x))
xm−kL(x)

= γ + β log a, (7)

for each a > 0 (respectively limx→0+). Moreover, (6) implies that

F (λx) = b(λ)
(λx)m−k

(m− k)!
+ γL(λ)

(λx)m−k

2(m− k)!
sgnx+ βL(λ)λm−klm−k(x)

+ o(λm−kL(λ)) (8)

as λ→∞ (respectively λ→ 0+), in the sense of convergence in D′.

Remark 2.8. Even if initially not assumed, relation (7) holds uniformly for a on compact
subsets of (0,∞).

It should be noticed that in (7) it is not absolutely necessary to assume that the limit
is of the form γ + β log a (however, (7) will force it to have this form). Indeed, we have
the following corollary.

Theorem 2.9. Let f ∈ D′. Then f has quasiasymptotics at infinity (at the origin) of
degree −k, k ∈ Z+, if and only if there exist a positive integer m > k and a continuous
(continuous near 0) m-primitive F of f such that for each a > 0 the following limit exists

lim
x→∞

ak−mF (ax)− (−1)m−kF (−x)
xm−kL(x)

,

(respectively the limit taken as x→ 0+).

3. The quasiasymptotic behavior of degree −1 and summability of Fourier
series and integrals. In this section, we discuss the structure of the quasiasymptotic
behavior of degree −1 within the context of summability of Fourier series and integrals. In
particular, we obtain in an easy way the characterization of distributional point values [10]
(i.e., the value of a distribution at a point in the sense of  Lojasiewicz) of periodic functions
given by R. Estrada in [6]. Some results of G. Walter [26, 27] are obtained by this method.
We also discuss the case of jump behavior of distributions at a point [8, 21, 22].

We first specialize Theorem 2.7 at infinity for k = 1 and the trivial slowly varying
function. Recall the notion of limits of distributions in the Cesàro sense [7, 9]. Let f ∈ D′,
we write

lim
x→∞

f(x) = γ (C,m),

if there exists an m-primitive of f , say Fm, such that Fm is a regular distribution in some
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interval of the form [A,∞), for some A, and satisfies the ordinary asymptotic relation

Fm(x) = γ
xm

m!
+ o(xm) as x→∞. (9)

Note that if (9) holds for Fm, then it holds for all m-primitives of f . So, we may refor-
mulate some parts of Theorem 2.7 as follows.

Theorem 3.1. Let f ∈ D′, then

f(λx) = γδ(λx) + β p.v.(
1
λx

) + o(
1
λ

) as λ→∞ in D′

if and only if there exists m ∈ N such that for a primitive F of f , i.e., F ′ = f , the
following limit holds for each a > 0

lim
x→∞

F (ax)− F (−x) = γ + β log a (C,m).

We now study the distributional jump behavior of a distribution at a point. Let f ∈ D′
and x0 ∈ R, we say that f has distributional jump behavior at x = x0 if f(x0 + x) has
the following quasiasymptotic behavior at the origin

f(x0 + εx) = γ−H(−x) + γ+H(x) as ε→ 0+ in D′. (10)

Note that if γ− = γ+ we obtain the usual  Lojasiewicz notion of the value of a distri-
bution at point [10]. We may deal only with tempered distributions because we want
to consider Fourier transform [17]. We will consider the following Fourier transform,
φ̂(x) =

∫∞
−∞ φ(t)e−ixtdt for φ ∈ S, and as usual we define it on S ′ by considering the

transpose. If f ∈ S ′ in (10), then the asymptotic relation holds also in S ′ [8, 23, 30].
Hence if we apply Fourier transform to (10) and use the very well-known formulas for
the Fourier transform of H, we obtain it is equivalent to

eiλx0xf̂(λx) = 2πd1δ(λx)− id2 p.v.
(

1
λx

)
+ o

(
1
λ

)
as λ→∞ in S ′, (11)

where d1 = (γ+ + γ−)/2 and d2 = γ+ − γ−. Note that we can interpret d2 = [f ]x=x0
as

the jump of f at x = x0. In the following two subsections, for simplicity, we assume that
f̂ = µ is a (regular) Borel measure, but the author remarks that these results hold, with
a suitable interpretation, for general tempered distributions.

3.1. Characterization of the jump behavior by asymmetric Cesàro means. Let
f be as in the previous discussion, that is, f ∈ S ′, f has the distributional jump behavior
(10), and the Fourier transform of f is a Borel measure f̂ = µ . We can apply Theorem
3.1 to (11) and deduce that f ∈ S ′ has the jump behavior (10) if and only if there exists
m ∈ N such that for each a > 0

lim
x→∞

1
2π

∫ ax

−x
eix0tdµ(t) = d1 +

d2

2πi
log a (C,m). (12)

If we introduce the means functions

φma (t) = (1 + t)mχ[−1,0] + (1− t/a)mχ[0,a](t),

a direct calculation shows that (12) is equivalent to

lim
x→∞

1
2π

∫ ∞
−∞

eix0tφma

(
t

x

)
dµ(t) = d1 +

d2

2πi
log a,
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furthermore, the last relation holds uniformly for a on compact subsets of (0,∞). This
characterizes completely the jump behavior in terms of Cesàro summability of asymmetric
trigonometric integrals when the Fourier transform is a Borel measure.

Remark 3.2. More general results, valid even if f̂ is not a Borel measure, have been
given in [21, 22]. In the case of  Lojasiewicz point values, a pointwise inversion formula
is given by using the concept of special values of distributional evaluations in the Cesàro
sense, the details can be found in the cited references.

3.2. Abel means. We now discuss the case of Abel summability. Let f be again such
that f ∈ S ′, f has the distributional jump behavior (10), and the Fourier transform f̂ = µ

is a Borel measure. Let µ = µ− + µ+ be any decomposition of µ as the sum of two Borel
measures having supports in (−∞, 0] and [0,∞), respectively. Then

U(z) =
1

2π

∫ 0

−∞
eiz̄tdµ−(t) +

1
2π

∫ ∞
0

eiztdµ+(t), =m z > 0,

is a harmonic representation of f in the upper half-plane, that is,

lim
y→0+

U(x, y) = f(x),

where the last limit is taken in D′ [3]. We shall study the behavior of U when approaching
x0 through any line in the upper half-plane =m z > 0. Note that because of the results
of [8], any harmonic representation will have the same behavior at the boundary point.
We remark this problem was studied in [8] by using the Poisson kernel. Because of (8)
in Theorem 2.7, we can choose the measures in the decomposition having the following
expansions,

eiλx0xµ+(λx) = (b(λ) + πd1)δ(λx) +
d2

iλ
Pf
(
H(x)
x

)
+ o

(
1
λ

)
and

eiλx0xµ−(λx) = (−b(λ) + πd1)δ(λx) +
d2

iλ
Pf
(
H(−x)
x

)
+ o

(
1
λ

)
,

as λ→∞ in S ′. So, we have that if the angle θ stays in a compact subset of (−π/2, π/2),
the following limit holds uniformly in θ,

U

(
x0 +

tan θ
λ

,
1
λ

)
=
〈
λeiλx0xµ−(λx),

e(1+itanθ)x

2π

〉
+
〈
λeiλx0xµ+(λx),

e(−1+itanθ)x

2π

〉
= d1 +

d2

π

∫ ∞
0

sin(x tan θ)
e−x

x
dx+ o(1) , as λ→∞.

Using Parseval’s relation in the last integral and making the simplifications one has that∫ ∞
0

sin(x tan θ)
e−x

x
dx =

1
2i

∫ tan θ

− tan θ

dt
t− i

= θ.

Therefore, we have obtained

lim
λ→∞

U

(
x0 +

tan θ
λ

,
1
λ

)
= d1 +

θ

π
d2. (13)
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If we take θ = 0 in (13), we obtain a pointwise Fourier inversion formula in terms of Abel
means of the trigonometric integral

lim
ε→0+

1
2π

∫ ∞
−∞

e−ε|x|eix0xdµ(x) =
γ− + γ+

2
.

Note that it is not necessary to assume that f̂ is a Borel measure, in such a case we
decompose f̂ = f̂− + f̂+, where they satisfy the properties of µ±, and use the harmonic
representation

U(z) =
1

2π
〈f̂−(t), eiz̄t〉+

1
2π
〈f̂+(t), eizt〉,

so we obtain that

lim
z→x0, z∈ lθ

U(z) = d1 +
θ

π
d2,

where lθ denotes the ray in the upper half-plane starting from x0 and making an angle
θ with the line x = x0, here −π/2 < θ < π/2. This relation holds uniformly for θ in
compact subsets of (−π/2, π/2).

3.3. Case of Fourier series of distributions. We may specialize the results of the
last two subsections to 2π-periodic distributions. Let f(x) =

∑∞
−∞ cne

inx, where the
series is assumed to converge in S ′. Since

f̂(x) = 2π
∞∑
−∞

cnδ(x− n),

we immediately obtain that f satisfies (10) if and only if there is an m ∈ N such that for
each a > 0

lim
x→∞

∞∑
−∞

cne
ix0nφma

(
n

x

)
= d1 +

d2

2πi
log a. (14)

Let lθ denote the ray in the upper half-plane starting from x0 and making an angle θ
with the line x = x0, here −π/2 < θ < π/2. Then from (13), one has that

lim
ξ→x0, ξ∈lθ

−1∑
−∞

cne
inξ̄ +

∞∑
0

cne
inξ = d1 +

θ

π
d2. (15)

If we write the cosines and sines series, f(x) =
∑∞
n=0 an cos(nx) + bn sin(nx), then (15)

takes the form

lim
ξ→x0, ξ∈lθ

∞∑
n=0

an cos(nξ) + bn sin(nξ) = d1 +
θ

π
d2, (16)

both (15) and (16) hold uniformly for θ in compact subsets of (−π/2, π/2).

Remark 3.3. The characterization (14) appears in [21, 22]. It generalizes R. Estrada’s
characterization from [6]; indeed, when f has a distributional point value at x0, say
f(x0) = γ in D′, then d1 = γ and d2 = 0 and the logarithmic term disappears, this is
precisely the cited result from [6]. If one takes θ = 0 in (16), one obtains

lim
r→1−

∞∑
n=0

(an cosnx0 + bn sinnx0)rn = d1,
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which in the case of  Lojasiewicz point values is the result obtained for the Abel-Poisson
means of the series in [27] by G. Walter.

4. Some properties of the quasiasymptotics at infinity. Sometimes is very useful
to have the right of evaluating (2) in more test functions than in S. This section is
dedicated to give some conditions over the test functions which guarantee one can do
this. We need the following definition.

Definition 4.1. Let φ ∈ E and β ∈ R. We say that

φ(x) = O(|x|β) strongly as |x| → ∞,

if for each m ∈ {0, 1, 2, . . .}

φ(m)(x) = O(|x|β−m) as |x| → ∞. (17)

The set of φ’s satisfying Definition 4.1 for a particular β forms the space Kβ which we
topologize in the obvious way [9]. These spaces and their dual spaces are very important
in the theory of asymptotic expansions of distributions [9]. In fact, if we set K =

⋃
Kβ

(the union having a topological meaning), we obtain that K′ is the space of distributional
small distributions at infinity [7, 9], they satisfy the moment asymptotic expansion at
infinity [9]. We need the following lemma whose proof can be found in [20, Proposition
2.11].

Lemma 4.2. If b is associate asymptotically homogeneous of degree 0 at infinity with
respect to the slowly varying function L, then b(x) = O(xσ) as x→∞, for any σ > 0.

The next theorem shows that if f has quasiasymptotics at infinity, then the distribu-
tional evaluation of f at φ ∈ Kβ makes sense under some conditions on β, specifically,
we show that f has extensions to some of the spaces Kβ .

Theorem 4.3. Let f ∈ D′ have quasiasymptotic behavior of degree α at infinity with
respect to the slowly varying function L. If α + β < −1, then f admits an extension
to Kβ.

Proof. Let σ > 0 such that α + β + σ < −1, then from Theorem 2.5, Theorem 2.7 and
Lemma 4.2 we deduce that there exist m ∈ N and a continuous m-primitive of f , say F ,
such that

F (x) = O(|x|m+α+σ) as |x| → ∞. (18)

Notice that here we have used that L(x) = O(xσ) as x → ∞ [18]. So it is evident that
an extension of f to Kβ is given by

〈f(x), φ(x)〉 = (−1)m
∫ ∞
−∞

F (x)φ(m)(x)dx, φ ∈ Kβ ,

which in view of (17) and (18) is well-defined and defines an element of K′β .

We now show that the quasiasymptotic behavior remains valid in K′β , with the as-
sumption under β imposed in Theorem 4.3.
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Theorem 4.4. Let f ∈ D′ have quasiasymptotic behavior at ∞ of degree α with respect
to a slowly varying function L. If α+ β < −1, then f has an extension to Kβ which has
the same quasiasymptotics in K′β.

Proof. The proof is similar to that of [23, Theorem 6.1] with some modifications in the
estimates. We will use the extension of f found in Theorem 4.3. We shall divide the proof
into two cases: α /∈ {−1,−2,−3, . . .} and α ∈ {−1,−2,−3, . . .}.

Suppose its degree is α /∈ {−1,−2,−3, . . .} and

f(λx) = C−L(λ)
(λx)α−

Γ(α+ 1)
+ C+L(λ)

(λx)α+
Γ(α+ 1)

+ o(λαL(λ)) as λ→∞,

in D′. Find σ > 0 such that α+ β + σ < −1. Then, there are an m such that m+ α > 0
and a continuous m-primitive F of f such that

F (x) =
xm|x|α

Γ(m+ α+ 1)
L(|x|)(C−H(−x) + C+H(x)) + o(|x|m+αL(|x|)),

x→∞. We recall that H denotes the Heaviside function. We make the usual assumptions
over L, assume that L is positive, defined and continuous in (0,∞) and there existsM1 > 0
such that

L(λx)
L(λ)

≤M1 max{xσ, x−σ}, λ ≥ 1, x ∈ (0,∞), (19)

in [23, Section 2] are the reason why these assumptions can be always made (see Potter’s
Theorem [2, p. 25] also). Let φ ∈ Kβ . Then we can decompose φ = φ1 + φ2 + φ3, where
supp φ1 ⊆ (−∞, 1], supp φ2 is compact and supp φ3 ⊆ [1,∞). Observe that since φ2 ∈ D
we have that

〈f(λx), φ2(x)〉 ∼ C−λαL(λ)
〈

xα−
Γ(α+ 1)

, φ2(x)
〉

+ C+λ
αL(λ)

〈
xα+

Γ(α+ 1)
, φ2(x)

〉
, (20)

as λ→∞. If we want to show (20) for φ, it is enough to show it for φ3 placed instead of
φ2 in the relation because by symmetry it would follow for φ1 and hence for φ. Set

G(x) =
F (x)

xα+mL(x)
for x ≥ 1,

then

lim
x→∞

G(x) =
C+

Γ(α+m+ 1)
.

So, we can find a constant M2 > 0 such that

|G(x)| < M2 , globally. (21)

Relation (21) together with (19) show that for λ ≥ 1,∣∣∣∣G(λx)
L(λx)
L(λ)

xα+mφ
(m)
3 (x)

∣∣∣∣ ≤M1M2x
α+m+σ|φ(m)

3 (x)|H(x− 1).

Since φ3 ∈ Kβ , the right hand side of the last estimate belongs to L1(R) and thus we can
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use the Lebesgue dominated convergence theorem to obtain

lim
λ→∞

1
λαL(λ)

〈f(λx), φ3(x)〉 = lim
λ→∞

(−1)m
∫ ∞

0

G(λx)
L(λx)
L(λ)

xα+mφ
(m)
3 (x)dx

= (−1)m
C+

Γ(α+m+ 1)

∫ ∞
0

xα+mφ
(m)
3 (x)dx

= C+

〈
xα+

Γ(α+ 1)
, φ3(x)

〉
.

This shows the result in the case α /∈ {−1,−2,−3, . . .}.
We now aboard the case α = −k, k ∈ N. Assume that

f(λx) = γλ−kL(λ)δ(k−1)(x) + βλ−kL(λ)x−k + o(λ−kL(λ))

as λ → ∞ in D′. As in the last case, it suffices to assume that φ ∈ Kβ , supp φ ⊆ [1,∞)
and show that

lim
λ→∞

λk

L(λ)
〈f(λx), φ(x)〉 = β

∫ ∞
1

φ(x)
xk

dx.

We may proceed as in the previous case to apply the structural theorem, but we rather
reduce it to the previous situation. So, set g(x) = xkf(x). Then

g(λx) = βL(λ) + o(L(λ)) as λ→∞ in D′. (22)

But φ ∈ Kβ implies φ(x)/xk ∈ Kβ−k then since the degree of the quasiasymptotic
behavior of g is 0, last case implies that (22) is valid in K′β−k because β − k < −1,
therefore

lim
λ→∞

λk

L(λ)
〈f(λx), φ(x)〉 = lim

λ→∞

1
L(λ)

〈
g(λx),

φ(x)
xk

〉
= β

∫ ∞
1

φ(x)
xk

dx.

This completes the proof of Theorem 4.4.

5. Structure of quasiasymptotically bounded distributions. This section is in-
tended to study the structure of the distributional relation

f(λx) = O(ρ(λ)),

where here λ → ∞ or λ → 0+ and ρ is a regularly varying function. Distributions
satisfying this relation will be called quasiasymptotically bounded distributions, we make
this more precise in the following definition.

Definition 5.1. Let L be a slowly varying function at infinity (respectively at the origin).
We say that f ∈ D′ is quasiasymptotically bounded at infinity (at the origin) in D′ with
respect to λαL(λ), α ∈ R, if

〈f(λx), φ(x)〉 = O(λαL(λ)) as λ→∞ ∀φ ∈ D, (23)

(respectively λ→ 0+). If (23) holds, it is also said that f is quasiasymptotically bounded
of degree α at infinity (at the origin) with respect to the slowly varying function L. We
express (23) by

f(λx) = O(λαL(λ)) as λ→∞ in D′, (24)

(respectively λ→ 0+).
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In the case at infinity, since L(λ) = O(λσ) as λ → ∞, for any σ > 0, it follows
immediately from [9, Theorem 6.6.1] that f must be a tempered distribution. Note that
in analogy to the quasiasymptotic behavior of distributions, we may talk about (24) in
other spaces of distributions. It will follow from our structural theorem that actually
the relation holds in S ′. The case at the origin is related to the problem of extension
of distributions from R \ {0} to R. Indeed, if f ∈ D′(R \ {0}) and (23) holds for all
φ ∈ D(R \ {0}), it follows from [7, Theorem 6.9.1] that f admits an extension to R.

We now proceed to obtain the structure of quasiasymptotically bounded distributions.
For this aim, the program established in [20, 23] will be followed. We will integrate the
relation (24) and the coefficients of this integration will satisfy the properties of the
following definition.

Definition 5.2. A function b is said to be asymptotically homogeneously bounded of
degree α at infinity with respect to the slowly varying function L if it is measurable and
defined in some interval [A,∞), A > 0, and for each a > 0

b(ax) = aαb(x) +O(L(x)), x→∞. (25)

Similarly, one defines asymptotically homogeneously bounded functions at the origin.
Our first goal is to study the asymptotic properties of this class of functions. From the
results of [18, Section 2.4], one has that (25) must hold uniformly for a in compact
subsets of (0,∞). Most of the proofs of the following results are the analog to those for
asymptotically homogeneous functions by replacing the o symbol by the O symbol and
making obvious modifications to the estimates. Therefore, they will be omitted; we refer
to [20, 23] and leave to the reader the details of such modifications.

Proposition 5.3. Let b be asymptotically homogeneously bounded at infinity (at the
origin) with respect to the slowly varying function L. If the degree is negative (respectively
positive), then b(x) = O(L(x)), as x→∞ (x→ 0+).

Proposition 5.4. Let b be asymptotically homogeneously bounded at infinity (at the
origin) with respect to the slowly varying function L. If the degree is positive (respectively
negative), then there exits a constant γ such that b(x) = γxα + O(L(x)), as x → ∞
(x→ 0+).

Note that for the case at infinity since L(x) = O(xσ) as x→∞, for any σ > 0, then
any asymptotically homogeneously bounded function of degree 0 at infinity satisfies that
b(x)/xσ is asymptotically homogeneously bounded of degree −σ with respect to the trivial
slowly varying function L ≡ 1 and hence by Proposition 5.3 it satisfies b(x) = O(xσ)
as x → ∞. Then, for large argument, it is a regular tempered distribution. Similarly,
any asymptotically homogeneously bounded function of degree 0 at the origin satisfies
b(x) = O(x−σ) as x → 0+, for any σ > 0, consequently it is a distribution for small
argument. The proof of the next proposition is totally analogous to those of [20, Theorem
2.12] and [23, Theorem 3.8] therefore will be omitted again.

Proposition 5.5. Let b be asymptotically homogeneously bounded of degree zero at in-
finity (at the origin) with respect to the slowly varying function L. Suppose that b is
locally integrable on [A,∞) (respectively (0, A]). We denote by b(x)H(x−A) the regular
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distribution defined by

〈b(x)H(x−A), φ(x)〉 =
∫ ∞
A

b(x)φ(x) dx,

(respectively the distribution b(x)(H(x)−H(x−A))). Then

b(λx)H(λx−A) = b(λ)H(x) +O(L(λ)) as λ→∞ in S ′,

(respectively b(λx)(H(x)−H(λx−A)) as λ→ 0+ in D′).

Corollary 5.6. Let b be an asymptotically homogeneously bounded function of degree
0 at infinity (at the origin) with respect to L. Then, there exists c ∈ C∞(0,∞), being
asymptotically homogeneously bounded of degree 0, such that b(x) = c(x) + O(L(x)) as
x→∞ (respectively as x→ 0+). Moreover, we may choose c vanishing in a neighborhood
of 0 (∞).

Proof. We only show the assertion at infinity, the case at the origin is similar. Find
B such that b is locally bounded in [B,∞). Take φ ∈ D′ supported in (0,∞) such
that

∫∞
0
φ(t)dt = 1 and set c(x) =

∫∞
B/x

b(xt)φ(t)dt. The corollary now follows from
Proposition 5.5.

The main connection between quasiasymptotically bounded distributions and asymp-
totically homogeneously bounded functions is given in the next proposition, again the
proof will be omitted since it is analogous to those of [20, Proposition 2.5] and [23,
Proposition 3.1].

Proposition 5.7. Let f ∈ D′ be quasiasymptotically bounded of degree α at infinity (at
the origin) with respect to the slowly varying function L. Let m ∈ N. Then, for any given
Fm, an m-primitive of f in D′, there exist functions b0, . . . , bm−1, continuous on (0,∞),
such that

Fm(λx) =
m−1∑
j=0

λα+mbj(λ)
xm−1−j

(m− 1− j)!
+O(λα+mL(λ)) in D′,

as λ→∞ (respectively λ→ 0+), where each bj is asymptotically homogeneously bounded
of degree −α− j − 1 with respect to L.

Thus we obtain from Proposition 5.3, Proposition 5.4 and Proposition 5.7 our first
structural theorem.

Theorem 5.8. Let f ∈ D′ and α /∈ Z−. Then f is quasiasymptotically bounded of degree
α at infinity (at the origin) with respect to the slowly varying function L if and only if
there exist m ∈ N, m+α > 0, and a continuous (continuous near 0) m-primitive F of f
such that

F (x) = O(|x|m+αL(|x|)), (26)

as |x| → ∞ (respectively x→ 0) in the ordinary sense. Moreover, in the case at infinity,
f is quasiasymptotically bounded of degree α with respect to L in S ′.

Proof. We only discuss the case at infinity, the proof of the assertion at the origin is
similar to this case. It follows from Proposition 5.7, Proposition 5.3 and Proposition 5.4
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that given m ∈ N and an m-primitive Fm, there is a polynomial pm−1 of degree at most
m− 1 such that

Fm(λx) = pm−1(λx) +O(λα+mL(λ)) as λ→∞ in D′. (27)

From the definition of boundedness in D′, it follows that there is an m > −α such that
(27) holds uniformly for x ∈ [−1, 1]. We let F = Fm − pm−1, so by taking x = −1, x = 1
and replacing λ by x in (27) we obtain (26). The converse follows by observing that
(26) implies that F (λx) = O(λα+mL(λ)) in S ′ which gives the result after differentiating
m-times.

We now analyze the other cases.

Theorem 5.9. Let f ∈ D′ and let k be a positive integer. Then f is quasiasymptotically
bounded of degree −k at infinity (at the origin) with respect to L if and only if there exist
m > k ∈ N, an asymptotically homogeneously bounded function b of degree 0 at infinity
(at the origin) with respect to L, and a continuous (continuous near 0) m-primitive F of
f such that

F (x) = b(|x|)xm−k +O(|x|m−kL(|x|)), (28)

as |x| → ∞ (x→ 0). Moreover (28) is equivalent to have

ak−mF (ax)− (−1)m−kF (−x) = O(xm−kL(x)), (29)

as x → ∞ (x → 0+), for each a > 0. In the case at infinity, it follows that f is quasi-
asymptotically bounded of degree −k with respect to L in S ′.

Proof. Again we only give the proof of the assertion at infinity, the case at the origin
is similar. If f(λx) = O(λ−kL(λ)) in D′, then after k − 1 integrations Proposition 5.7
and Proposition 5.4 provide us of a (k − 1)-primitive of f which is quasiasymptotically
bounded of degree−1 at infinity with respect to L, hence we may assume that k = 1. Next,
Proposition 5.7, Proposition 5.3 and the definition of boundedness in D′ give to us the
existence of an m > 1, an asymptotically homogeneously bounded function of degree -1
with respect to L and an m-primitive F of f such that F (λx) is continuous for x ∈ [−1, 1]
(hence F is continuous on R) and F (λx) = λm−1b(λ)xm−1 + O(λm−1L(λ)) as λ → ∞
uniformly for x ∈ [−1, 1], by taking x = −1, x = 1 and replacing λ by x one gets (28).
Assume (28), by using Corollary 5.6, we may assume that b is locally integrable on [0,∞),
this allows the application of Proposition 5.5 to deduce that F (λx) = λm−1b(λ)xm−1 +
O(λm−1L(λ)) as λ→∞ in S ′ and hence the converse follows by differentiating m-times.
That (28) implies (29) is a simple calculation; conversely, setting b(x) = xk−mF (x) for
x > 0, one obtains (28).

This section ends with three remarks concerning some consequences of the structural
theorems for quasiasymptotically bounded distributions.

Remark 5.10. Even if not initially assumed, the proof of Theorem 5.9 forces (29) to
hold uniformly for a on compact subsets of (0,∞).

Remark 5.11. The results of Section 4 are also valid for quasiasymptotically bounded
distributions. Indeed, let f ∈ D′ be quasiasymptotically bounded of degree α at infinity
with respect to the slowly varying function L. If α+ β < −1, then f has an extension to
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Kβ , the proof of this assertion is identical to that of Theorem 4.3. Moreover, if one follows
the proof of Theorem 4.4, one finds that it is even easier to show that such an extension
of f is quasiasymptotically bounded at infinity with respect to L, with the same degree,
in K′β provided that α+ β < −1.

Remark 5.12. This remark is the analog to Remark 2.6 in the case of quasiasymptot-
ically bounded distributions. Let α /∈ Z−. If we only assume that f ∈ D′(R \ {0}) is
quasiasymptotically bounded of degree α at the origin with respect to L in D′(R \ {0}),
then the arguments given in this section lead to the existence of an m > −α and a dis-
tribution F , which is a continuous function near 0, such that F (x) = O(|x|m+αL(|x|))
and F (m) = f on D′(R \ {0}). Hence F (m) is an extension of f to R which is quasi-
asymptotically bounded in D′; the next argument shows that if α > −1, then the quasi-
asymptotically bounded extension of degree α is unique. If f is already defined on R
but only satisfies f(λx) = O(λαL(λ)) as λ → 0+ in D′(R \ {0}), then there are con-
stants a0, . . . , an such that f +

∑n
j=0 ajδ

(j) is quasiasymptotically bounded at the origin
with respect to λαL(λ), these constants are unique if α > −1. These properties are not
satisfied for α ∈ Z− as shown by the example f(x) = g′(x), where g(x) = log2 xH(x). In-
deed, g(x) is asymptotically homogeneously bounded of degree 0 with respect to log x−1,
hence g(λx) = g(λ)H(x) + O(log λ−1) as λ → 0+ in D′, differentiating the last expres-
sion one has that f(λx) = log2 λδ(λx) + O(λ−1 log λ−1) as λ → 0+ in D′, therefore
f(λx) = O(λ−1 log λ−1) as λ → 0+ in D′(R \ {0}) but it is impossible to find constants
a0, . . . , an such that f +

∑n
j=0 ajδ

(j) be quasiasymptotically bounded at the origin with
respect to λ−1 log λ−1. A counterexample for α = −k is constructed by considering g(k).

6. Open problems. In this last section, we pose two open problems concerning the
quasiasymptotics of Schwartz distributions. The first problem is one-dimensional while
the second one is multidimensional.

6.1. First open problem. It is known that for quasiasymptotic behaviors the optimal
class to work with is the class of regularly varying functions. However, for quasiasymptotic
boundedness one can still define the relations f(λx) = O(ρ(λ)) and f(λx) = o(ρ(λ)) even
if ρ is not a regularly varying function; furthermore, one may take any eventually positive
function ρ. It is clear that if we do not impose restrictions over the function ρ, not too
much can be said about the structure of these distributional relations. Since experience
has shown that the structure of these type of asymptotic relations plays a very important
role in the application of the notion, one may restrict the definition of quasiasymptotic
boundedness to ρ in classes of functions that allow one to describe the structure. Actually,
this has been done in this paper for ρ in the class of regularly varying functions. It seems
that classes such as extended regularly varying functions or O-regularly varying functions
[2] could be adequate for this purpose.

Open problem: Find the optimal classes of functions to work with quasiasymptotic
boundedness.

6.2. Second open problem. The structure of quasiasymptotics in the multidimen-
sional case is still an open question. Most known results are only valid under restrictions
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over the support of the distribution; some samples of these results can be found in [16,
24]. The recent work of Drozhzhinov and Zavialov [5] is of relevance for this open ques-
tion. Their results suggest that spherical representations may be a path to follow in order
to find an answer to such an important question.

Open problem: Find the complete structure of quasiasymptotic behaviors of distribu-
tions in the multidimensional case.
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[11] S. Pilipović, Some properties of the quasiasymptotic of Schwartz distributions. Part I:

Quasiasymptotic at ±∞, Publ. Inst. Math. (Beograd) (N.S.) 43 (1988), 125–130.
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