BOREL SUMMABILITY FOR A FORMAL SOLUTION

$$
\text { OF } \frac{\partial}{\partial t} u(t, x)=\left(\frac{\partial}{\partial x}\right)^{2} u(t, x)+t\left(t \frac{\partial}{\partial t}\right)^{3} u(t, x)
$$

HIROSHI YAMAZAWA
College of Engineer and Design, Shibaura Institute of Technology
307 Hukasaku, Minuma-ku, 337-8570 Saitama, Japan
E-mail: yamazawa@shibaura-it.ac.jp

Abstract

In this paper we study the Borel summability of a certain divergent formal power series solution for an initial value problem. We show the Borel summability under the condition that an initial value function $\phi(x)$ is an entire function of exponential order at most 2.

1. Introduction and statement of the main result. Let $t, x, \xi \in \mathbb{C}$. Let us introduce $D_{R}:=\{x \in \mathbb{C}:|x|<R\}$ and $S_{d, \theta}:=\{\xi \in \mathbb{C} \backslash\{0\}:|\arg \xi-d|<\theta\}$. Let $\mathcal{O}\left(D_{R}\right)$ (resp. $\left.\mathcal{O}\left(S_{d, \theta} \times D_{R}\right)\right)$ be the set of all holomorphic functions on $D_{R}\left(\right.$ resp. $\left.S_{d, \theta} \times D_{R}\right), \mathcal{O}\left(D_{R}\right)[[t]]$ the set of all formal power series $\sum_{i=0}^{\infty} u_{i}(x) t^{i}$, where the coefficients $u_{i}(x)$ are in $\mathcal{O}\left(D_{R}\right)$. We denote by $[a]$ the integer part of $a \in \mathbb{R}$.

We consider the initial value problem

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} u(t, x)=a\left(\frac{\partial}{\partial x}\right)^{2} u(t, x)+b t\left(t \frac{\partial}{\partial t}\right)^{3} u(t, x) \tag{1}\\
u(0, x)=\phi(x)
\end{array}\right.
$$

where the numbers a and b are any complex numbers.
Let us recall some known results. If $b=0$, then equation (1) is the heat equation. Then we have the following two results.
i) Assume that the initial value function $\phi(x)$ is an entire function and satisfies with some positive constants C and K,

$$
|\phi(x)| \leq C e^{K|x|^{2}} \quad \text { for } \quad x \in \mathbb{C} .
$$

Then the formal power series solution $\hat{v}(t, x)$ of (1) is holomorphic in a neighborhood of $t=0$. This is a classical result, (see Kow).

[^0]ii) The following result is that of Lutz-Miyake-Schäfke in L-M-S. The following two statements a) and b) are equivalent:
a) The initial value function $\phi(x)$ is analytic on $\Omega=S_{d / 2, \theta} \cup S_{d / 2+\pi, \theta} \cup D_{r}$ and satisfies with some positive constants C and K,
$$
|\phi(x)| \leq C e^{K|x|^{2}} \quad \text { on } \quad \Omega .
$$
b) The formal power series solution $\hat{v}(t, x)$ of (1) is Borel summable in a direction d.

The case $a=0$ is covered by Ouchi Ou1 and Ou2, where he obtained some results on the multi-summability of some linear/nonlinear partial differential equations.

The purpose of this paper is to show the Borel summability for a formal solution of (1) in the case $a b \neq 0$.

At first we study the Borel summability for a formal power series solution $\widehat{v}(t, x)$. We refer the reader for details to Lutz-Miyake-Schäfke L-M-S.

Let $\widehat{v}(t, x)=\sum_{i=0}^{\infty} v_{i}(x) t^{i} \in \mathcal{O}\left(D_{R}\right)[[t]]$ be a formal power series with coefficients holomorphic in D_{R}. By $\mathcal{O}\left(D_{R}\right)[[t]]_{1}$ we denote the subset of $\mathcal{O}\left(D_{R}\right)[[t]]$ whose coefficients satisfy with some positive constants A, B and $0<r<R$,

$$
\sup _{|x| \leq r}\left|v_{i}(x)\right| \leq A B^{i} \Gamma(i+1) \quad \text { for } \quad i=0,1, \ldots,
$$

The elements of $\mathcal{O}\left(D_{R}\right)[[t]]_{1}$ are called formal series of Gevrey class one.
We define $\mathcal{O}[t]]_{1}$ by

$$
\mathcal{O}[[t]]_{1}:=\bigcup_{R>0} \mathcal{O}\left(D_{R}\right)[[t]]_{1}
$$

Set $S_{d, \theta}^{t}:=\{t \in \mathbb{C} \backslash\{0\}:|\arg \xi-d|<\theta\}$ and $S_{d, \theta}^{t}(T)=S_{d, \theta}^{t} \cup\{t:|t|<T\}$.
Let $v(t, x)$ be analytic on $S_{d, \theta}^{t}(T)$ for some $T>0$. Then $\widehat{v}(t, x) \in \mathcal{O}[[t]]_{1}$ is called a Gevrey asymptotic expansion of $v(t, x)$ as $t \rightarrow 0$ in $S_{d, \theta}^{t}$, written as

$$
v(t, x) \cong{ }_{1} \widehat{v}(t, x) \quad \text { in } \quad S_{d, \theta}^{t},
$$

if for any proper subset $S^{\prime} \Subset S_{d, \theta}^{t}(T)$ there exist positive constants A, B and $0<r<R$ such that $\widehat{v}(t, x) \in \mathcal{O}\left(D_{R}\right)[[t]]_{1}$ and

$$
\sup _{|x| \leq r}\left|v(t, x)-\sum_{i=0}^{N-1} v_{i}(x) t^{i}\right| \leq A B^{N} \Gamma(N+1)|t|^{N} \quad \text { for } \quad t \in S^{\prime} \quad \text { and } \quad N=1,2, \ldots
$$

Definition 1.1. We say that $\widehat{v}(t, x) \in \mathcal{O}\left[[t]_{1}\right.$ is Borel summable in a direction $d \in \mathbb{R}$ if there exist a sector $S_{d, \theta}^{t}$ with $\theta>\pi / 2$ and a function $v(t, x)$ analytic on $S_{d, \theta}^{t} \times D_{r}$ such that $v(t, x) \cong_{1} \widehat{v}(t, x)$ in $S_{d, \theta}^{t}$.
Remark 1.2. Let us remark that the function $v(t, x)$ is unique if it exists, in that case $v(t, x)$ is called the Borel sum of $\widehat{v}(t, x)$.
Definition 1.3. Let $\widehat{v}(t, x)=\sum_{i=0}^{\infty} v_{i}(x) t^{i} \in \mathcal{O}\left(D_{R}\right)[[t]]$. Then the formal Borel transform $(\widehat{\mathcal{B}} \widehat{v})(\xi, x)$ is defined by

$$
(\widehat{\mathcal{B}} \widehat{v})(\xi, x)=v_{0}(x) \delta(\xi)+\sum_{i=1}^{\infty} \frac{v_{i}(x)}{\Gamma(i)} \xi^{i-1},
$$

where $\delta(\xi)$ means the delta function with support at $\xi=0$.

The Borel summability of $\widehat{v}(t, x) \in \mathcal{O}[[t]]_{1}$ can be characterized by
 summable in a direction d if one can find some $r<R$ so that the following two properties hold:

1. The power series $V(\xi, x)=(\widehat{\mathcal{B}} \widehat{v})(\xi, x)-v_{0}(x) \delta(\xi)$ converges for $|\xi|<R$ and $x \in D_{r}$.
2. There exists a $\theta>0$ such that for any $x \in \overline{D_{r}}$ the function $V(\xi, x)$ can be continued with respect to ξ into the sector $S_{d, \theta}$. Moreover, for any $\theta_{1}<\theta$ there exist constants $C, K>0$ such that

$$
\sup _{|x| \leq r}|V(\xi, x)| \leq C e^{K|\xi|} \quad \text { for } \quad \xi \in S_{d, \theta_{1}}
$$

Then $v_{0}(x)+\left(\mathcal{L}_{d} V\right)(t, x)$ is called the Borel summation in a direction d of $\widehat{v}(t, x)$, where \mathcal{L}_{d} is the Laplace transform that is defined by

$$
\left(\mathcal{L}_{d} \phi\right)(t, x):=\int_{0}^{\infty e^{i d}} \exp \left\{-\left(\frac{\xi}{t}\right)\right\} \phi(\xi, x) d \xi
$$

Note that by changing variables $s=b^{1 / 2} t$ and $y=a^{-1 / 2} b^{1 / 4} x$ in we can assume $a=1$ and $b=1$, which we shall do from now on.

For the equation (1) set

$$
\begin{equation*}
A_{0}(\xi)=1-\xi^{2} \tag{2}
\end{equation*}
$$

Definition 1.5. Set $Z=\left\{\xi: A_{0}(\xi)=0\right\}$. A singular direction is an argument of an element of Z. We denote by Ξ the totality of singular directions, i.e. $\Xi=\{d \in \mathbb{R}$: $d=0 \bmod (\pi)\}$.

Now we are ready to state the main result.
Main Theorem 1.6. Assume that the initial value function $\phi(x)$ is an entire function and satisfies with some positive constants C and K,

$$
|\phi(x)| \leq C e^{K|x|^{2}} \quad \text { on } \quad \mathbb{C}
$$

Then the equation (11) has a formal power series solution $\widehat{v}(t, x)$ which is Borel summable in a direction d with $\overline{S_{d, \theta}} \cap \Xi=\emptyset$ for a sufficiently small $\theta>0$.
REmARK 1.7. In the case $\phi(x)=e^{x^{2}}$, the formal solution $\widehat{v}(t, x)$ of (1) satisfies for $x \in \mathbb{R}$,

$$
\begin{array}{ll}
u_{i}(x) \geq 2^{i-3} \frac{((i-2) / 2)!^{3}}{(i / 2)!}\left(\frac{\partial}{\partial x}\right)^{4} \phi(x) & \text { for } i \geq 2, i \text { even, } \\
u_{i}(x) \geq \frac{1}{2^{i-4}} \frac{((i-1) / 2)!}{i!} \frac{(i-2)!^{3}}{((i-3) / 2)!^{3}}\left(\frac{\partial}{\partial x}\right)^{2} \phi(x) & \text { for } i \geq 3, i \text { odd. } \tag{3}
\end{array}
$$

It is not trivial to prove using this estimate that $\widehat{v}(t, x)$ is Borel summable however the initial value function $\phi(x)$ is an entire function of exponential order 2.
2. Formal solution. In this section we construct a formal power series solution of (1) and give an estimation of its coefficients.

First of all note that a formal power series solution $\widehat{v}(t, x)=\sum_{i=0}^{\infty} u_{i}(x) t^{i}$ of 1 is unique and satisfies the recurrence relations

$$
\left\{\begin{array}{l}
u_{0}(x)=\phi(x), \quad u_{1}(x)=\left(\frac{\partial}{\partial x}\right)^{2} \phi(x) \tag{4}\\
i u_{i}(x)=\left(\frac{\partial}{\partial x}\right)^{2} u_{i-1}(x)+(i-2)^{3} u_{i-2}(x) \quad \text { for } \quad i \geq 2
\end{array}\right.
$$

We have
Lemma 2.1. Assume that the initial value function $\phi(x) \in \mathcal{O}\left(D_{R}\right)$. Then the coefficients $u_{i}(x)$ of $\widehat{v}(t, x)$ are holomorphic in D_{R} and there exist positive constants A, B such that

$$
\begin{equation*}
\left|u_{i}(x)\right| \leq A B^{i} \Gamma(i+1) \quad \text { on } \quad D_{r} \quad \text { for } \quad i \in \mathbb{N}_{0} \quad \text { and } \quad 0<r<R \tag{5}
\end{equation*}
$$

Proof. For serii $f(x)=\sum_{j=0}^{\infty} f_{j} x^{j}$ and $g(x)=\sum_{j=0}^{\infty} g_{j} x^{j}$ with $g_{j} \geq 0$ write $f(x) \ll g(x)$ if $\left|f_{j}\right| \leq g_{j}$ for $j \in \mathbb{N}_{0}$.

For $A>0$ and $R>0$ set $\theta_{R}(x)=\frac{A}{1-x / R}$ and $\theta_{R}^{(n)}(x)=\left(\frac{\partial}{\partial x}\right)^{n} \theta_{R}(x)=\frac{A n!}{R^{n}(1-x / R)^{n+1}}$ for $n \geq 0$. For the function $\theta_{R}(x)$ we get

$$
\begin{equation*}
\theta_{R}^{(n)}(x) \ll \frac{R}{n+1} \theta_{R}^{(n+1)}(x) \quad \text { for } \quad n \geq 0 \tag{6}
\end{equation*}
$$

We will show that the coefficients $u_{i}(x)$ in (4) satisfy with some some $A>0$ and $R>0$,

$$
\begin{equation*}
u_{i}(x) \ll \frac{C_{R}^{i}}{i!} \theta_{R}^{(2 i)}(x) \quad \text { for } \quad i \geq 0 \tag{7}
\end{equation*}
$$

where $C_{R}=1+R^{4}$.
Since the function $\phi(x)$ is holomorphic in a neighborhood of the origin, for some $A>0$ and $R>0$ we have

$$
u_{0}(x)=\phi(x) \ll \theta_{R}^{(0)}(x)
$$

By the relation (4) we get

$$
u_{1}(x) \ll \theta_{R}^{(2)}(x) \ll \frac{C_{R}}{1!} \theta_{R}^{(2)}(x), \quad u_{2}(x) \ll \frac{C_{R}}{2!} \theta_{R}^{(4)}(x) \ll \frac{C_{R}^{2}}{2!} \theta_{R}^{(4)}(x)
$$

For $i \geq 3$ let us show the estimate (7) by induction. By the inductive assumption, we have

$$
\begin{equation*}
u_{j}(x) \ll \frac{C_{R}^{j}}{j!} \theta_{R}^{(2 j)}(x) \quad \text { for } \quad 0 \leq j<i \tag{8}
\end{equation*}
$$

Next by the estimates (6) and (8) we get

$$
\begin{align*}
\left(\frac{\partial}{\partial x}\right)^{2} u_{i-1}(x) & \ll \frac{C_{R}^{i-1}}{(i-1)!} \theta_{R}^{(2 i)}(x) \\
(i-2)^{3} u_{i-2}(x) & \ll \frac{(i-1)(i-2)^{3} C_{R}^{i-2} R^{4}}{(i-1)!(2 i-3)(2 i-2)(2 i-1)(2 i)} \theta_{R}^{(2 i)}(x) \tag{9}\\
& \ll \frac{C_{R}^{i-2} R^{4}}{(i-1)!} \theta_{R}^{(2 i)}(x) \ll \frac{C_{R}^{i-1} R^{4}}{(i-1)!} \theta_{R}^{(2 i)}(x)
\end{align*}
$$

Hence the relation (4) and the estimate (9) imply that the estimate (7) holds for $i \geq 0$.
3. Preparatory lemmas. In this section we recall two lemmas that we need to prove Theorem 1.6. These lemmas are in Ou1, so we omit their proofs.

Definition 3.1. Let $\phi_{i}(\xi, x) \in \mathcal{O}\left(S_{d, \theta} \times D_{R}\right), i=1,2$, satisfy $\left|\phi_{i}(\xi, x)\right| \leq C|\xi|^{\epsilon-1}$ for $\epsilon>0$. Then the convolution of $\phi_{1}(\xi, x)$ and $\phi_{2}(\xi, x)$ is defined by

$$
\left(\phi_{1} * \phi_{2}\right)(\xi, x)=\int_{0}^{\xi} \phi_{1}(\xi-\eta, x) \phi_{2}(\eta, x) d \eta .
$$

Then we have the following lemma.
Lemma 3.2 (Ou1, Lemma 1.4, p. 516]). Assume that the functions $\phi_{i}(\xi, x), i=1,2$, belonging to $\mathcal{O}\left(S_{d, \theta} \times D_{R}\right)$ satisfy

$$
\left|\phi_{i}(\xi)\right| \leq C_{i} \frac{|\xi|^{s_{i}-1}}{\Gamma\left(s_{i}\right)} \quad \text { on } \quad S_{d, \theta} \times D_{R}
$$

for $i=1,2$. Then the convolution $\left(\phi_{1} * \phi_{2}\right)(\xi, x)$ satisfies

$$
\left|\left(\phi_{1} * \phi_{2}\right)(\xi, x)\right| \leq C_{1} C_{2} \frac{|\xi|^{s_{1}+s_{2}-1}}{\Gamma\left(s_{1}+s_{2}\right)} \quad \text { on } \quad S_{d, \theta} \times D_{R}
$$

Lemma 3.3 ([Ou1 Lemma 3.2, p. 526]). For a series $\widehat{v}(t, x)=\sum_{n=1}^{\infty} v_{n}(x) t^{n}$ set $(\widehat{\mathcal{B}} \widehat{v})(\xi, x)=V(\xi, x)$. Then for $1 \leq k \leq \delta$ we have

$$
\widehat{\mathcal{B}}\left(t^{\delta}\left(t \frac{\partial}{\partial t}\right)^{k} \widehat{v}\right)(\xi, x)=\sum_{s=1}^{k} C_{k, s} \frac{\xi^{\delta-(s+1)}}{\Gamma(\delta-s)} *\left(\xi^{s} V(\xi, x)\right),
$$

where the constants $C_{k, s}$ satisfy

$$
\begin{equation*}
C_{1,1}=1, \quad C_{k, s}=-s C_{k-1, s}+C_{k-1, s-1} \tag{10}
\end{equation*}
$$

4. Proof of the Main Theorem. In this section we will prove the Main Theorem by analyzing a convolution equation that is constructed from the equation (1). Firstly, let us construct the convolution equation. To this end set $u(x, t)=\phi(x)+v(t, x)$. Substituting $u(t, x)$ into (1) we get

$$
\begin{equation*}
\frac{\partial}{\partial t} v(t, x)=\left(\frac{\partial}{\partial x}\right)^{2} \phi(x)+\left(\frac{\partial}{\partial x}\right)^{2} v(t, x)+t\left(t \frac{\partial}{\partial t}\right)^{3} v(t, x) . \tag{11}
\end{equation*}
$$

Now we multiply each term of (11) by t^{2} and apply the formal Borel transformation. Then by Lemma 3.3 we get the convolution equation

$$
\begin{equation*}
\xi V(\xi, x)=\frac{\xi^{2-1}}{\Gamma(2)}\left(\frac{\partial}{\partial x}\right)^{2} \phi(x)+\frac{\xi^{2-1}}{\Gamma(2)} *\left(\frac{\partial}{\partial x}\right)^{2} V(\xi, x)+\sum_{s=1}^{3} C_{3, s} \frac{\xi^{3-(s+1)}}{\Gamma(3-s)} *\left(\xi^{s} V(\xi, x)\right) \tag{12}
\end{equation*}
$$

For the formal solution $\widehat{v}(t, x)$ in Lemma 2.1 set $\widehat{v}_{0}(t, x):=\widehat{v}(t, x)-\phi(x)$ and

$$
\begin{equation*}
V(\xi, x)=\left(\widehat{\mathcal{B}} \widehat{v}_{0}\right)(\xi, x) . \tag{13}
\end{equation*}
$$

Then by Lemma 2.1, $V(\xi, x)$ is a holomorphic function on $|\xi|<\tau$ for some $\tau>0$ and satisfies 12 . We will show that $V(\xi, x)$ is analytic on $S_{d, \theta}$ for some directions d in ξ.

By

$$
C_{3,3} \delta(\xi) *\left(\xi^{3} V(\xi, x)\right)=\xi^{3} V(\xi, x)
$$

we rewrite 12 as

$$
\begin{align*}
\left(\xi-\xi^{3}\right) V(\xi, x) & =\frac{\xi^{2-1}}{\Gamma(2)}\left(\frac{\partial}{\partial x}\right)^{2} \phi(x) \\
& +\frac{\xi^{2-1}}{\Gamma(2)} *\left(\frac{\partial}{\partial x}\right)^{2} V(\xi, x)+\sum_{s=1}^{2} C_{3, s} \frac{\xi^{3-(s+1)}}{\Gamma(3-s)} *\left(\xi^{s} V(\xi, x)\right) \tag{14}
\end{align*}
$$

Note that $\xi-\xi^{3}=\xi A_{0}(\xi)$, where $A_{0}(\xi)$ is given by 22 . Let us construct a formal solution $V(\xi, x)=\sum_{i=0}^{\infty} V_{i}(\xi, x)$ of 14 with

$$
\begin{align*}
\xi A_{0}(\xi) V_{0}(\xi, x) & =\frac{\xi^{2-1}}{\Gamma(2)}\left(\frac{\partial}{\partial x}\right)^{2} \phi(x) \tag{15}\\
\xi A_{0}(\xi) V_{i}(\xi, x) & =\frac{\xi^{2-1}}{\Gamma(2)} *\left(\frac{\partial}{\partial x}\right)^{2} V_{i-1}(\xi, x)+\sum_{s=1}^{2} C_{3, s} \frac{\xi^{3-(s+1)}}{\Gamma(3-s)} *\left(\xi^{s} V_{i-1}\right) \tag{16}
\end{align*}
$$

for $i \geq 1$, where $V_{-1}(\xi, x) \equiv 0$.
Let $0<\tau<1$. Set $\Omega=S_{d, \theta} \cup\{\xi \in \mathbb{C}:|\xi|<\tau\}$ with $\overline{S_{d, \theta}} \cap \Xi=\emptyset$. Now we estimate functions $V_{i}(\xi, x)$ on Ω. For $A_{0}(\xi)$ we have

$$
\begin{equation*}
\left|\left\{A_{0}(\xi)\right\}^{-1}\right| \leq C_{0}\left(|\xi|^{2}+1\right)^{-1} \quad \text { on } \quad \Omega \tag{17}
\end{equation*}
$$

To estimate functions $V_{i}(\xi, x)$ we need the following lemma, which can be found in Kow and Pic.
Lemma 4.1. The following two statements are equivalent:
(i) A function $\phi(x)$ is an entire function and satisfies with some positive constants C, K,

$$
|\phi(x)| \leq C e^{K|x|^{2}} \quad \text { on } \quad \mathbb{C}
$$

(ii) For any $R>0$ there exist positive constants A and B depending on R such that

$$
\left\|\left(\frac{\partial}{\partial x}\right)^{i} \phi\right\|_{R} \leq A B^{i} \Gamma\left(\frac{i}{2}+1\right)
$$

for all $i=0,1, \ldots$, where $\|\phi\|_{R}=\sup _{x \in D_{R}}|\phi(x)|$.
Then for functions $V_{i}(\xi, x)$ we have
Proposition 4.2. Set $\varphi(x)=\left(\frac{\partial}{\partial x}\right)^{2} \phi(x)$. Assume that for some positive constants A, B,

$$
\begin{equation*}
\left\|\left(\frac{\partial}{\partial x}\right)^{i} \varphi\right\|_{R} \leq A B^{i} \Gamma\left(\frac{i}{2}+1\right) \tag{18}
\end{equation*}
$$

Then for a sufficiently small $R>0$

$$
\begin{equation*}
\left\|\left(\frac{\partial}{\partial x}\right)^{i} V_{k}\right\|_{R} \leq A B^{i+2 k} K^{k} \Gamma\left(\frac{i}{2}+k+1\right) \frac{|\xi|^{k}}{(k+1)!k!} \quad \text { for } \quad i, k \in \mathbb{N}_{0} \quad \text { and } \quad \xi \in \Omega \tag{19}
\end{equation*}
$$

where $K=C_{0}\left(1+\sum_{s=1}^{2}\left|C_{3, s}\right| / B^{2}\right)$.
We will give a proof of Proposition 4.2 in the next section.
By Proposition 4.2 we have

$$
\begin{equation*}
\left\|V_{k}\right\|_{R} \leq A\left(B^{2} K\right)^{k} \frac{|\xi|^{k}}{(k+1)!} \quad \text { for } \quad \xi \in \Omega \tag{20}
\end{equation*}
$$

Next by Lemma 4.1 and the estimate 20 we obtain the following proposition.

Proposition 4.3. Assume that the initial value function $\phi(x)$ is an entire function and satisfies with some positive constants C and K,

$$
|\phi(x)| \leq C e^{K|x|^{2}} \quad \text { on } \quad \mathbb{C} .
$$

Then for $(\xi, x) \in \Omega \times D_{\rho}$ with $\overline{S_{d, \theta}} \cap \Xi=\emptyset$,

$$
|V(\xi, x)| \leq C_{1} e^{K_{1}|\xi|}
$$

for $0<\rho<R$.
Proof. By 20 we get

$$
\|V\|_{R} \leq \sum_{i=0}^{\infty} A\left(B^{2} K\right)^{i} \frac{|\xi|^{i}}{(i+1)!} \quad \text { for } \quad \xi \in \Omega
$$

Hence Proposition 4.3 follows by Lemma 4.1 .
Finally to end the proof of the Main Theorem note that by Proposition 4.3 the solution $V(\xi, x)$ satisfies the conditions of Proposition 1.4 .
5. Proof of Proposition 4.2. Firstly, let us estimate the function $V_{0}(\xi, x)$. By the relation (15) we have

$$
\left(\frac{\partial}{\partial x}\right)^{i} V_{0}(\xi, x)=\left\{A_{0}(\xi)\right\}^{-1} \frac{\xi^{1-1}}{\Gamma(2)}\left(\frac{\partial}{\partial x}\right)^{i} \varphi(x)
$$

Then by the estimates (17) and 18 we get

$$
\left\|\left(\frac{\partial}{\partial x}\right)^{i} V_{0}\right\|_{R} \leq C_{0} \frac{|\xi|^{1-1}}{\Gamma(2)} A B^{i} \Gamma\left(\frac{i}{2}+1\right)
$$

and 19 follows for $k=0$.
To show that the functions $V_{k}(\xi, x)$ satisfy (19) for $k \geq 1$ we use the induction. So assume that

$$
\begin{equation*}
\left\|\left(\frac{\partial}{\partial x}\right)^{i} V_{k-1}\right\|_{R} \leq A B^{i+2(k-1)} K^{k-1} \Gamma\left(\frac{i}{2}+k-1+1\right) \frac{|\xi|^{k-1}}{k!(k-1)!} \quad \text { for } \quad \xi \in \Omega \tag{21}
\end{equation*}
$$

Let us give an estimate for the right hand side of the relation (16). For the first term, by the inductive assumption (21) we have

$$
\left\|\left(\frac{\partial}{\partial x}\right)^{i+2} V_{k-1}\right\|_{R} \leq A B^{i+2 k} K^{k-1} \Gamma\left(\frac{i}{2}+k+1\right) \frac{|\xi|^{k-1}}{k!(k-1)!} \quad \text { for } \quad \xi \in \Omega
$$

By Lemma 3.2 it follows that

$$
\begin{align*}
\left\|\frac{\xi^{2-1}}{\Gamma(2)} *\left(\frac{\partial}{\partial x}\right)^{i+2} V_{k-1}\right\|_{R} & \leq A B^{i+2 k} K^{k-1} \Gamma\left(\frac{i}{2}+k+1\right) \frac{|\xi|^{k+2-1}}{k!(k+1)!} \\
& =A B^{i+2 k} K^{k-1} \Gamma\left(\frac{i}{2}+k+1\right) \frac{|\xi|^{k+2-1}}{(k+1)!k!} \quad \text { for } \quad \xi \in \Omega \tag{22}
\end{align*}
$$

For the second term, by the inductive assumption (21) for $s=1,2$ we have

$$
\begin{align*}
\left\|\left(\frac{\partial}{\partial x}\right)^{i}\left(\xi^{s} V_{k-1}\right)\right\|_{R} & \leq A B^{i+2(k-1)} K^{k-1} \Gamma\left(\frac{i}{2}+k-1+1\right) \frac{|\xi|^{k+s-1}}{k!(k-1)!} \\
& =A B^{i+2(k-1)} K^{k-1} \Gamma\left(\frac{i}{2}+k-1+1\right) \frac{\Gamma(k+s)}{k!(k-1)!} \frac{|\xi|^{k+s-1}}{\Gamma(k+s)} \tag{23}
\end{align*}
$$

for $\xi \in \Omega$. So by Lemma 3.2 we derive

$$
\begin{align*}
& \left\|\left(\frac{\partial}{\partial x}\right)^{i}\left\{\sum_{s=1}^{2} C_{3, s} \frac{\xi^{3-s-1}}{\Gamma(3-s)} *\left(\xi^{s} V_{k-1}\right)\right\}\right\|_{R} \\
& \leq \sum_{s=1}^{2}\left|C_{3, s}\right| A B^{i+2(k-1)} K^{k-1} \Gamma\left(\frac{i}{2}+k-1+1\right) \frac{\Gamma(k+s)}{k!(k-1)!} \frac{|\xi|^{k+3-1}}{\Gamma(k+3)} \tag{24}\\
& \leq \frac{\sum_{s=1}^{2}\left|C_{3, s}\right|}{B^{2}} A B^{i+2 k} K^{k-1} \Gamma\left(\frac{i}{2}+k-1+1\right) \frac{k(k+1)(k+s-1)!}{(k+2)!} \frac{|\xi|^{k+3-1}}{(k+1)!k!}
\end{align*}
$$

for $\xi \in \Omega$. Moreover, we have

$$
\Gamma\left(\frac{i}{2}+k-1+1\right) k \leq \Gamma\left(\frac{i}{2}+k+1\right)
$$

and

$$
\frac{(k+1)(k+s-1)!}{(k+2)!} \leq 1
$$

for $s=1,2$. Hence we have

$$
\begin{align*}
\|\left(\frac{\partial}{\partial x}\right)^{i}\left\{\sum_{s=1}^{2} C_{3, s} \frac{\xi^{3-s-1}}{\Gamma(3-s)} *\right. & \left.\left(\xi^{s} V_{k-1}\right)\right\} \|_{R} \\
& \leq \frac{\sum_{s=1}^{2}\left|C_{3, s}\right|}{B^{2}} A B^{i+2 k} K^{k-1} \Gamma\left(\frac{i}{2}+k+1\right) \frac{|\xi|^{k+3-1}}{(k+1)!k!} \tag{25}
\end{align*}
$$

for $\xi \in \Omega$. Finally, by (16), 17), (22) and (25), we obtain

$$
\begin{align*}
\left\|\left(\frac{\partial}{\partial x}\right)^{i} V_{k}\right\|_{R} & \leq C_{0}\left(1+|\xi|^{2}\right)^{-1}\left\{A B^{i+2 k} K^{k-1} \Gamma\left(\frac{i}{2}+k+1\right) \frac{|\xi|^{k+1-1}}{(k+1)!k!}\right. \\
& \left.+\frac{\sum_{s=1}^{2}\left|C_{3, s}\right|}{B^{2}} A B^{i+2 k} K^{k-1} \Gamma\left(\frac{i}{2}+k+1\right) \frac{|\xi|^{k+2-1}}{(k+1)!k!}\right\} \tag{26}\\
& \leq A B^{i+2 k} K^{k} \Gamma\left(\frac{i}{2}+k+1\right) \frac{|\xi|^{k+1-1}}{(k+1)!k!}
\end{align*}
$$

with $K=C_{0}\left(1+\sum_{s=1}^{2}\left|C_{3, s}\right| / B^{2}\right)$.

References

[L-M-S] D. A. Lutz, M. Miyake, R. Schäfke, On the Borel summability of divergent solutions of the heat equation, Nagoya Math. J. 154 (1999), 1-29.
[Kow] S. Kowalevsky, Zur Theorie der partiellen Differentialgleichungen, J. Reine Angew. Math. 80 (1875), 1-32.
[Ou1] S. Ōuchi, Multisummability of formal solutions of some linear partial differential equations, J. Differential Equations 185 (2002), 513-549.
[Ou2] S. Ōuchi, Multisummability of formal power series solutions of nonlinear partial differential equations in complex domains, Asymptot. Anal. 47 (2006), 187-225.
[Pic] É. Picard, Leçons sur quelques types simples d'équations aux dérivées partielles avec des applications à la physique mathématique, Gauthier-Villars, Paris, 1927.

[^0]: 2010 Mathematics Subject Classification: Primary 34M30; Secondary 34M25.
 Key words and phrases: Linear P.D.E., Borel summability.
 The paper is in final form and no version of it will be published elsewhere.

