


A. INTRODUCTION

In Newtonian dynamics extended test bodies such as planets are usually represented
by point masses or rigid bodies, i.e. in both cases by systems with a finite number of
degrees of freedom. In general relativity a similar simplified representation of extended
bodies is offered by multipole particles introduced by Mathisson [1]. Equations of motion
of such particles are derived from the conservation law of energy and momentum. In
the case of a pole-dipole particle there are 10 parameters to be determined and only 7
equations of motion. Thus the world line associated with a pole-dipole particle remains
undetermined. This apparent difficulty is removed by noting that the world line is com-
pletely arbitrary unless it is related to the center of mass of the particle by suitable
conditions. The resulting equations of motion in flat space

m
δξ̇µ

ds
= 0,

δSµν

ds
= 0

state that the world line of the center of mass is straight and the internal angular mo-
mentum is constant.

The pole-dipole particle is frequently considered a classical model of the electron: Hönl
and Papapetrou [2], Weissenhoff [3]. The Dirac theory or the electron leads to a strange
phenomenon known as Zitterbewegung. Some authors [3] have used the freedom in the
choice of the world line associated with a pole-dipole particle for a classical representation
of this phenomenon. In deriving the Zitterbewegung, the Dirac equation is transformed
into a non-relativistic Schrödinger form and the Hamiltonian obtained is used to find
the Heisenberg equations of motion. The physical content of the Dirac equation is by no
means clear, however, and therefore this method is not fully justified.

In this series of lectures we study the theory of systems with internal degrees of
freedom on both the quantum and the classical level. The theory of spin 1

2 , mass m
particles is reformulated. It is still equivalent to the Dirac theory in most respects. The
Zitterbewegung is eliminated, however. On the classical level a system with spin 1

2 and
mass m is found to correspond to a pole-dipole particle with a straight world line.

Chapter B contains a mathematical introduction. Most of the material presented there
can be found in standard texts on modern algebra, in particular in Pontrjagin [4], Weyl
[5] and Boerner [6].

In Chapter C we formulate quantum mechanics in an operator form based on group
algebra. This formulation is applied in particular to the theory of angular momentum.
Theories of particles with mass m and spin 0 or 1

2 are also formulated.

[11]
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Finally in Chapter D the classical limit is discussed and compared with known results
for multipole particles.

B. MATHEMATICAL PRINCIPLES

I. Preliminaries

1. Groups. A set G of elements r, s, t, . . . is called a group if there is an operation
defined in G, called multiplication, such that

a) multiplication is associative: r(st) = (rs)t = rst,
b) there exists an identity, that is, an element 1 defined by r1 = 1r = r,
c) for each r ∈ G there exists a unique inverse element r−1 such that rr−1 = r−1r = 1.

The multiplication is in general non-commutative. If it is commutative the group is
said to be Abelian. Sometimes additive notation is used for Abelian groups with the sum
r + s replacing the product rs, the negative −r replacing the inverse r−1, and with 0
instead of 1 for the neutral element,

A group can be finite or infinite. If it is finite then the number of its elements is called
the order of the group.

The concept of an abstract group is a generalization of the concept of a group of
transformations. Given a set M we can consider all possible one-to-one mappings of
the set onto itself. This set of mappings obviously forms a group under composition
of transformations, with identical mapping for the identity and inverse mapping as the
inverse element. A transformation group need not contain all one-to-one mappings.

Given a group of transformations of a set M onto itself we can introduce a relation ∼
between elements of M : p ∼ q if there exists a transformation s ∈ G such that s(p) = q.
This relation is reflexive: p ∼ p, symmetric: p ∼ q implies q ∼ p, and transitive: p ∼ q and
q ∼ n imply p ∼ n. Any relation with these properties is called an equivalence. Under
an equivalence relation the set M decomposes into mutually exclusive subsets called
equivalence classes. Every group of transformations or an equivalence relation determines
a classification of the elements of M . Examples of classifications by means of groups of
transformations are known from geometry.

Every classification defines an equivalence relation but not necessarily a group of
transformations. If all equivalence classes contain one element, then the corresponding
relation is the equality. If under a group of transformations the whole set M forms one
single class, then M is said to be homogeneous under this group with every point being
equivalent to any other.

A one-to-one mapping ϕ of a group G onto another group G′ is called an isomorphism
if it preserves multiplication: r′ = ϕ(r) and s′ = ϕ(s) imply r′s′ = ϕ(rs). The isomor-
phism between G and G′ labels these groups as isomorphic. Two isomorphic groups are
indistinguishable when treated as abstract groups. They may, however, differ as groups of
transformations. If a mapping of G on G′ preserves multiplication but is not a one-to-one
correspondence, it is called a homomorphism.

An isomorphic mapping of a group onto itself is called an automorphism. An important
class of automorphisms, called inner automorphisms, is obtained by associating with every
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element s ∈ G the mapping r 7→ ϕs(r) = srs−1 of G onto itself. Inner automorphisms
form a group. So do all automorphisms.

The group of inner automorphisms gives rise to an equivalence relation called conjuga-
tion, where two elements r and s are conjugate if there exists an inner automorphism ϕt
transforming r into s: s = ϕt(r) = trt−1. The corresponding equivalence classes are called
conjugacy classes and play an important part in investigating the structure of a group.
The identity forms a class by itself. If the group is Abelian then conjugation reduces to
equality and all classes contain one element each.

A homomorphism of an abstract group G onto a group of transformations is called
a representation. An isomorphic representation is said to be faithful. An example of a
representation is given by the correspondence between group elements and inner au-
tomorphisms: s 7→ ϕs. Similar examples are provided by the correspondences s 7→ fs
and s 7→ gs with fs and gs denoting mappings of the group G on itself defined by
r 7→ fs(r) = sr and r 7→ gs(r) = rs. In these last two examples the group G appears in
two roles as a set of transformations and as a set in which the transformations operate.
E.g. in the formula r 7→ fs(r) = sr, s is the transformation and r is the transformed
variable. The group G appearing in the second role is called a group space. The group
multiplication in a group space is of secondary importance; it is not preserved by the
transformations fs and gs and is used only to give meaning to the formulae fs(r) = sr

and gs(r) = rs, where it appears as multiplication between elements of group space and
the group itself,

The representation by inner automorphisms is not faithful except in special cases.
The two other representations which are called regular representations are always faithful
and the group space is homogeneous under both regular representations.

A subset H of a group G is called a subgroup of G if it forms a group under the same
law of multiplication which operates in G. It means that r−1 belongs to H if r does and
for any two elements r and s of H, their product rs belongs to H. Denoting by AB the
set of elements of the form rs, r ∈ A, s ∈ B, and by A−1 the set of elements r−1, r ∈ A
with A and B subsets of G, we can express conditions for H being a subgroup in the
form H−1 = H and H2 = HH = H.

Every subgroup H of G defines an equivalence relation in G under which two elements
r and s are equivalent if rs ∈ H. The equivalence classes of this relation are called left
cosets of the subgroup H relative to G. Similarly the relation which holds between r and
s when rs ∈ H defines right cosets of H relative to G. Sets of the form rH are left cosets
of H and every left coset is of this form. Here rH denotes the set of all elements of the
form rs with s ∈ H. Further r ∈ rH and s ∈ rH if and only if r−1s ∈ H. Similarly
right cosets are of the form Hr. Of special importance are subgroups invariant under
inner automorphisms said to be normal or invariant subgroups. A subgroup N of G is
an invariant subgroup if rNr−1 = N for all r ∈ G or, equivalently, rN = Nr. The last
relation shows that left cosets of N are at the same time right cosets. Every group has
two trivial normal subgroups: the whole group and the subgroup containing the identity
only. If G has no other normal subgroups it is said to be simple.

The cosets of an invariant subgroup N have another important property. If Nr and
Ns are cosets, then NrNs = Nrs is another coset. It is easy to see that the set of all
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cosets of an invariant subgroup N forms a group under multiplication of cosets with
N1 = N as the identity and Nr−1 as the element inverse to Nr. This group is called the
factor group of G by the normal subgroup N and is denoted by G/N .

The correspondence r 7→ f(r) = Nr is a homomorphism of G onto G/N . If ϕ is a
homomorphism of G onto a group G∗, then the subset of G that goes to the identity of
G∗ is a normal subgroup N of G and is called the kernel of ϕ. To each coset of N there
corresponds an element of G∗ to which the coset goes under ϕ. This correspondence is an
isomorphism of G∗ with G/N . It follows that ϕ can be composed of the homomorphism
r 7→ f(r) = Nr of G onto G/N , where N is the kernel of ϕ, followed by the isomorphism
of G/N onto G defined in the above sentence.

2. Linear spaces and operators. A set S of vectors u, v, x, . . . is called a linear
space over the field C of complex numbers α, β, γ, . . . if in S there are defined operations
of addition of vectors and multiplication of vectors by complex numbers satisfying the
following conditions:

a) S is an Abelian group under addition of vectors,
b) λ(µu) = (λµ)u,
c) λ(u+ v) = λu+ λv,
d) (λ+ µ)u = λu+ µu,
e) 1u = u, where 1 is the complex number 1.

Vectors u1, u2, . . . , uk are said to be linearly independent if λ1u1+λ2u2+. . .+λkuk = 0
implies λ1 = λ2 = . . . = λk = 0. They are dependent if there exists a linear relation
λ1u1 + λ2u2 + . . .+ λkuk = 0 with not all coefficients vanishing.

If the number of linearly independent vectors of a space S is bounded (does not
exceed a certain number N) then S is said to be finite dimensional. Otherwise S is
infinite dimensional.

A system of linearly independent vectors u1, u2, . . . , un of a finite dimensional space
S is called a basis of S if it is maximal in the sense that adjoining to the system an
additional vector x ∈ S produces a dependent system x, u1, u2, . . . , un. Take the relation

xξ + u1ξ1 + u2ξ2 + . . .+ unξn = 0

with not all coefficients vanishing. The coefficient ξ must certainly be different from 0,
otherwise all coefficients would vanish. We can put ξ = −1 without any loss of generality.
The result is

x = u1ξ1 + u2ξ2 + . . .+ unξn

and we see that given a basis we can express all vectors as linear combinations of basis
vectors. Each vector is completely characterized by coefficients of these combinations
which are called components.

Given a second basis u1′ , u2′ , . . . , un′ we can express the vectors ui′ as combinations
of ui and vice versa:

ui′ = u1ε1i′ + u2ε2i′ + . . .+ unεni′ = ujεji′ ,

ui = u1′ε1′i + u2′ε2′i + . . .+ un′εn′i = uj′εj′i.
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By substituting one combination into the other we get ui′ = uj′εj′kεki′ and ui =
ujεjk′εk′i which implies

εj′kεki′ =
{

1, for j′ = i′

0, for j′ 6= i′

and

εjk′εk′i =
{

1, for j = i

0, for j 6= i.

These relations are possible only if n = n′ which means that the number of vectors of a
maximal independent set is characteristic for the space being the same for all such sets.
This number is called the dimension of S. Components of a vector x in different bases
are related by the transformation ξi′ = εi′jξj .

A subset S1 of S is called a subspace of S if it is a linear space under linear operations
defined in S, that is, if for any u and v in S1 their linear combination λu+µv belongs to
S1. Starting with any set of k independent vectors v1, . . . , vk in S and taking their linear
combinations y = vµηµ, µ = 1, 2, . . . , k we obtain a k-dimensional subspace of S with
v1, . . . , vk as basis vectors.

Two subspaces S1 and S2 of S are said to be independent if any non-zero vectors
u ∈ S1 and v ∈ S2 are independent. It follows that S1 and S2 have 0 as the only common
element. The space S is said to decompose into a direct sum of its linear subspaces S1

and S2 if an arbitrary vector x of S can be expressed uniquely as a sum of vectors x1

and x2 from S1 and S2 respectively. This definition is equivalent to

S = S1 + S2, S1 ∩ S2 = {0},
where {0} denotes the set containing 0 only. By putting together basis vectors of S1 and
S2 we obtain a basis of S which is called adapted to the decomposition. It follows that
the sum of the dimensions of S1 and S2 is equal to the dimension of S.

A mapping x 7→ ax of S onto itself is called linear if

λx+ µy 7→ a(λx+ µy) = λax+ µay.

In particular
ax = auiξi = ujαjiξi,

where αji are determined from aui = ujαji. We see that given a basis we can repre-
sent a linear mapping, called also a linear operator, by a matrix. On a change of basis
the matrix representing a transforms according to αi′j′ = εi′iαijεjj′ . Linear operators
can be multiplied, with the product ab defined by (ab)x = a(bx) = abx. The matrix
representing ab in an arbitrary basis is equal to the product αikβkj of matrices αik and
βkj representing a and b respectively. Linear operators can also be added and multiplied
by complex numbers, definitions of these operations being given by (a + b)x = ax + bx

and (λa)x = λ(ax) = λax. In matrix representation this corresponds to adding and
multiplying matrices by complex numbers.

A linear space S is said to be unitary if to each pair of vectors x and y in S there
corresponds a complex number (x, y), called the scalar product, which satisfies:

a) (x, y) = (y, x)∗ (∗ – complex conjugation),
b) (x, x) > 0 if x 6= 0,
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c) (x, λy + µz) = λ(x, y) + µ(x, z).

It follows immediately that (λx+ µy, z) = λ∗(x, z) + µ∗(y, z).
The length of a vector x is given by ‖x‖ =

√
(x, x). Two vectors x and y are said to be

orthogonal if their scalar product vanishes: (x, y) = 0. A system of vectors u1, u2, . . . , un
forms an orthonormal basis if all vectors ui are of unit length and are orthogonal to
each other: (ui, uk) = εik. The scalar product of two vectors x and y can be expressed
in terms of their components in an orthonormal basis in a particularly simple form:
(x, y) = (ui, uk)ξ∗iηk = ξ∗iηi. The components of a vector x in an orthonormal basis can
be calculated from the formula

(ui, x) = (ui, uj)ξj = εijξj = ξi.

An operator s is said to be unitary if it preserves scalar products: (sx, sy) = (x, y).
The operator a† defined by (ax, y) = (x, a†y) for arbitrary x and y is called the Hermitian
conjugate of a. For a unitary operator s we have (sx, sy) = (x, s†sy) = (x, y) which implies
that s†s = e (the identity operator) or s† = s−1 (inverse operator). An operator a is said
to be Hermitian if a† = a. The matrix α†ik representing a† satisfies α†ik = (αki)∗, where
αik represents a. Hermitian operators are represented by Hermitian matrices (αki)∗ = αik
and unitary operators are represented by unitary matrices (σki)∗σjk = εij .

Two subspaces S1 and S2 of a unitary space S are called orthogonal if any two vectors
x ∈ S1 and y ∈ S2 are orthogonal. Orthogonal subspaces are independent. Two orthogonal
subspaces of S of joint dimension n determine an orthogonal decomposition of S. By
putting together orthonormal bases of S1 and S2 an adapted orthonormal basis of S is
obtained. All vectors orthogonal to a subspace S1 of S form a linear subspace S2 = S∗1
of S orthogonal to S1. S∗ is called the orthogonal complement of S1. S decomposes into
an orthogonal sum of S1 and S2.

A subspace S1 ⊂ S is said to be invariant under a set M of linear operators if ax ∈ S1

for arbitrary x ∈ S1 and a ∈ M . An invariant subspace S1 is called irreducible if it does
not contain invariant subspaces different from S1 and {0}. The set M is called irreducible
if S is irreducible. The operators of M induce linear transformations of an invariant
subspace S1 onto itself. If S1 is irreducible, then the induced transformations form an
irreducible set.

A homomorphism of an abstract group G onto a group of linear operators is called a
linear representation. A representation is called unitary if it is a homomorphism onto a
group of unitary operators. A linear representation is called irreducible if it is a homo-
morphism onto an irreducible set of operators.

3. Abstract algebras. The set A of all linear operators in a linear space S is closed
under multiplication and linear operations and satisfies the following conditions:

a) A is a linear space over the field C of complex numbers,
b) A contains a unit element e,
c) multiplication is associative,
d) a(λb+ µc) = λab+ µac.
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We take conditions a) to d) to define an abstract associative algebra A, with identity e,
over the field C of complex numbers. The dimension of A as a linear space is called the
order of A.

A subset M of A is called an ideal if it is a linear subspace of A and if for a ∈ M ,
b ∈ A, and c ∈ A, bac belongs to M . Every algebra A has two improper ideals: the whole
of A and the set {0} containing 0 only. Other ideals are said to be proper. An ideal M
is said to be minimal if it does not contain smaller proper ideals of A. A is said to be
simple if it does not contain proper ideals. A is said to be semi-simple if it decomposes
into a direct sum of its minimal ideals:

A = M1 +M2 + · · ·+Mn.

A subset I of A is called a left ideal if it is a linear space of A and if for a ∈ I and
b ∈ A, ba ∈ I. A right ideal J is defined in a similar way. A left (right) ideal is said to be
minimal if it does not contain smaller left (right) proper ideals of A.

If M1 and M2 are ideals of A then M1 +M2 and M1 ∩M2 are ideals. If M1 and M2

are independent as linear subspaces of A: M1 ∩M2 = {0}, then M1M2 = M2M1 = {0}.
Similarly if I1 and I2 are left ideals of A then I1 + I2 and I1 ∩ I2 are left ideals and the
same is true of right ideals.

A (one-to-one) mapping of an abstract algebra A onto an algebra A′ of linear operators
in a linear space S is called a (faithful) linear representation if it preserves multiplication
and linear operations. Multiplication of elements of A by a fixed element a ∈ A from the
left induces a linear mapping of A, treated as a linear space, into itself. Associating with
every element a ∈ A the linear mapping defined above gives a linear representation of
A called the left regular representation. The right regular representation is defined in a
similar manner. Regular representations of an algebra with identity are always faithful.
It is easy to see that left (right) ideals form invariant subspaces under the left (right)
regular representation. Minimal ideals are irreducible. An element of A which commutes
with all elements of A is said to be central. The set of all central elements of A is called
the centre of A.

A subset A1 of A is called a subalgebra if it is an algebra under operations defined
in A. This means that it is a linear subspace and that for arbitrary a ∈ A1 and b ∈ A1,
ab ∈ A1. An algebra A is called a division algebra if every element of A distinct from 0
has an inverse.

Let a be an arbitrary non-zero element of a division algebra A of order h. Ele-
ments e, a, a2, . . . , ah must be dependent, which means that they satisfy a linear rela-
tion

W (a) = am + λ1a
m−l + λ2a

m−2 + · · ·+ λme = 0

with m 6 h. Let α1, α2, . . . , αm be the roots of the polynomial W (α). Then

W (a) = (a− α1e)(a− α2e) · · · (a− αme) = 0.

Since A is a division algebra, the last equation holds only if for some i, a = αie. It
follows that all elements of A are multiples of the identity e, which means that A is
one-dimensional and isomorphic to the field C.
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II. Group algebra of a finite group

1. Definition and basic properties. A finite group G of order h can be used
to generate a group algebra AG of the same order by a formal introduction of linear
operations, that is, addition and multiplication by complex numbers, under which group
elements are assumed to be independent. Multiplication is extended from group elements
to their linear combinations, that is, elements of AG, by a natural relation

r(λs+ µt) = λrs+ µrt.

Group elements form by definition a natural linear basis for AG. Elements of AG are
linear combinations of group elements

a =
∑

r∈G
α(r)r,

and are represented by coefficients α(r) of these combinations, which can also be inter-
preted as complex-valued functions on G. Components in the natural basis of a combina-
tion λa+µb of elements a =

∑
r∈G α(r)r and b =

∑
r∈G β(r)r are obviously combinations

of components of a and b:

λa+ µb =
∑

r∈G
(λα(r) + µβ(r)).

Components of a product are obtained from

ab =
∑

r,s

α(r)β(s)rs =
∑

s,t

α(ts−1)β(s)t =
∑

r,t

α(r)β(r−1t)t.

In addition to being an algebra, AG is a unitary space with the scalar product

tr(a†b),

where the trace tr(a) and the Hermitian conjugate a† are defined below.
First we define the complex conjugate a∗ of a by s∗ = s and (λa+µb)∗ = λ∗a∗+µ∗b∗.

This gives for a =
∑

r∈G α(r)r:

a∗ =
∑

r∈G
α∗(r)r =

∑

r∈G
α(r)∗r,

or
α∗(r) = α(r)∗.

The components in the natural basis of the complex conjugate of a are obtained by taking
complex conjugates of components of a. For a product ab we have

(ab)∗ =
∑

r,s

(α(r)β(s))∗rs =
∑

r,s

α(r)∗β(s)∗rs = a∗b∗.

Next we introduce the transpose aT of a by sT = s−1 and (λa+ µb)T = λaT + µbT. This
gives for a =

∑
r∈G α(r)r:

aT =
∑

r∈G
αT(r)r =

∑

r∈G
α(r)r−1 =

∑

r∈G
α(r−1)r,

or
αT(r) = α(r−1).
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For a product ab we have

(ab)T =
∑

r,s

α(r)β(s)(rs)−1 =
∑

r,s

α(r)β(s)s−1r−1 = bTaT.

Hermitian conjugation is now defined as the composition of complex conjugation and
transposition: a† = (aT)∗ = (a∗)T or s† = s−1 and (λa+µb)† = λ∗a†+µ∗b†, which gives
for a =

∑
r∈G α(r)r:

a† =
∑

r∈G
α†(r)r =

∑

r∈G
α(r)∗r−1 =

∑

r∈G
α(r−1)∗r,

or
α†(r) = α(r−1)∗.

For a product ab we have

(ab)† =
∑

r,s

α(r)∗β(s)∗(rs)−1 =
∑

r,s

α(r)∗β(s)∗s−1r−1 = b†a†.

All three of the above defined operations are involutions:

a∗∗ = a, aTT = a, a†† = a.

The trace tr(a) of an element a is defined by

tr(r) = ε(r) =
{

1 for r = 1,
0 for r 6= 1,

and tr(λa+ µb) = λ tr(a) + µ tr(b). This gives

tr(a) =
∑

r∈G
α(r) tr(r) =

∑

r∈G
α(r)ε(r) = α(1).

For the trace of a product we have

tr(ab) =
∑

r,s

α(r)β(s) tr(rs) =
∑

r,s

α(r)β(s)ε(rs) =
∑

r∈G
α(r)β(r−1)

=
∑

r,s

α(r)β(s)ε(sr) = tr(ba).

We can now express the scalar product in terms of components in the natural basis

tr(a†b) =
∑

r∈G
α(r)∗β(r).

It is worth noting that a† is the Hermitian conjugate with respect to the scalar product:

tr(b†a†c) = tr((ab)†c).

The scalar product is preserved by the following transformations:

a 7→ ra, a 7→ ar, a 7→ rar−1, a 7→ aT, a 7→ eiϕa,

with r ∈ G and ϕ a real number. Under the transformations

a 7→ a∗ and a 7→ a†

the scalar product goes into its complex conjugate. The transformations

a 7→ rar−1 and a 7→ a∗, λ 7→ λ∗

are automorphisms of the group algebra.
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An element a ∈ AG is central if it commutes with all group elements r ∈ G:

ra = ar or rar−1 = a.

In the natural basis we have
∑

s∈G
α(r−1sr)s =

∑

s∈G
α(s)s

or
α(r−1sr) = α(s),

which shows that components of a central element corresponding to group elements of
the same class are equal.

In addition to the operations defined above we introduce a commutative product a×b
which we call the Kronecker product. It is defined by

a× b =
∑

r∈G
α(r)β(r)r.

2. Decomposition of AG into a sum of its minimal ideals

Theorem 1. If M is an ideal of AG, then the orthogonal complement M⊥ is also an
ideal.

Proof. Let M be an ideal and suppose that a ∈M⊥, or tr(a†M) = 0. Then

tr((bac)†M) = tr(c†a†b†M) = tr(a†b†Mc†) = tr(a†M) = 0.

It follows that bac ∈M⊥ for arbitrary b and c, which means that M⊥ is an ideal.

If AG is not simple, then it contains a proper ideal M . Theorem 1 shows that M⊥ is
also an ideal and AG decomposes into an orthogonal sum of its ideals:

AG = M +M⊥.

If M is not minimal, then it contains a smaller ideal M ′. M ′⊥ ∩M is another ideal and
M = M ′+M ′ ∩M . The process can be carried further until a decomposition of AG into
an orthogonal sum of minimal ideals is reached:

AG =
(1)
M +

(2)
M + · · ·+

(f)
M =

f∑

i=1

(i)
M . (1)

Let
e =

f∑

i=1

(i)
e

be the unique decomposition of the identity e into elements
(i)
e ∈

(i)
M . For an arbitrary

element a ∈ AG we have

a = ae = ea =
f∑

i=1

a
(i)
e =

f∑

i=1

(i)
e a.

The elements a
(i)
e and

(i)
e a are in

(i)
M since

(i)
M is an ideal. It follows that

a =
f∑

i=1

a
(i)
e and a =

f∑

i=1

(i)
e a
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are decompositions of a into elements in the minimal ideals
(i)
M . This decomposition is

unique hence a
(i)
e =

(i)
e a. If a ∈

(i)
M , then a

(i)
e = a. In particular

(i)
e

(i)
e =

(i)
e .

Every ideal of AG can be decomposed into a sum of minimal ideals
(i)
M . If M is an

ideal, then

M = Me =
f∑

i=1

M
(i)
e

but M
(i)
e = {0} or M

(i)
e =

(i)
M . In particular, if M is a minimal ideal it must coincide

with one of
(i)
M . The decomposition (1) of AG into a sum of orthogonal minimal ideals is

thus unique.

If
(i)
M is one of the minimal ideals, so is

(i)
M †. If a 6= 0 belongs to

(i)
M , then tr(a†a) 6= 0,

but this is possible only if a† ∈
(i)
M which means that

(i)
M † =

(i)
M . This argument shows

that M † = M for any ideal M .
If M is an ideal, then both M∗ and M⊥ are ideals. Usually M∗ 6= M and M⊥ 6= M .

However M⊥ = M∗ since M † = M .
Let

e =
f∑

i=1

(i)
e

be the unique decomposition of the identity e into elements
(i)
e ∈

(i)
M . For an arbitrary

element a ∈ AG we have

a = ae = ea =
f∑

i=1

a
(i)
e =

f∑

i=1

(i)
e a.

The elements a
(i)
e and

(i)
e a are in

(i)
M since

(i)
M is an ideal. It follows that

a =
f∑

i=1

a
(i)
e and a =

f∑

i=1

(i)
e a

are decompositions of a into elements in minimal ideals
(i)
M . This decomposition is unique,

hence a
(i)
e =

(i)
e a. If a ∈

(i)
M , then a

(i)
e = a. In particular

(i)
e

(i)
e =

(i)
e . Taking Hermitian

conjugates on both sides of

e =
f∑

i=1

(i)
e

we have

e = e† =
f∑

i=1

(i)
e †.

Since
(i)
M † =

(i)
M we have

(i)
e † ∈

(i)
M . It follows from the uniqueness of the decomposition

that
(i)
e † =

(i)
e .
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The properties of the elements
(i)
e called the primitive generating units of the minimal

ideals
(i)
M are summarized in

Theorem 2.

a) The elements
(i)
e give projections on the minimal ideals

(i)
M : a

(i)
e ∈

(i)
M for arbitrary

a and a
(i)
e = a for a ∈

(i)
M .

b)
(i)
e are idempotent and independent:

(i)
e

(j)
e =

(i)
e δij .

c)
(i)
e are central:

(i)
e a = a

(i)
e for arbitrary a.

d)
(i)
e are Hermitian:

(i)
e † =

(i)
e .

Theorem 3. Generating units are uniquely characterized by property a) of Theo-
rem 2.

Proof. Let
(i)
e ′ be a generating unit of

(i)
M : a

(i)
e ′ ∈

(i)
M for arbitrary a and a

(i)
e ′ = a for

a ∈
(i)
M . For a = e we obtain e

(i)
e ′ =

(i)
e ′ ∈

(i)
M , hence

(i)
e

(i)
e ′ =

(i)
e ′. But for a =

(i)
e ∈

(i)
M

we have
(i)
e

(i)
e ′ =

(i)
e . Hence

(i)
e ′ =

(i)
e .

An arbitrary ideal M is a sum of minimal ideals. Taking the sum of the corresponding
generating units we obtain the generating unit of M .

3. The structure of minimal ideals

Theorem 4. Let I be a left ideal of AG. Then I⊥ is also a left ideal.

Proof. The proof is similar to that of Theorem 1.

It follows immediately that AG decomposes into a sum of its minimal left ideals. Let
M be an ideal and I a minimal left ideal. I ∩M is again a left ideal and I ∩M ⊂ I, hence
I ∩M = I or I ∩M = {0}. This argument shows that the decomposition of AG into
a sum of its minimal left ideals can be achieved by first decomposing AG into minimal

two-sided ideals
(i)
M and then decomposing each

(i)
M into a sum

(i)
M =

(i)
I 1 +

(i)
I 2 + · · ·+

(i)
I gi (2)

of minimal left ideals contained in
(i)
M . Let

(i)
e be the generating unit of

(i)
M and let

(i)
e =

(i)
e 1

1 +
(i)
e 2

2 + · · ·+ (i)
e gi

gi

be the unique decomposition of
(i)
e corresponding to (2). For arbitrary a, a

(i)
e A

A be-

longs to
(i)
I A and if a ∈

(i)
I A, then a

(i)
e A

A = a. It follows that
(i)
e A

A
(i)
e A

A =
(i)
e A

A,
(i)
e A

A
(i)
e B

B = 0 if B 6= A, and

a =
∑

A

a
(i)
e A

A = a
(i)
e 1

1 + a
(i)
e 2

2 + · · ·+ a
(i)
e gi

gi

is the decomposition of a corresponding to (2).
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Sets of the form
(i)
J A =

(i)
e A

AAG are right ideals. They are minimal; otherwise one

could decompose
(i)
e A

A further, which would result in a decomposition of
(i)
I A. To every

decomposition (2) there corresponds a decomposition of
(i)
M into a sum of minimal right

ideals
(i)
M =

∑

A

(i)
e A

A

(i)
M =

(i)
J 1 +

(i)
J 2 + · · ·+

(i)
J gi

and also a double decomposition

(i)
M =

∑

A,B

(i)
e A

A

(i)
M

(i)
e B

B =
∑

A,B

(i)
J A ∩

(i)
I B .

Let us investigate the properties of sets of the form
(i)
J A ∩

(i)
I B . These sets are linear

subspaces of
(i)
M . Next we prove that they contain non-zero elements. In fact suppose that

(i)
J A∩

(i)
I B contains only 0; then

(i)
I B ⊂ (

(i)
J A)⊥ and

(i)
I B

(i)
M ⊂ (

(i)
J A)⊥ 6=

(i)
M . But

(i)
I B

(i)
M

must be equal to
(i)
M because

(i)
I B

(i)
M is an ideal contained in

(i)
M and containing a non-zero

element
(i)
e B

B . If a ∈
(i)
J A∩

(i)
I B and b ∈

(i)
J C∩

(i)
I D, then ab obviously belongs to

(i)
J A∩

(i)
I D.

This means in particular that
(i)
J A ∩

(i)
I A is an algebra. We show in addition that it is a

division algebra and therefore a one-dimensional space. Let a ∈
(i)
J A ∩

(i)
I A, a 6= 0.

(i)
M a is

a left ideal which contains
(i)
e a = a 6= 0 and is contained in

(i)
I A. Therefore

(i)
M a =

(i)
I A.

There exists an element a′ ∈
(i)
M such that a′a =

(i)
e A

A; but then
(i)
e A

Aa
′ (i)e A

Aa =
(i)
e A

A

which indicates that
(i)
e A

Aa
′ (i)e A

A is the inverse of a. This shows that
(i)
J A ∩

(i)
I A is a

division algebra and a = α
(i)
e A

A. Let a ∈
(i)
J A, a 6= 0. The set of elements x ∈

(i)
I A

satisfying xa = 0 is a left ideal different from
(i)
I A because

(i)
e a = a 6= 0. Hence x = 0.

We now prove that every minimal ideal
(i)
M is isomorphic to the algebra of matrices

of order gi, where gi is the number of minimal left (right) ideals contained in
(i)
M . Select

arbitrary non-zero elements
(i)
e 1

A ∈
(i)
J 1 ∩

(i)
I A, A 6= 1. Then select

(i)
e B

1 ∈
(i)
J B ∩

(i)
I 1,

B 6= 1 in such a way that
(i)
e 1

A
(i)
e A

1 =
(i)
e 1

1. This is clearly possible because for any

non-zero element a ∈
(i)
J A ∩

(i)
I 1 we have

(i)
e 1

Aa = α
(i)
e 1

1 with α 6= 0. Define elements
(i)
e A

B ∈
(i)
J A ∩

(i)
I B by

(i)
e A

B =
(i)
e A

1
(i)
e 1

B

for B 6= A. The relation
(i)
e A

A =
(i)
e A

1
(i)
e 1

A
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holds identically. The elements
(i)
e A

B satisfy the relations
(i)
e A

B
(i)
e C

D = εCB
(i)
e A

D.

For an arbitrary element a ∈
(i)
M introduce numbers

(i)
α A

B characterized by
(i)
e 1

B a
(i)
e A

1 =
(i)
α A

B
(i)
e 1

1.
Then

a =
∑

A,B

(i)
e B

Ba
(i)
e A

A =
∑

A,B

(i)
e B

1
(i)
e 1

Ba
(i)
e A

1
(i)
e 1

A =
(i)
α A

B
(i)
e B

A,

where summation over A and B is understood. For a =
(i)
α A

B
(i)
e B

A and b =
(i)
β A

B
(i)
e B

A

we have

ab =
(i)
β A

B
(i)
α C

D
(i)
e D

C
(i)
e B

A =
(i)
β A

B
(i)
α C

Dε
B
C

(i)
e D

A =
(i)
β A

C
(i)
α C

B
(i)
e B

A

which proves our proposition. The elements
(i)
e A

B form a linear basis for
(i)
M which we

call the canonical basis.

4. Properties of the canonical basis. Take a minimal ideal M , its generating unit
e, and a canonical basis eAB , A,B = 1, 2, . . . , g. We prove that the canonical basis is
defined up to a transformation

eA
′
B′ = εA

′
C e

C
D ε

D
B′ .

Two bases are always connected by a linear transformation

eA
′
B′ = eCD ε

D
B′
A′
C .

The relations
eAB e

C
D = εCB e

A
D

and
eA
′
B′ e

C′
D′ = εC

′
B′ e

A′
D′

give
εA
′
B′ ε

D
E′
F ′
G = εDE′

A′
H ε

H
B′
F ′
G.

Taking determinants of both sides with respect to indices A′, B′ and introducing

εAB′ = det(ε|AB′ |C
′
D),

εA
′
B = det(εCD′)A

′
B ,

we arrive at
εDB′

A′
C = εA

′
C ε

D
B′ .

The relation
e =

∑

A′

eA
′
A′ =

∑

A′

εA
′
C e

C
D ε

D
A′ = εDC e

C
D

gives
εAC′ ε

C′
B = εAB .
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The basis elements eAB have a number of important properties.

a) tr(eAB) =
tr(e)
g

εAB .

Proof.
tr(eAB eCD) = tr(eCD eAB)

or
εCB tr(eAD) = εAD tr(eCB).

Hence tr(eAB) = k εAB . Summing over A = B on both sides we finally arrive at

k = tr(e)/g.

b) αAB =
g

tr(e)
tr(a eAB).

This follows immediately from a) and a eAB = αAC e
C
B .

Group elements r and s are represented by matrices ρAB and σAB such that

re = ρAB e
B
A and se = σAB e

B
A.

Further properties:

c) ρAB =
g

tr(e)
tr(reAB) =

g

tr(e)
εAB(r−1).

d) tr(a) =
tr(e)
g

αAA.

e) tr(e) =
g2

h
.

Proof.

tr(e) =
1
g

tr
(∑

A,B

eAB e
B
A

)
=

1
g

∑

s∈G
εAB(s−1) εBA(s)

=
(tr(e))2

g3

∑

s∈G
σAB σ

−1B
A =

h(tr(e))2

g2 .

The solution tr(e) = 0 is excluded since it would lead to tr(a) = 0 and tr(a†a) = 0 for
any a ∈M .

Starting with the base eAB we introduce new bases

eȦḂ = (eAB)∗, eA
B = (eAB)T, eȦ

Ḃ = (eAB)†,

which satisfy

eȦḂ e
Ċ
Ḋ = εĊ Ḃ e

Ȧ
Ḋ, eA

B eC
D = εC

B eA
D, eȦ

Ḃ eĊ
Ḋ = εĊ

Ḃ eȦ
Ḋ,

and therefore
eȦḂ = γȦC e

C
D γ

D
Ḃ , γȦC γ

C
Ḃ = εȦḂ ,

eA
B = δAC e

C
D δ

DB , δAC δ
CB = εA

B ,

eȦ
Ḃ = εȦC e

C
D ε

DḂ , εȦC ε
CḂ = εȦ

Ḃ .
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III. Group algebra of a compact topological group

1. Definition. The notion of a group algebra can be easily extended to compact
topological groups. Without going into details of the definition of a compact group we
state properties of such groups essential for the existence of a group algebra. On a compact
topological group G one can introduce an integral such that every continuous function
α(s), s ∈ G is integrable: ∫

G

α(s)ds <∞.

The integral is invariant under left as well as right translations:
∫

G

α(rs)ds =
∫

G

α(sr)ds =
∫

G

α(s)ds.

The volume of the group is 1: ∫

G

1ds = 1.

This last formula replaces ∑

G

1 = h

of the finite case. Other properties of the integral have obvious counterparts in the finite
case.

We can now define the group algebra as a set AG of elements a, b, . . . represented by
continuous functions α(s), β(s), . . . in such a way that

a) λa+ µb is represented by λα(s) + µβ(s),
b) ab is represented by

∫
G
α(r)β(r−1s)dr =

∫
G
α(sr−1)β(r)dr,

c) a∗ is represented by α∗(s) = (α(s))∗,
d) aT is represented by αT(s) = α(s−1),
e) a† = aT∗ is represented by α†(s) = α(s−1)∗,
f) tr(a) = α(1),
g) tr(a†b) =

∫
G
α∗(s)β(s)ds,

h) a× b is represented by α(s)β(s).

An element a ∈ AG is central if α(r−1sr) = α(s).

2. Decomposition of the group algebra into a sum of its minimal ideals
and the structure of minimal ideals. All minimal ideals of the group algebra of a
compact group are finite dimensional. They form an infinite discrete set

{
(0)
M ,

(1)
M , . . . ,

(i)
M , . . .}

and the algebra AG is the sum

AG =
(0)
M +

(1)
M + · · ·+

(i)
M + · · · =

∞∑

i=0

(i)
M .
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The last relation is to be understood in the sense that every element a ∈ AG defines an

infinite series of elements
(i)
a ∈

(i)
M such that

lim
n→∞

∥∥∥a−
n∑

i=0

(i)
a
∥∥∥ = 0, where ‖a‖ =

√
tr(a†a).

Minimal ideals have exactly the same properties and structure as in the finite case.
In all formulae h has to be put equal to 1.

3. An example. As an example we consider the group of unitary unimodular 2× 2
matrices uAB . In a parameterization considered canonical we have

uAB = εAB cos
u

2
+ iσABr

ur

u
sin

u

2
.

The parameters ur are components of a vector in a Euclidean space of three dimensions,
u is the norm of this vector, and

(σABr) =
((

0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 1

))

are the Pauli matrices. The parameters are restricted by u < 4π. For u→ 4π, uAB → εAB
and for u = 2π, uAB = −εAB .

Continuous functions on the group are continuous functions α(ur) of the parameters
ur such that for u→ 4π, α(ur)→ α(0). An invariant integral is defined by

1
32π2

∫

u64π
α(ur)

2(1− cosu)
u2 d3u.

The Pauli σ matrices have the following properties:

σACr σ
C
Bs = εAB εrs + iσABt ε

t
rs,

σAC (r σ
C
Bs) = εAB εrs,

σAC [r σ
C
Bs] = iσABt ε

t
rs,

σAAr = 0,
1
2
σABr σ

B
As = εrs,

where εtrs is the Levi Civita tensor density. For the product of two unitary unimodular
matrices

uAB = vACw
C
B

we get

εAB cos
u

2
+iσABr

ur

u
sin

u

2
= εAB

(
cos

v

2
cos

w

2
− εrs

vr

v

ws

w
sin

v

2
sin

w

2

)

+ iσABr

(
vr

v
sin

v

2
cos

w

2
+
wr

w
sin

w

2
cos

v

2
− εrst

vs

v

wt

w
sin

v

2
sin

w

2

)
,

from which the composition rule for parameters can be obtained.
An inner automorphism

u′AB = vAC u
C
D v
−1D

B

results in an orthogonal transformation applied to parameters:

u′r =
(
εrs cos v + εrst

vt

v
sin v +

vr

v

vt

v
εts(1− cos v)

)
us.
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This shows that classes are composed of elements of equal values of u. It can be also
shown that such elements always belong to one class.

One minimal ideal
(0)
M consists of functions constant on the group. The generating

unit
(0)
e of this one-dimensional ideal is represented by

(0)
ε (ur) = 1.

Another, four-dimensional, ideal
(1)
M is generated by

(1)
e represented by the function

(1)
ε (ur) = 4 cos

u

2
and its canonical basis is

(1)
ε A

B = 2
(
εAB cos

u

2
+ iσABr

ur

u
sin

u

2

)
.

More ideals can be obtained by forming symmetrical Kronecker products of
(1)
e A

B . The
elements

(i)
e A1...Ai

B1...Bi =
i+ 1

2i
(1)
e (A1

(B1 × · · · ×
(1)
e Ai)

Bi)

form the canonical basis of the minimal ideal
(i)
M of dimension (i+ 1)2. It can be shown

that the
(i)
M give all minimal ideals of the considered group algebra.

The matrix
(1)
ε ȦB is the unit matrix:

(1)
ε ȦB =

(
1 0
0 1

)
.

The matrices
(i)
ε Ȧ1...ȦiB1...Bi

can be easily expressed as Kronecker products of
(1)
ε ȦB .

IV. The group algebra of a locally compact Abelian group

The notion of group algebra can be also extended to locally compact Abelian topolog-
ical groups. We restrict the discussion to n-dimensional real linear spaces with addition
of vectors as group operation. Let a basis in S = G be chosen so that an element x is
represented by n real components xi, i = 1, . . . , n. If α(xi) is a function on the group, an
invariant integral is given by ∫

α(xi)dnx;

however not all functions are integrable. The group algebra can be now defined as a set
AG of elements a, b, . . . represented by square integrable functions α(xi), β(xi), . . .,

∫
α(xi)∗α(xi)dnx <∞,

∫
β(xi)∗α(xi)dnx <∞, . . .

with

a) λa+ µb represented by λα(xi) + µβ(xi),
b) ab represented by

∫
α(xi − x′i)β(x′i)dnx′,

c) a∗ represented by α∗(xi) = α(xi)∗,
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d) aT represented by αT(xi) = α(−xi),
e) a† represented by α†(xi) = α(−xi)∗,
f) tr(a) = α(0),
g) tr(a†b) =

∫
α(xi)∗β(xi)dnx,

h) a× b represented by α(xi)β(xi).

We introduce an n-parameter family of invariant function spaces
(pj)
M consisting of

periodic functions proportional to

(pj)
ε (xi) =

1
(2π)n

exp
(
i pjx

j
)
.

The functions
(pj)
ε (xi) are not square integrable and therefore the spaces

(pj)
M are not

ideals of the group algebra. The situation is nevertheless similar to that for finite and
compact groups because

∫
(pj)
ε (xi − x′i) (p′j)

ε (x′i)dx′ = δn(pj − p′j)
(pj)
ε (xi),

α(xi) =
∫
α(pj)

(pj)
ε (xi)dnp,

or, if
(pj)
e are abstract elements represented by

(pj)
ε (xi):

(pj)
e

(p′j)
e = δn(pj − p′j)

(pj)
e ,

a =
∫
α(pj)

(pj)
e dnp.

The function α(pj) is a square integrable function with the following properties:

a) λa+ µb represented by λα(pj) + µβ(pj),
b) ab represented by α(pj)β(pj),
c) a∗ represented by α∗(pj) = α(pj)∗,
d) aT represented by αT(pj) = α(−pj),
e) a† represented by α†(pj) = α(−pj)∗,
f) tr(a) = α(0),
g) tr(a†b) =

∫
α(pj)∗β(pj)dnx,

h) a× b represented by
∫
α(pj − p′j)β(p′j)dnp′.

C. GROUP ALGEBRAS AND QUANTUM THEORY

I. Hilbert space and operator formulations of quantum mechanics

Quantum theories are usually expressed in Hilbert space formalism. Quantum states of
a system are represented by vectors ϕ, ψ, . . . of the Hilbert space and dynamical variables
by Hermitian operators A,B, . . . operating in that space. Vectors are usually normalized

(ϕ, ψ) = 1



30 W. TULCZYJEW

and then the expectation values of an operator A in the state ϕ is given by

〈A〉 = (ϕ,Aϕ).

The probability that a system in state ϕ is observed in state ψ when a measurement is
made is given by

(ϕ, ψ)(ψ, ϕ) = |(ϕ, ψ)|2.
This formulation limits all considerations to pure states.

A slightly more general formulation is possible if a suitable algebra with Hermitian
conjugation and trace is given. Then states, both pure and mixed, are represented by
Hermitian, positive definite elements of the algebra and dynamical variables are repre-
sented by Hermitian elements of the same algebra. The normalization condition for a
density operator ρ representing a state takes the form

tr(ρ) = 1.

Expectation values are given by
〈A〉 = tr(Aρ)

and the probability that a system in state ρ1 is found in state ρ2 is given by

tr(ρ1ρ2).

If in the algebra a commutative × product of two operators is defined, it can be used
to form density operators of systems composed of two other systems. For example ρ1×ρ2

represents the state of a composition of two systems in states ρ1 and ρ2.
Since a group algebra satisfies all the stated requirements, it can be used to formulate

a quantum theory. The group has to be specially selected to give physically meaningful
results. In subsequent sections we give examples of quantum theories in both Hilbert
space and operator formulation.

II. Quantum theory of angular momentum

To formulate the theory of angular momentum we use the group algebra of the group
of unitary unimodular matrices. In view of physical interpretation ~, the Planck constant
divided by 2π is introduced. Unitary unimodular matrices are written in the form

uAB = εAB cos
u

2
+

2i
~
SABr

ur

u
sin

u

2
with

SABr =
~
2
σABr, SACr S

C
Bs =

~2

4
εAB εrs +

i~
2
σABt ε

t
rs.

The minimal ideal
(0)
M contains one normalized, Hermitian, positive definite element—

the generating unit
(0)
e itself.

Hermitian elements of
(1)
M are of the form ρAB

(1)
e B

A with ρ†AB = ρAB . The Hermitian
matrices form a four-dimensional space with the matrices εAB and SABr as elements of
an orthogonal basis. The matrix ρAB is a combination

ρAB = ρ

(
εAB +

2
~
P rSABr

)
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of these matrices with real coefficients. Normalization and positive definiteness conditions
restrict ρ and P r by

ρ =
1
4
, PrP

r 6 1.

If PrP r = 1, then the state is pure and

ρAB =
1
2
ψAψ∗B ,

where

ψa =
1√
2



√

1 + P 3eiα

√
1− P 3eiβ


 , tan(α− β) =

P 1

P 2 .

The canonical basis
(2)
e A1A2

B1B2 for
(2)
M is defined by

(2)
ε A1A2

B1B2(ur) =
3
4

(1)
ε (A1

(B1(ur)
(1)
ε A2)

B2)(u
r)

= 3
(
εA1A2

B1B2

1 + cosu
3

− 2i
~
SA1A2

B1B2r
ur

u
sinu

− 4
~2Q

A1A2
B1B2rs

ur

u

us

u

1− cosu
2

)

with

εA1A2
B1B2 = ε(A1

(B1 ε
A2)

B2),

SA1A2
B1B2r = S(A1

(B1r ε
A2)

B2),

QA1A2
B1B2rs = S(A1

(B1r ε
A2)

B2)s.

These matrices can be regarded as basis elements of the ideal and a density matrix
ρA1A2

B1B2 can be written as a combination of the basis elements with real coefficients:

ρA1A2
B1B2 = ρ

(
εA1A2

B1B2 +
2
~
P rSA1A2

B1B2r +
4
~2R

rsQA1A2
B1B2rs

)
.

The Kronecker product
(1)
e A1

B1 ×
(1)
e A2

B2 is represented by

(1)
ε A1

B1(ur)
(1)
ε A2

B2(ur) =
(1)
ε (A1

(B1(ur)
(1)
ε A2)

B2)(u
r) +

(1)
ε [A1

[B1(ur)
(1)
ε A2]

B2](u
r)

=
4
3

(2)
ε A1A2

B1B2(ur) + 2δA1A2δB1B2 ,

where

δAB =
(

0 1
−1 0

)
, δAB =

(
0 1
−1 0

)
.

If

ρ1
A
B =

1
4

(
εAB +

2
~
P1

rSABr

)
, ρ2

A
B =

1
4

(
εAB +

2
~
P2

rSABr

)
,
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then the state composed of the two states is represented by

ρ(ur) = ρA1
B1 ρ

A2
B2

(
4
3

(2)
ε A1A2

B1B2(ur) + 2δA1A2δB1B2

)

=
1
12

[(
1 +

1
3
P1rP2

r

)
εA1A2

B1B2 + (P1
r + P2

r)
2
~
SA1A2

B1B2r

+
(
P1

rP2
s − 1

3
P1tP2

tεrs
)

4
~2Q

A1A2
B1B2rs

]
(2)
ε B1B2

A1A2(ur)

+
1
4

(1− P1rP2
r)

(0)
ε (ur).

The ideals
(0)
M ,

(1)
M and

(2)
M correspond to spin 0, 1

2 and 1 (angular momentum 0,
~
2 and ~) respectively. The operators SABr, SA1A2

B1B2r and QA1A2
B1B2rs correspond

to physical quantities known as multipole polarizations (dipole and quadrupole). The
quantities P r and Rrs are polarization coefficients and are directly related to expectation
values of polarization operators. The result obtained for the Kronecker product of two
spin 1

2 states with polarizations P1
r and P2

r shows that the composite system can be
found in states of spin 0 and 1 with probabilities

1
4

(1− P1rP2
r) and

3
4

(
1 +

1
3
P1rP2

r

)

respectively.

Multipole polarization operators can be introduced for ideals
(j)
M corresponding to

spin j
2 in a similar way.

Quantum theory of angular momentum can be also formulated in Hilbert space with
pure states of angular momentum l~ represented by vectors in a (2l + 1)-dimensional
space. Instead of multipole polarizations one introduces the angular momentum operators
related to infinitesimal automorphisms and coinciding with dipole polarization operators.

III. Quantum theory of translational degrees of freedom

1. General formulation. To formulate the theory of a system with n degrees of
freedom we use the algebra of square integrable functions on an n-dimensional linear

space discussed in B.IV. The parameter ~ is again introduced and the functions
(pj)
ε (xi)

redefined as
(pj)
ε (xi) =

1
(2π~)n

exp
(
i

~
pjx

j

)
.

States are represented by Hermitian, positive definite, normalized elements, that is,
by functions

ρ(xi) =
1

(2π~)n

∫
exp
(
i

~
pix

i

)
ρ(pi)dnp

with ρ(pj) real and non-negative and

ρ(0) =
1

(2π~)n

∫
ρ(pj)dnp = 1.
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The physical quantities are the linear momenta pj with expectation values

〈pj〉 =
1

(2π~)n

∫
pjρ(pj)dnp =

~
i

∂

∂xj
ρ(xi)xi=0.

Every function ρ(pj) can be written in the form

ρ(pj) = (2π~)nψ(pj)ψ†(pj)

with ∫
ψ†(pj)ψ(pj)dnp = 1.

This shows that in this case the Hilbert space formulation is just as general as the operator
formulation. The Hilbert space consists of square integrable functions ψ(pj) and the scalar
product is

(ϕ, ψ) =
∫
ϕ†(pj)ψ(pj)dnp.

The function ρ(xi) is now equal to
∫
ψ†(xi − x′i)ψ(x′i)dnx′

where

ψ(xi) =
1

(2π~)n/2

∫
exp
(
i

~
pix

i

)
ψ(pi)dnp.

The linear momenta have expectation values

〈pj〉 =
∫
ψ†(pj)pjψ(pj)dnp =

∫
ψ(xi)∗ ~

i

∂

∂xj
ψ(xi)dnx.

In addition to linear momenta, position operators xj with expectation values

〈xj〉 =
∫
ψ(xi)∗xiψ(xi)dnx =

∫
ψ(pj)∗i~

∂

∂pj
ψ(pj)dnp

are introduced.

2. Relativistic dynamics. We now proceed to formulate the theory of a free particle
of mass m and no internal degrees of freedom. This is done by taking the four-dimensional
Minkowskian space with coordinates xµ, µ = 0, 1, 2, 3, and metric tensor ηµν and con-
structing the algebra of functions of the form

α(x) =
1

(2π~)4

∫
exp
(
i

~
px

)
α(p) ε(p) δ(

√
p2 −m)d4p, ε(p) =

p0

|p0|
.

These functions are not square integrable. Instead we demand that1

1
(2π~)4

∫
α(p)∗α(p) ε(p) δ(

√
p2 −m)d4p =

π~2

im

∫
α(x)∗

�
∂ µα(x)dσµ <∞.

1The integral in the following formula extends over a spacelike section of space-time. The
three-dimensional volume element dσµ could be defined as gµν∂ncdx0 ∧ dx1 ∧ dx2 ∧ dx3.
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The algebraic rules are slightly modified. The product ab is now represented by α(p)β(p)
or by

π~2

im

∫
α(x− x′)

�
∂ µ′β(x′)dσµ

′
,

the trace is given by

tr(a) =
1

(2π~)4

∫
α(p) ε(p) δ(

√
p2 −m)d4p = α(x)|x=0

and the scalar product by

tr(a†b) =
1

(2π~)4

∫
α(p)∗β(p) ε(p) δ(

√
p2 −m)d4p =

π~2

im

∫
α(x)∗

�
∂ µβ(x)dσµ.

Although the scalar product is no longer positive definite it has been successfully used in
relativistic quantum mechanics. The identity of this algebra is the singular function

∆(x) =
1

(2π~)4

∫
exp
(
i

~
px

)
ε(p) δ(

√
p2 −m)d4p

known in connection with the Klein-Gordon equation.
States are represented by real non-negative normalized functions

ρ(p) = (2π~)4ψ(p)ψ†(p),

1
(2π~)4

∫
ρ(p) ε(p) δ(

√
p2 −m)d4p =

∫
ψ(p)∗ψ(p) ε(p) δ(

√
p2 −m)d4p = 1

or by

ρ(x) =
π~2

im

∫
ψ†(x− x′)

�
∂ µ′ψ(x′)dσµ

′
,

ψ(x) =
1

(2π~)2

∫
exp
(
i

~
px

)
ψ(p) ε(p) δ(

√
p2 −m)d4p.

The physical quantities are the momenta pµ with expectation values

〈pµ〉 =
1

(2π~)4

∫
pµρ(p) ε(p) δ(

√
p2 −m)d4p

=
1

(2π~)4

∫
ψ†(p)pµψ(p) ε(p) δ(

√
p2 −m)d4p

=
~
i
∂µρ(x)|x=0 =

π~3

m

∫
∂µψ(x)∗

�
∂ νψ(x)dσν .

Using the Klein-Gordon equation

∂µ∂
µψ(x) +

m2

~2 ψ(x) = 0

and integrating by parts one derives a completely symmetric expression

〈pµ〉 =
π~3

m

∫ [
∂µψ(x)∗∂νψ(x) + ∂νψ(x)∗∂µψ(x)

−ηµν
(
∂κψ(x)∗∂κψ(x)− m2

~2 ψ(x)∗ψ(x)
)]

dσν .
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The positions given by xµ or in momentum representation by i~ ∂
∂pµ

are not well

defined, because ρ(p) is not defined off the mass shell
√
p2 = m. Only derivatives in

directions tangent to the mass shell can be considered, i.e. operators

i~
(

∂

∂pµ
− 1

2
pµpν
m2

∂

∂pν
− 1

2
∂

∂pν

pµpν
m2

)
.

Infinitesimal Lorentz transformations define orbital angular momentum operators
Mµν represented by

i~
(
pµ

∂

∂pν
− pν

∂

∂pµ

)

or

−i~
(
xµ

∂

∂xν
− xν

∂

∂xµ

)
.

IV. Relativistic theory of particles with spin 1
2 and mass m. In the present

section we combine results derived separately for angular momentum 1
2~ and mass m to

formulate the theory of particles with spin 1
2 and mass m. For this purpose we introduce

the generalized σ matrices

σAḂµ =
((

1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
,

σȦB µ =
((

1 0
0 1

)
,−
(

0 1
1 0

)
,−
(

0 −i
i 0

)
,−
(

1 0
0 −1

))
,

σAĊµ σĊB ν =




(
1 0
0 1

)
−
(

0 1
1 0

)
−
(

0 −i
i 0

)
−
(

1 0
0 −1

)

(
0 1
1 0

)
−
(

1 0
0 1

)
−i
(

1 0
0 −1

)
i

(
0 −i
i 0

)

(
0 −i
i 0

)
i

(
1 0
0 −1

)
−
(

1 0
0 1

)
−i
(

0 1
1 0

)

(
1 0
0 −1

)
−i
(

0 −i
i 0

)
i

(
0 1
1 0

)
−
(

1 0
0 1

)




.

We note that

σAĊ (µ σĊB ν) = εABηµν .

A special symbol is introduced for the antisymmetric part

σABµν = σAĊ [µ σĊB ν].

We calculate the product of two σABµν matrices:

σACµνσ
C
Bκλ = εAB (ηµκηνλ − ηµληνκ − i εµνκλ)

+ i
(
σABµληκν + σABνκηµλ + σABκµηνλ + σABλνηµκ

)
.

We now consider an algebra of elements a, b, . . . represented by functions αAB(p),
βAB(p), . . . with the product rule: ab is represented by αAC(p)βCB(p). The trace is
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defined by

tr(a) =
1

(2π~)4

∫
αAA(p) ε(p) δ(

√
p2 −m)d4p

and Hermitian conjugate a† by

α†AB(p) = σAĊµ
pµ

m

(
αDC(p)

)∗
σḊBν

pν

m
.

The scalar product is

tr(a†b) =
1

(2π~)4

∫
αAB(p)∗βBA(p) ε(p) δ(

√
p2 −m)d4p.

The Hermitian basis for multipole representation of density operators ρAB(p) is provided
by εAB and

−iσABµν
pν

m
= σABν

(
Aνµ −

pνpµ
m2

)
.

Density operators are expressed in the form

ρAB(p) = ρ(p)
(
εAB +

2
~
Pµ(p)SABµ

)

with

SABµ =
~
2
σABµ =

~
2
σAĊµσĊBµ

pν

m
and Pµ(p)pµ = 0.

Normalization and positive definiteness require that

ρ(p)ε(p) > 0, Pµ(p)Pµ(p) > −1,
1

(2π~)4

∫
ρ(p) ε(p) δ(

√
p2 −m)d4p =

1
4
.

A Lorentz transformation applied to ρAB(p) gives

ρ′AB(p) = ΛAC ρCD(p′) ΛDB

where
p′µ = pν L

ν
µ,

ΛAB is a unimodular matrix and

Lµν =
1
2
σȦB

µ ΛBC σCḊν Λ†Ḋ
Ȧ

is a Lorentz transformation matrix. An infinitesimal Lorentz transformation

ΛAB = εAB −
i

~
SABµνλ

µν , Lµν = Aµν + 2λµν

results in

ρ′AB(p) = ρAB(p)− i

~

[
i~
(
pµ

∂

∂pν
− pν

∂

∂pµ

)
ρAB(p)

+ SACµν ρ
C
B(p)− ρAC(p)SCBµν

]
λµν .

Pure states are those for which PµP
µ = −1. For such states

ρAB(p) =
1
2

(2π~)4ψA(p)ψ†B(p), where ψ†B(p) = (ψC(p))∗σĊBµ
pµ

m
.
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We introduce

ψA(x) =
1

(2π~)2

∫
exp
(
i

~
px

)
ψA(p) ε(p) δ(

√
p2 −m)d4p

ψ†A(x) =
~
im

∂µ(ψB(−x))∗σḂAµ.

The physical quantities are the linear momenta pµ, the modified positions

i~
(

∂

∂pµ
− 1

2
∂

∂pν

pµpν
m2 −

1
2
pµpν
m2

∂

∂pν

)
+
pν
m
SAB

νµ,

and the angular momenta

i~
(
pµ

∂

∂pν
− pν

∂

∂pµ

)
εAB + SABµν

pκpµ
m2 .

One can also introduce internal angular momentum operators

SABµν + SABκµ
pκpν
m2 + SABνκ

pκpµ
m2

closely related to dipole polarization operators. The scalar product has the form

π~2

im

∫
ϕ†A(−x)

�
∂ µψ

A(x)dσµ.

In the usual formulation of spin 1
2 mass m theory states are represented by bispinor

wave functions ψ(x) satisfying the Dirac equation

~
i
γµ∂µψ(x) = mψ(x),

and the scalar product has the form

π~
∫
ψ̄(x)γµψ(x)dσµ,

where γµ is the set of Dirac matrices and

ψ̄(x) = ψ(x)∗γ0.

To show the equivalence of this formulation to the one presented in this section we
write

ψ(x) =
(
ψA(x)
ψḂ(x)

)
, γµ =

(
0 σAḂµ

σĊDµ 0

)
, ψ̄(x) = (ψ†A(−x), ψ†Ḃ(−x)).

The Dirac equation takes the form

~
i

(
0 σAḂµ

σĊD
µ 0

)
∂µ

(
ψD(x)
ψḂ(x)

)
= m

(
ψA(x)
ψĊ(x)

)

equivalent to

~
i
σAḂµ∂µψḂ(x) = mψA(x),

~
i
σĊD

µ∂µψ
D(x) = mψĊ(x).

The scalar product is

π~
∫

(ϕ†A(−x)σAḂµψḂ(x) + ϕ†Ȧ(−x)σȦBµψ
B(x))dσµ =

∫
ϕ†A(−x)

�
∂ µψ

A(x)dσµ,
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and
ψ̄(x) = (ψ†A(−x), ψ†Ḃ(−x)) = (ψȦ(x)∗, ψB(x)∗) = ψ∗A

with

A =
(

0 εAB
εĊ

Ḋ 0

)

numerically equal to γ0.

D. CLASSICAL APPLICATIONS

In the present chapter we draw classical conclusions from quantum mechanical results
of the preceding chapter. Operators will be denoted by Â, B̂, . . . to distinguish them from
their classical counterparts A,B, . . ..

The method of classical correspondence consists in letting ~ go to zero, and calculating
zeroth order, or sometimes first order terms in the asymptotic expansion of all quantum
mechanical expressions. The details of the classical correspondence are discussed sepa-
rately. Here we note that to the zeroth order in ~ all operators commute and go over into
corresponding classical quantities. For systems with translational degrees of freedom the
basic operators are x̂i and p̂j with commutators

[
x̂i, p̂j

]
= i~ εij .

All other operators are functions of the basic set and first order expressions of their
commutators coincide with Poisson brackets multiplied by i~. Here by functions of non-
commuting operators we mean algebraic functions with symmetrized products, e.g. ÂB̂
means 1

2 (ÂB̂ + B̂Â). For internal degrees of freedom there is usually no need to intro-
duce functions of the basic operators (angular momenta and polarizations) sufficiently
complicated to necessitate deriving a special formalism for their commutators.

First we discuss the theory angular momentum. No operators had to be introduced
for angular momentum 0. For angular momentum 1

2~ we had to introduce dipole polar-
ization, that is, angular momentum operators, and for angular momentum ~, additionally
quadrupole polarization operators. For higher angular momenta higher polarization op-
erators would have to be introduced. We thus conclude that the degrees of freedom of
systems with angular momentum coincide with those of multipole particles at rest.

In the case of a system with mass m the operators introduced were in the first place
momenta p̂µ represented by pµ or −i~∂µ and related to infinitesimal translations in space-
time. The complementary set of operators is given by positions x̂µ represented by i~ ∂

∂pµ
or xµ and related to infinitesimal translations in momentum space. These operators are
well defined only when no restrictions on states are imposed. If the states are restricted
to those of mass m, only translations tangent to the mass shell can be considered. This
leads to modified operators

x̂µ0 = x̂µ
(
Aµν −

pµpν
m2

)

which commute with m̂ =
√
p̂2. If states of mass m are regarded as special cases of states
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with arbitrary mass, we can use operators x̂µ or supplement x̂µ0 with

ŝ =
pµ
m

x̂µ, [ŝ, m̂] = i~.

The relation between x̂µ and x̂µ0 is expressed by

x̂µ = x̂µ0 + ŝ
p̂µ

m̂
.

The corresponding classical system is a simple pole particle of mass m described by a
straight time-like world line in space-time. The world line is characterized by its direction
pµ

m and orthogonal distance xµ0 from the origin of the coordinate system. If the world
line is thought of as composed of points of space-time, position on the line can be spec-
ified either directly by xµ or by xµ0 and the proper time s. The relation between these
quantities is

xµ = xµ0 + s
pµ

m
.

The degrees of freedom of a spin 1
2 , mass m system are clearly those of a pole-

dipole particle. The linear momentum has the same properties as in the spinless case,
the operator i~ ∂

∂pµ
is not well defined even if mass is not restricted. The reason for this

is that a translation in momentum space has to be accompanied by a suitable Lorentz
rotation applied to internal degrees of freedom in order to maintain orthogonality between
momentum and dipole polarization. This leads to an operator

i~
∂

∂pµ
εAB +

pν
m
SAB

νµ

which we interpret as the position x̂µ. Mass restriction requires that x̂µ be projected on
the mass shell:

x̂µ0 = x̂µ
(
Aµν −

pµpν
m2

)
.

The relation between x̂µ and x̂µ0 is again

x̂µ = x̂µ0 + ŝ
p̂µ

m̂
.

References

[1] M. Mathisson, Acta Phys. Polon. 6 (1937), 163.
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