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To Professor W. M. Tulczyjew on the occasion of his 70th birthday

I first heard a lecture by Włodek Tulczyjew at Aix en Provence in 1979, and I remem-
ber it. I had been struggling for some time to grasp the basics of spectral sequences in
order to understand the topological approach to the statistics of identical particles. Here
spoke a physicist who was completely on top of the technology—using it to place the
Euler-Lagrange operator in an exact sequence, to provide a test of whether or not a given
set of differential equations arose from a Lagrangian. And he even said that this was not
his main research interest, but something he did in odd moments! So I was impressed.
Many happy returns.

Fred Bloore

1. Introduction. The modern treatment of mechanics, initiated and developed by
Tulczyjew and others, uses the differential geometry associated with the tangent and
cotangent bundles of the configuration space Q of the mechanical system. Its tools are
the vector fields and the differential forms dual to them together with their exterior
derivatives.

This theory has a rich structure and enjoys great success in describing mechanical sys-
tems. So it is not surprising that less attention has been paid to the fact that, since vector
fields may be viewed as first order linear differential operators on the set F = C∞(Q,C)
of smooth functions on Q, there may be some reward for studying the linear differential
operators of higher order by means of their cochains, in the same spirit that we study
the vector fields through their differential forms. (We choose C rather than R because
one application (section 6.1) requires quantum mechanical wave functions to lie in F .)

In this contribution we offer a start on this study. (It’s not our first paper on the stuff
but we hope it is a gateway into the field.) There is also a well developed jet bundle theory
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of systems of partial differential equations begun by Cartan, Kaehler, Janet, Riquier,
Spencer with which the present material is not yet linked.

We shall study the associative algebra D of linear differential operators on F by ex-
ploring the properties of the Hochschild complex of D-valued cochains on D. This complex
has two interesting subcomplexes, the complex of F-tensorial cochains and its normalised
subcomplex, the F-relative cochains. These latter are our principal object of concern.
When restricted to act on vector fields they reduce to covariant tensor fields. They may
be regarded as the natural extension of covariant tensor fields (and of differential forms
in particular) to act on differential operators of order higher than one.

Section 2 contains the definitions and basic properties. The following section gives a
local characterisation of F-tensorial cochains in terms of their “structure functions”. In
section 4 we sketch out a useful isomorphism of differential graded algebras which relates
an F-tensorial p-cochain on D to the jet of a smooth function on Qp+1 taken on the
diagonal. We take the small liberty of calling the complex of these jets the Alexander-
Spanier complex—the two notions are so similar. In section 5 we show a rather natural
way to enlist the aid of a connection on TQ to extend the domain of a differential form
to include all D. Some possible uses of these cochains are suggested in Section 6.

2. Cochains on D. We first define a general D-valued Hochschild cochain, then
specialise to an F-tensorial cochain. Our main objects of study, the F-relative cochains,
are simply the normalised F-tensorial ones. Each type has a differential algebra using
the Hochschild differential δ and the cup product ∪. We define also the composition ◦ of
a 1-cochain with a p-cochain.

When an F-relative p-cochain is restricted to act only on vector fields it reduces to
a covariant tensor field whose anti-symmetric part is a de Rham differential p-form. The
consequent map a from F-relative cochains on D to de Rham differential forms respects
the differential structure. This motivates the investigation of how much of the existing
structure [CP] of differential forms and vector fields can be carried back to Hochschild
cochains and linear differential operators.

We define, for any linear differential operator K, the interior product ιKA and the
Lie derivative LKA of a general Hochschild cochain A on D. We then show, mainly by
direct calculation, that almost all the classical properties of de Rham forms in regard to
ιX and LX , X ∈ X (Q), are mirrored by properties of cochains in regard to ιK and LK .
These include the Cartan homotopy relation

dιXω + ιXdω = LXω.

2.1. Hochschild p-cochains on D
Definition. A Hochschild p-cochain on D is a C-linear map

A : D ⊗D ⊗ . . .⊗D → D
with p factors in the tensor product. Here (and throughout)⊗ will denote⊗C.A 0-cochain
is an element of D.

The set of Hochschild p-cochains on D will be denoted by Cp(D,D).
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Definition [Ho1]. For A ∈ Cp(D,D) the Hochschild differential δA is the (p + 1)-
cochain defined, for Hi ∈ D, by

(δA)(H1, . . . , Hp+1) = H1A(H2, . . . , Hp+1)−A(H1H2, . . . , Hp+1)

+ . . .+ (−1)pA(H1, . . . , HpHp+1) + (−1)p+1A(H1, . . . , Hp)Hp+1. (1)

So in particular, for H ∈ C0(D,D), K ∈ D (= C0(D,D)),

δH(K) = [K,H] = KH −HK.
Definition. For A ∈ Cp(D,D), B ∈ Cq(D,D), the cup product A ∪B ∈ Cp+q(D,D)

is defined by

(A ∪B)(H1, . . . , Hp+q) = A(H1, . . . , Hp) ◦B(Hp+1, . . . , Hp+q) (2)

where ◦ is the composition of differential operators.

It follows from the definitions that

δ(A ∪B) = δA ∪B + (−1)pA ∪ δB.
Note that for H1, H2 ∈ C0(D,D) = D,

H1 ∪H2 = H1H2.

For the particular case of A ∈ C1(D,D) and B ∈ Cp(D,D) we also have the compo-
sition A ◦B ∈ Cp(D,D):

(A ◦B)(H1, . . . , Hp) = A(B(H1, . . . , Hp)). (3)

Definition. For p ≥ 1, A ∈ Cp(D,D) is called normalised if A(H1, . . . , Hp) = 0
whenever one or more Hj is the identity operator in D.

If A and B are normalised so are δA,A∪B and, for A ∈ C1(D,D), A◦B is normalised
whenever B is normalised.

From now on we shall simply write the word cochains for Hochschild cochains on D
and assume that all differential operators mentioned are linear.

2.2. F-tensorial p-cochains

Definition. A cochain A ∈ Cp(D,D) is F-tensorial if for Hi ∈ D, fj ∈ F ,

A(f1H1, f2H2, f3H3, . . . , fpHpfp+1) = f1 ◦A(H1 ◦ f2, H2 ◦ f3, . . . , Hp) ◦ fp+1 (4)

i.e. the fj can jump between the Hj but not through them (except when Hj ∈ F). The
set of F-tensorial p-cochains is denoted by CpF (D,D).

The algebra D is filtered by order; we shall denote by Dp the subset of operators with
order p or less.

An F-tensorial 0-cochain is taken to be an element of F = D0 ⊂ D, the commutative
subalgebra of differential operators of zero order. This is to ensure that δ preserves the
F-tensorial property: For H ∈ C0(D,D) = D, we note that δH ∈ C1

F(D,D) only if
δH(fK) = fδH(K) for all f ∈ F , K ∈ D. But this implies [H, f ] = 0, so we need
H ∈ F .

Definition. A p-cochain is said to be F-relative [Ho2] if it is both F-tensorial and
normalised.
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It follows that if A is F-relative then

A(H1, . . . , Hp) = 0

whenever one or more Hj ∈ F . The set of F-relative cochains is denoted by Cp(D,F ;D).
And C0(D,F ;D) = C0

F (D,D) = F .
If A and B are F-tensorial (F-relative) then so are δA, A ∪ B and, when defined,

A ◦B.
We shall see in section 3 that the composition product of F-tensorial 1-cochains is

commutative.

2.3. The restriction of F-relative cochains to vector fields. Consider an F-relative
2-cochain A acting on vector fields X1, X2:

A(X1, X2) ∈ D.
For f ∈ D0 = F ,

A(X1, X2) ◦ f = A(X1, X2 ◦ f) by F-tensoriality
= A(X1, [X2, f ] + fX2)
= A(X1, fX2) by normalisation and linearity
= A(X1 ◦ f,X2) by F-tensoriality
= A([X1, f ] + fX1, X2)
= A(fX1, X2) by normalisation
= f ◦A(X1, X2) by F-tensoriality.

So
A(X1, X2) ◦ f − f ◦A(X1, X2) = [A(X1, X2), f ] = 0,

and therefore
A(X1, X2) ∈ F .

A similar argument yields

A(f1X1, f2X2) = f1f2A(X1, X2),

telling us that A|X is a (0, 2) tensor field, and indeed for A ∈ Cp(D,F ;D), we have that
A|X is a (0, p) tensor field.

Let ordH denote the order of the differential operator H. One can show [HB] that
for A ∈ Cp(D,F ;D) and Hj ∈ D with ord Hj = kj then

ord(A(H1, . . . , Hp)) =
{∑p

j=1(kj − 1) if all kj 6= 0,
0 if any kj = 0.

Let us define the map a from F-relative cochains to differential forms by

a : Cp(D,F ;D)→ Ωp(Q,C),

(aA)(X1, . . . , Xp) =
∑

σ∈Sp
(sgnσ)A(Xσ1 , . . . , Xσp),

where Xj ∈ X and where Sp is the symmetric group. That is to say, a is the restriction of
Cp(D,F ;D) to vector fields, followed by anti-symmetrisation. Direct calculation reveals
that

a ◦ δ = d ◦ a and a(A ∪B) = (aA) ∧ (aB).
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Thus a is in fact a morphism of the differential graded algebras:

a : (C∗(D,F ;D), δ,∪)→ (Ω∗(Q,C), d,∧).

2.4. Interior product and Lie derivative. Vector fields X and differential forms ω
possess a rich algebraic structure based on the interior product ιV ω, the Lie derivative
LV ω, the coboundary operator d and the wedge product ∧ [CP]. Almost all this structure
is inherited from corresponding structure on differential operators and cochains, (general
cochains, not just F-tensorial ones). The definitions and calculations for the general
cochains make no use of the properties of the linear differential operators. The proofs of
equations (5), (6) and of properties [1], [2], [3], [5], [6], [8] are combinatoric and could be
applied equally to any cochains on any associative algebra with unit. Only the statements
regarding F-tensorial or F-relative cochains are specific to D.

2.4.1. Interior product

Definition. For Hi,K ∈ D, the interior product

ιK : Cp+1(D,D)→ Cp(D,D)

is given by

(ιKA)(H1, . . . , Hp) = A(K,H1, . . . , Hp) +
p−1∑

k=1

(−1)kA(H1, . . . , Hk,K,Hk+1, . . . , Hp)

+ (−1)pA(H1, . . . , Hp,K).

Then by straightforward calculation

ιK(A ∪B) = (ιKA) ∪B + (−1)degAA ∪ (ιKB) (5)

and
ι2K = 0. (6)

If A ∈ Cp(D,D) is normalised then so also is ιKA.
If A is F-tensorial then ιKA is F-tensorial if and only if K ∈ F .
If A is F-relative then ιKA is F-relative if and only if ord K ≤ 1.

2.4.2. Lie derivative

Definition. For K,H ∈ D we define the Lie derivative of H by K to be

LKH = [K,H]. (7)

Definition. For A ∈ Cp(D,D), LKA ∈ Cp(D,D) is given by

(LKA)(H1, . . . , Hp) = [K,A(H1, . . . , Hp)]−
p∑

k=1

A(H1, . . . , [K,Hk], . . . , Hp). (8)

Note that for H ∈ C0(D,D) = D we have LKH = [K,H]. The action of LK is the
same whether you regard H as a cochain or a linear differential operator.

If A ∈ Cp(D,D) is normalised then so is LKA.
If A is F-tensorial (F-relative) then LK is F-tensorial (F-relative) if and only if

ordK ≤ 1.
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2.4.3. Properties of Lie derivative and interior product. Let Ki, Hj ∈ D, let f ∈ F ,
and let A ∈ Cp(D,D), B ∈ Cq(D,D). The following properties [1]-[4] are trivial.

LK(H1H2) = (LKH1)H2 +H1(LKH2),[1]

LK1K2H = (LK1H)K2 +K1(LK2H),[2]

LK(A ∪B) = (LKA) ∪B +A ∪ (LKB),[3]

LK(fA) = (LKf)A+ fLKA.[4]

Property [4] is a special case of [3], since f ∈ C0(D,D) and fA = f ∪A.
A bit less trivial is

[5] L[K1,K2]A = LK1LK2A− LK2LK1A ≡ [LK1 , LK2 ]A.

Proof of [5]: We adopt the notation

H = H1 ⊗ . . .⊗Hp

and call it a p-chain. Denote the space of p-chains as Cp(D). Write also

[K,H] = −[H,K] =
p∑

k=1

(H1 ⊗ . . .⊗ [K,Hk]⊗ . . .⊗Hp).

Then
(LKA)(H) = [K,A(H)]−A([K,H]) (9)

and
[K1, [K2, H]] + [K2, [H,K1]] + [H, [K1,K2]] = 0.

So

LK1LK2A(H) = [K1, (LK2A)(H)]− (LK2A)([K1, H])

= [K1, [K2, A(H)]]− [K1, A([K2, H ])]− [K2, A([K1, H])] +A([K2, [K1, H]])

whence the result.
For a p-form α and vector fields V,W we have

ι[V,W ]α = LV ιWα− ιWLV α,[6′]

LfV α = fLV α+ df ∧ (ιV α).[7′]

Direct calculation yields the corresponding cochain version of [6′],

[6] ι[K1,K2]A = LK1ιK2A− ιK2LK1A.

Identity [7′] does not have a simple generalisation to cochains.

2.4.4. The Cartan identity. The Cartan relation in differential geometry,

[8′] LX = dιX + ιXd

extends to cochains in the form

[8] LK = διK + ιKδ.

Proof. It is helpful first to install some more notation. We have from equation (9)

LK(A(H)) = (LKA)(H) +A(LKH).
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The operators ιK and δ have so far been defined only on cochains. Let us define them on
chains also, ιK : Cp → Cp+1, ∂ : Cp → Cp−1, by

ιKH = K ⊗H +
p∑

j=1

(−1)jH1 ⊗ . . .⊗Hj ⊗K ⊗Hj+1 ⊗ . . .⊗Hp,

∂H = H1H2 ⊗H3 ⊗ . . .⊗Hp −H1 ⊗H2H3 ⊗H4 ⊗ . . .⊗Hp + . . .

+ (−1)pH1 ⊗ . . .⊗Hp−1Hp.

Then
ιKA = A ◦ ιK and δA+A ◦ ∂ = 1 ∪A+ (−1)p+1A ∪ 1

where A ∈ Cp(D,D) and 1 ∈ C1(D,D) denotes the identity 1-cochain whose value on H
is H. On products we have

ιK(H ⊗H ′) = (ιKH)⊗H ′ + (−1)degHH ⊗ ιKH ′ − (−1)degHH ⊗K ⊗H ′,
∂(H ⊗H ′) = (∂H)⊗H ′ + (−1)degHH ⊗ ∂H ′ − (−1)degHH.H ′

where the concatenation product [Coq] of chains is

H.H ′ = H1 ⊗ . . .⊗HpH
′
1 ⊗H ′2 ⊗ . . .⊗H ′q.

Lemma. (∂ιK + ιK∂)H = LK(H).

Proof. On the right, the map H 7→ LK(H) = [K,H] is a derivation over ⊗. It is
easy to check that the lemma holds on 1-chains, and also that ∂ιK + ιK∂ is a derivation
over ⊗.

Returning to [8], the terms on the right side may be written

(δ(ιKA))(H) = (1 ∪ (ιKA)− (ιKA) ◦ ∂ + (−1)p(ιKA) ∪ 1)(H),

(ιK(δA))(H) = (δA)(ιK(H)) = (1 ∪A−A ◦ ∂ + (−1)p+1A ∪ 1)(ιK(H)).

The first terms of the right sides of these two equations add to give KA(H). The last
terms add to give −A(H)K. The middle terms add, by the lemma, to give −A([K,H]).
Hence [8].

3. The structure of F-tensorial cochains

3.1. Introduction

Notation. For local coordinates xi on Q let I = {i1, . . . , i|I|} be an unordered set of
indices, and write

∂i =
∂

∂xi
, ∂I = ∂i1∂i2 . . . ∂i|I| =

∏

i∈I
∂i, f,I = ∂If. (10)

In the case I = ∅, the empty set, we shall mean by ∂∅ the unit operator. It is a differential
operator of zero order, and may be identified with the unit function 1 on Q.

With this notation the Leibniz rule for derivatives of products of functions may be
written

(fg),I =
∑

I1∪ I2=I

f,I1g,I2 ,
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with the sum taken over all partitions of I including (∅, I) and (I, ∅). It is understood
that I1 ∩ I2 = ∅.

In section 3.2 it is shown that any F-tensorial p-cochain A is uniquely characterised,
in local coordinates, by its “structure functions” A(I1,...,Ip) where A(I1,...,Ip)(x) =
A(∂I1 , . . . , ∂Ip)1|x is the zero order term of the differential operator A(∂I1 , . . . , ∂Ip) eval-
uated at the point x ∈ Q.

In section 3.3 are computed the structure functions of δA,A ∪ B, the composition
product θ ◦ θ′ of two 1-cochains and the structure functions of normalised F-tensorial
cochains. Those of θ ◦ θ′ are used to prove that composition of such 1-cochains is com-
mutative.

In section 3.4 the structure functions are used to express A in terms of a Taylor-like
series of “basis” cochains δxI1 ∪ . . . ∪ δxIp . This is the cochain version of the expression
of a p-form in terms of wedge products of coordinate differentials, dxi1 ∧ . . . ∧ dxip .

3.2. The structure theorem for F-tensorial cochains

(i) Consider the example of A ∈ C2
F (D,D). Let H,K ∈ D,

H = hi1...i|I|∂i1 . . . ∂i|I| ≡ hI∂I , K = kJ∂J ,

where any repeated index il is summed. Then

A(hI∂I , kJ∂J) = hIA(∂I ◦ kJ , ∂J ) using F-tensoriality,

= hIA
( ∑

I1∪I2=I

kJ,I1∂I2 , ∂J

)
using Leibniz’ rule,

=
∑

I1∪I2=I

hIkJ,I1A(∂I2 , ∂J ) using F-tensoriality.

For any A ∈ CpF (D,D) we can cascade the functions to the front as in the above example.
Thus A is completely determined by its action on the ∂I , the basis elements of D in the
coordinate neighbourhood.

(ii) Let ψ ∈ F be the target function for the differential operator A(∂I , ∂J). Then,
with 1 denoting the unit function,

A(∂I , ∂J )ψ = A(∂I , ∂J ◦ ψ)1

=
∑

J1∪J2=J

A(∂I ◦ ψ,J1 , ∂J2)1

=
∑

I1∪I2=I

∑

J1∪J2=J

ψ,I1∪J1A(∂I2 , ∂J2)1

=
∑

I1∪I2=I

∑

J1∪J2=J

(A(∂I2 , ∂J2)1)ψ,I1∪J1 .

The same argument for p-cochains gives [BR]

A(∂I1 , . . . , ∂Ip) =
∑

I11∪I12=I1

. . .
∑

Ip1∪Ip2=Ip

A(I12,...,Ip2)∂I11∪...∪Ip1

where we have written
A(∂I12 , . . . , ∂Ip2)1 = A(I12,...,Ip2). (11)
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The functions A(J1,...,Jp) are called the structure functions of the cochain A. They
evidently characterise A on the coordinate patch.

Two low order examples are:
If A ∈ C1

F(D,D) then

A(∂i) = A(i) +A(∅)∂i,

A(∂i∂j) = A(ij) +A(i)∂j +A(j)∂i +A(∅)∂i∂j ,

A(∂i∂j∂k) = A(ijk) +A(ij)∂k +A(jk)∂i +A(ki)∂j +A(i)∂j∂k

+A(j)∂k∂i +A(k)∂i∂j +A(∅)∂i∂j∂k.

If A ∈ C2
F(D,D), then

A(∂i, ∂j∂k) = A(i,jk) +A(∅,jk)∂i + A(i,k)∂j +A(i,j)∂k

+A(∅,k)∂i∂j +A(∅,j)∂i∂k +A(i,∅)∂j∂k +A(∅,∅)∂i∂j∂k.

3.3. The structure functions for δA,A ∪ B, θ ◦ θ′ and for normalised F-tensorial
cochains. Let A ∈ CpF (D,D), B ∈ CqF (D,D). The following results are easy.

(i) (δA)(I1,...,Ip+1) = A(I2,...,Ip+1),I1 −A∂(I1,...,Ip+1) + (−1)p+1A(I1,...,Ip)δIp+1,∅ where

∂(I1, . . . , Ip+1) ≡ (I1 ∪ I2, . . . , Ip+1)− (I1, I2 ∪ I3, . . . , Ip+1)

+ . . .+ (−1)p+1(I1, . . . , Ip ∪ Ip+1),

(a formal sum of p-tuples of sets of indices),

δIp+1,∅ =
{

0 if Ip+1 6= ∅
1 if Ip+1 = ∅,

and A(I1,...,Ip)+(J1,...,Jp) = A(I1,...,Ip) +A(J1,...,Jp).

(ii) (A ∪B)(I1,...,Ip+q) =
∑

I11∪I12=I1

. . .
∑

Ip1∪Ip2=Ip

A(I11,...,Ip1)B(Ip+1,...,Ip+q),I12∪...∪Ip2 .

(iii) For θ, θ′ ∈ C1
F (D,D) we have

(θ ◦ θ′)(I) =
∑

I1∪I2=I

θ′(I2)θ(I1).

This is the same as (θ′ ◦ θ)(I). Hence θ′ ◦ θ = θ ◦ θ′ and the composition of F-tensorial
1-cochains is commutative.

(iv) An F-tensorial p-cochain A is normalised, i.e. F-relative if and only if A(I1,...,Ip) =
0 whenever at least one of the Ik = ∅.

3.4. “Taylor series” for F-tensorial cochains. For a general 0-cochain H ∈ D =
C0(D,D), δH is a 1-cochain with δH(K) = [K,H]. In the case of the F-tensorial
0-cochains consisting of the coordinate functions xi we have the 1-cochains δxi with
(δxi)(K) = [K,xi]. We can also form composite cochains δxi1 ◦ δxi2 ◦ . . . ◦ δxi|I| which
are themselves 1-cochains. By 3.3 this composition is commutative and we may write

δxi1 ◦ . . . ◦ δxi|I| = δxI with I = {i1, . . . , i|I|}.
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It can be shown that the action of δxI on ∂J is given by

δxI(∂J) =





0, if |J | < |I|
1

(|J | − |I|)!
∑

σ∈S|J|
δi1jσ1

. . . δ
i|I|
jσ|I|

∂jσ|I|+1
. . . ∂jσ|J|

, if |J | ≥ |I|. (12)

We may now write any F-tensorial 1-cochain as a series,

A = A(∅)δx
∅ +A(i)δx

i +
A(ij)

2!
δxi ◦ δxj + . . .+

A(I)

|I|! δx
I + . . .

=
∑

I

1
|I|!A(I)δx

I (13)

where δx∅ = 1, the identity cochain on D. This is verified by checking that both sides
have the same structure functions, as follows.

The action of the operator (12) on the unit function gives us the structure function
of δxI . We find that

(δxI)(J) = 0 if J 6= I

and for J = I (same unordered set of indices)

(δxI)(J) =
∑

σ∈S|I|
δi1jσ1

. . . δ
i|I|
jσ|I|

.

Hence the structure function of
1
|I|!A(i1...i|I|)δx

I

is
1
|I|!A(i1...i|I|)(δx

I)(J) =
1
|I|!A(i1...i|I|)

∑

σ∈S|I|
δi1(jσ1

. . . δ
i|I|
jσ|I| )

=
1
|I|!

∑

σ∈S|I|
A(j1...j|I|) = A(J) = A(I).

The series for any F-tensorial p-cochain is

A =
∑

I1,...,Ip

1∏p
i=1 |Ii|!

A(I1,...,Ip)δx
I1 ∪ . . . ∪ δxIp . (14)

Again each side has the same structure functions.
In (13) and (14) the coefficient functions A(...) may be chosen arbitrarily. For example,

in (13) one might take A(I) = 0 for |I| ≤ p− 1 and A(I) 6= 0 for |I| = p. Then A(H) = 0
for ord H < p; we say then that ord A = p and find that the leading term in the Taylor
series for A is A(i1,...ip)δx

i1 ◦ . . . ◦ δxip , where A(i1,...,ip) is a symmetric covariant tensor
field. This is the dual result to the well known fact that the coefficients of the leading
terms of a linear differential operator make up a symmetric contravariant tensor field.

4. The isomorphism between C∗F (D,D) and J∆C
∗
AS

4.1. Introduction. We introduce a complex (C∗AS , δAS) called the Alexander-Spanier
(AS)-complex, [Sp], [Mas]. The elements of CpAS are smooth, complex-valued functions
each defined on some open neighbourhood of the diagonal subset ∆p+1 of Qp+1, the
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Cartesian product of p+ 1 copies of Q. C∗AS has a product, called concatenation, [Coq],
and written as a dot

CpAS × C
q
AS → Cp+qAS , (F,G) 7→ F.G

and a differential, δAS :

δAS : CpAS → Cp+1
AS .

Together these make (C∗AS , δAS, .) into an associative differential graded algebra (DG-
algebra).

We define a map

Φ : C∗AS → C∗F(D,D)

which depends only on the partial derivatives of the AS-cochains on the diagonal subset
∆p+1 = {(x, x, . . . , x) : x ∈ Q} of Qp+1 and not elsewhere. With this in mind we use
the AS-algebra to construct an associated DG-algebra (J∆C

∗
AS, δAS , .) whose elements

of degree p are the jets of AS-p-cochains which are evaluated on ∆p+1.
The main result of this chapter is that the map Φ gives an isomorphism between the

DG-algebras (J∆C
∗
AS, δAS , .) and (C∗F(D,D), δ,∪).

Section 4.2 describes the AS-complex. Particular elements, called [BR] separable
cochains, are introduced. In section 4.3 we define the map Φ : CpAS → CpF(D,D), and
show that Φ is a morphism of DG-algebras. It is not however injective. In section 4.4
we show that, for F ∈ CpAS, the differential operator ΦF (H1, . . . , Hp) depends on F only
through the jet of F on the diagonal subset ∆p+1 ⊂Mp+1. Two functions F1, F2 ∈ CpAS
having the same jet on ∆p+1 but differing elsewhere will satisfy ΦF1 = ΦF2 . In section
4.5 we prove that Φ : J∆C

∗
AS → C∗F (D,D) is an isomorphism of DG-algebras.

The isomorphism gives a cross-fertilisation of the properties of the two types of
cochain, F-tensorial and Alexander-Spanier. Thus AS-cochains acquire a Lie derivative
with respect to vector fields and an interior product with respect to functions, whilst
F-tensorial cochains gain a commutative product. Some details are given in section 4.6.

In section 4.7 the isomorphism is refined slightly to one between a subalgebra of
J∆C

∗
AS consisting of jets of what we call normalised AS cochains and the subalgebra

C∗(D,F ,D) ⊂ C∗F (D,D) of normalised F-tensorial cochains.

4.2. The Alexander-Spanier complex

Definition. An AS-p-cochain is an element of C∞(Up+1,C) where Up+1 is an open
neighbourhood of the diagonal ∆p+1 ⊂ Qp+1, ∆p+1 = {(x, x, . . . , x) : x ∈ Q}. The vector
space

C∗AS =
∞∑

p=0

CpAS

is made into an algebra by defining the concatenation product :
For F ∈ CpAS , G ∈ CqAS the product F.G ∈ Cp+qAS is defined by

(F.G)(x0, . . . , xp, xp+1, . . . , xp+q) = F (x0, . . . , xp)G(xp, . . . , xp+q).
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The Alexander-Spanier differential δAS : CpAS → Cp+1
AS is defined by

(δASF )(x0, .., xp+1) =
p+1∑

j=0

(−1)jF (x0, . . . , x̂j , . . . , xp+1)

where x̂j denotes omission of xj .
There are particular sorts of AS-cochains called separable cochains which are of the

form
F = f0 ⊗ f1 ⊗ . . .⊗ fp ∈ F⊗p+1.

That is,
F (x0, . . . , xp) = f0(x0)f1(x1) . . . fp(xp).

For separable F = f0 ⊗ . . .⊗ fp ∈ CpAS and G = g0 ⊗ . . .⊗ gq ∈ CqAS we have

F.G = f0 ⊗ . . .⊗ fpg0 ⊗ . . .⊗ gq
and

δASF = (1⊗ f0 ⊗ . . .⊗ fp)− (f0 ⊗ 1⊗ f1 ⊗ . . .⊗ fp)
+ . . .+ (−1)p+1(f0 ⊗ . . .⊗ fp ⊗ 1).

Every F ∈ CpAS is the limit of a sequence of sums of separable functions. If a conjecture
holds for separable functions in CpAS then it follows from linearity and continuity that
the conjecture will hold true for all elements of CpAS .

4.3. The map Φ : CpAS → CpF (D,D). For F ∈ CpAS, Hj ∈ D, ψ ∈ F we define
ΦF ∈ CpF (D,D) by [HB, BR]

(ΦF (H1, . . . , Hp)ψ)(x0)

= [H1(x1)[H2(x2)[. . . [Hp(xp)[F (x0, . . . , xp).ψ(xp)]]xp=xp−1 ] . . .]x2=x1 ]x1=x0 . (15)

The cochain ΦF is evidently F-tensorial.
For separable F the equation (15) simplifies to

ΦF (H1, . . . , Hp) = Φf0⊗...⊗fp(H1, . . . , Hp) = f0H1f1 . . .Hpfp ∈ D.
Again, for separable F ,

ΦδASF (H1, . . . , Hp+1)

= ((1⊗ f0 ⊗ . . .⊗ fp)− (f0 ⊗ 1⊗ . . . fp) + . . .+ (−1)p+1(f0 ⊗ . . .⊗ fp ⊗ 1))(H1, . . . ,Hp)

= 1H1f0H2 . . .Hp+1fp − f0H11H2 . . .Hp+1fp + . . .+ (−1)p+1f0H1 . . . fpHp+1

=H1f0H2 . . .Hp+1fp − f0H1H2f1 . . .Hp+1fp + . . .+ (−1)p+1f0H1 . . . fpHp+1

= δΦF (H1, . . . ,Hp+1).

So ΦδASF = δΦF for separable functions F and hence by linearity and continuity for all
F ∈ CpAS . In a similar way, for F ∈ CpAS and G ∈ CqAS , both separable, one may verify
that

ΦF.G(H1, . . . , Hp+q) = (ΦF ∪ ΦG)(H1, . . . , Hp+q).

Hence ΦF.G = ΦF ∪ ΦG for separable functions and therefore for all C∗AS.
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4.4. Φ factors through J∆C
∗
AS. In this section we prove that for F ∈ CpAS ,

ΦF (H1, . . . Hp) depends on F only through the jet of F at the diagonal ∆p+1 ⊂ Qp+1.

We denote by J∆C
∗
AS the set of jets on ∆p+1 of elements F ∈ CpAS .

Notation. The point xk ∈ Q has coordinates xik. Denote

∂

∂xik
F (x0, . . . , xk, . . . , xp) by F,ki

and

∂

∂xi1k

∂

∂xi2k
. . .

∂

∂x
i|I|
k

F (x0, . . . , xk, . . . , xp) =
(

∂

∂xk

)I
F (x0, . . . , xk, . . . , xp)

by

F,kI (x0, . . . , xk, . . . , xp)

where I = {i1, . . . , i|I|}.
We shall often need to set several of the arguments xk of F as equal and then to

differentiate F with respect to the coordinate xik. For example if F ∈ C2
AS, then by the

chain rule
∂

∂xi1
F (x0, x1, x1) = F,1i(x0, x1, x1) + F,2i(x0, x1, x1) ≡ F,(1+2)i(x0, x1, x1),

(
∂

∂x1

)I
F (x0, x1, x1) = F

,(1+2)i1 (1+2)i2 ...(1+2)i|I| (x0, x1, x1)

≡ F,(1+2)I (x0, x1, x1).

With this notation we may use (15) with ψ = 1 to write the structure function of ΦF as

ΦF(I1,I2)(x0) =
[

∂

∂xI11

([
∂

∂xI22

F (x0, x1, x2)
]

x2=x1

)]

x1=x0

= F,(1+2)I12I2 (x0, x0, x0).

Similarly one may show that for F ∈ CpAS,

ΦF(I1,...Ip)(x0) = F,(1+...+p)I1 (2+...+p)I2 ...pIp (x0, . . . x0) (16)

which is a combination of jets of F on the diagonal ∆.

4.5. Φ : (J∆C
∗
AS , δAS , .)→ (C∗F(D,D), δ,∪) is an isomorphism

4.5.1. Injectivity of Φ : J∆C
∗
AS → C∗F (D,D). We have seen that the F-tensorial

cochain ΦF depends only on the jet of F at ∆. The jets on the diagonal inherit from C∗AS
the differential, grading and concatenation product structures, so they themselves form a
DG-algebra, (J∆C

∗
AS , δAS, .) We next show that if we restrict Φ to these (infinite-order)

jets, then Φ becomes injective.
For this, we must show that if ΦF = ΦG then F and G have the same jets on ∆. Now

if ΦF = ΦG they must have the same structure functions, which implies [BR] that their
jets on ∆ are equal.
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4.5.2. Surjectivity of Φ : J∆C
∗
AS → C∗F (D,D). We have shown that Φ is an injective

homomorphism. To show that Φ is an isomorphism we must produce

Φ−1 : C∗F(D,D)→ J∆C
∗
AS, A 7→ FA.

That is, given A ∈ CpF (D,D) we must construct the jets on ∆p+1 of a function FA ∈ CpAS
so that ΦF

A

= A.

For p = 0 we have C0
F(D,D) = F and FA = A.

For p > 0 the cochain A ∈ CpF (D,D) has structure function A(I1,...,Ip)(x). Now F ∈
CpAS has Taylor series

F (x0, . . . xp) =
∑

I1

. . .
∑

Ip

( p∏

k=1

|Ik|!
)−1

F,1I1 ...pIp (x0, . . . , x0)(x1 − x0)I1 . . . (xp − x0)Ip .

One can show [BR] that by setting

F,1I1 ...pIp (x0, x0, x0)

= (−1)|I12|+...+|Ip2|
∑

I11∪I12=I1

. . .
∑

Ip−1,1∪Ip−1,2=Ip−1

A(I11,I12∪I21,...,Ip−1,2∪Ip)(x0)

we obtain ΦF
A

= A. Thus Φ is an isomorphism. The convergence of the above formal
series is not discussed but we invoke Borel’s Lemma [Gib] that a C∞ function on Qp+1

which has the above jets does exist.

4.6. Additional structures on C∗F (D,D) and C∗AS. Since CpF (D,D) and J∆C
p
AS are

isomorphic DG-algebras, any structure admitted by CpF (D,D) will give a corresponding
structure to CpAS (or at least to J∆C

p
AS) and vice versa.

4.6.1. Composition of cochains in C∗AS. For θ ∈ C1
F (D,D), A ∈ CpF(D,D) the com-

position θ ◦A ∈ CpF (D,D) induces the composition of AS-cochains

(F ◦G)(x0, . . . , xp) = F (x0, xp)G(x0, . . . , xp) (17)

which might be called the “encircle” product of an AS-p-cochain by an AS-1-cochain. In
particular if F,G ∈ C1

AS then (F ◦G)(x0, x1) = F (x0, x1)G(x0, x1).

4.6.2. Commutative product of two F-tensorial p-cochains. AS-cochains of the same
order are real functions on the same space so can be multiplied to produce another
AS-cochain of the same order. So therefore can F-tensorial cochains.

Let A, B ∈ CpF (D,D) have corresponding AS-cochains FA, FB ,

A = ΦF
A

, B = ΦF
B

.

Define the (commutative) product

AB = BA = ΦF
AFB ∈ CpF (D,D).

For 1-cochains θ, θ′ we have θθ′ = θ ◦ θ′.
4.6.3. Interior product ιf and Lie derivative LV of AS-cochains. We found in sections

2.5 and 2.6 that the interior product map ιK : Cp+1(D,D) → Cp(D,D) preserves F-
tensoriality if and only if K ∈ F , and the Lie derivative LK does so only if ord K ≤ 1.
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The AS-cochains inherit these structures as follows:

(ιfF )(x0, . . . , xp) =
p∑

j=0

(−1)jf(xj)F (x0, . . . xj−1, xj , xj , xj+1, . . . , xp),

(LV F )(x0, . . . , xp) =
p∑

j=0

V i(xj)∂xijF (x0, . . . , xp).

4.7. Normalisation. An AS-cochain F is said to be normalised if it vanishes when
two contiguous variables are identified, i.e.

F (x0, . . . , xj , xj , xj+2 . . . , xp) = 0.

It can be shown that the jets of the normalised AS-cochains correspond isomorphically
to the normalised F-tensorial cochains.

5. From de Rham forms to Alexander-Spanier cochains. For a given ω ∈
Ωp(M), [HB] construct a function Fω : Vp+1 → R where Vp+1 ⊂ Qp+1 is a certain
neighbourhood of the diagonal subset ∆p+1 = {(x, . . . , x) : x ∈ Q} ⊂ Qp+1 which is
specified below. So, Vp+1 consists of (p+ 1)-tuples (x0, . . . , xp) ∈ Qp+1 which are “close”
to ∆p+1. This means that the xj in Q are all reasonably close to each other.

The construction uses the geodesic paths of a connection Γ on TQ, so we suppose
that we are given this path structure.

At each point x0 ∈ Q we take a convex normal neighbourhood Vx0 of x0 ([CP], chap.
11). Then Vx0 is such that there is one and only one segment of a geodesic path joining
any two points in Vx0 . We define

Vp+1 = {(x0, . . . , xp) ∈ Qp+1 : x1, . . . , xp ∈ Vx0}.
For (x0, . . . xp) ∈ Vp+1, we construct a p-simplex SΓ

p (x0, . . . , xp) having vertices x0, . . . , xp
as follows.

The edge SΓ
1 (xi, xj), i < j, of the p-simplex SΓ

p (x0, . . . , xp) is the oriented geodesic
path from xi to xj . The 2-face SΓ

2 (xi, xj , xk), i < j < k, is built by joining xi to points
on SΓ

1 (xj , xk) by geodesic paths.
3-faces SΓ

3 (xi, xj , xk, xl), i < j < k < l, are formed by joining xi by geodesic paths to
the points of SΓ

2 (xj , xk, xl) and so on.
It follows that

∂Sp(x0, . . . , xp) =
p∑

j=0

(−1)jSp−1(x0, . . . , x̂j , . . . , xp) ≡ Sp−1(∂(x0, . . . , xp)).

Thus the map FΓ : Ω∗ → NC∗AS defined by

FωΓ (x0, . . . , xp) =
∫

SΓ
p (x0,...,xp)

ω

satisfies

F dωΓ = δASF
ω
Γ .
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One can then show [HB] that, for Φ as defined in Chapter 4,

ΦF
ω

Γ (X1, . . . , Xp) =
1
p!
ω(X1, . . . , Xp), (18)

i.e. the action of ΦF
ω

Γ on vector fields is independent of Γ and agrees up to scale with ω.
In particular for θ ∈ Ω1,

ΦF
θ

Γ |X = θ.

In order to evaluate the 1-cochain ΦF θ

Γ on differential operators of order higher than
1 we need to know the structure functions of the cochain, or equivalently, the jets of the
function F θΓ(x0, x1) at x1 = x0. The first few are

F θΓ,1a(x0, x0) = θa(x0),
F θΓ,1a1b(x0, x0) = θ(a,b)(x0),

F θΓ,1a1b1c = θ(a,bc) + 1
2dθi,(aΓibc),

F θΓ,1a1b1c1d = θ(a,bcd) + [dθi,(aΓibc],d).

where curved brackets ( ) around subscripts indicate that they are symmetrised. A gen-
eral formula exists for the covariant derivatives of F θΓ . It is [Ha]

F θΓ;(1a1 ...1ap )(x0, x0) = θ(a1;a2...ap)(x0).

It is evident from its construction that the p-simplex SΓ
p (x0, . . . , xp) collapses to the

(p− 1)-simplex SΓ
p−1(x0, . . . x̂j , xj+1, . . . , xp) whenever xj+1 is set equal to xj . The func-

tions FωΓ (x0, . . . , xp) defined on Vp+1 are thus normalised AS-cochains, and the cochains
ΦF

ω
Γ are F-relative.

6. Applications. Having forged our small Nothung let us bully some small dragons
with it.

6.1. The probability current in quantum mechanics. We shall use the framework of the
standard quantum mechanics of a system having configuration space Q with half density
wave functions ψ such that

∫
Q
|ψ|2 < ∞. We suppose that we are given a Hamiltonian.

This is a symmetric operator H ∈ D which possesses a self adjoint extension. The time
development of ψ is then specified by the Schrödinger equation

i∂tψ = Hψ.

The amplitude density ρ(φ,ψ) = φ̄ψ for two wave functions φ, ψ satisfies
∫

Q

∂tρ(φ,ψ) = 0

which implies that we may write

∂tρ(φ,ψ) = −divJ(φ,ψ)

for some transition probability flux vector field, or current. This fixes divJ, not J itself,
though some textbooks claim that for Q = R3 and H = − 1

2∇2 + V (r), the “correct” J
among those with the right divergence is

J(φ,ψ) = =(φ̄∇ψ).
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We investigate what structure is required to select the “correct” J when H is an arbitrary
Hamiltonian operator on an arbitrary configuration manifold Q.

We first recall the properties of de Rham p-currents—linear complex-valued functions
on “test” p-forms on Q, [deR]. A 0-current ρ is a scalar density,

ρ(f) =
∫

Q

fρ, f ∈ F .

A 1-current J is a vector density. It acts on test 1-forms

J(θ) =
∫

Q

θiJ
i, θ ∈ Ω1.

There is a natural map div from p-currents to (p− 1)-currents,

(divJ)(ω) = −J(dω), ω ∈ Ωp−1.

We shall need to extend the notion of p-currents to be linear complex-valued functions
on test F-relative p-cochains; let Jp be the space of these p-currents. Copy the definition
of div:

div : Jp → Jp−1, (div J)(A) = −J(δA)

where δ is the Hochschild differential. Then for H ∈ D, f ∈ F = C0(D,F ;D) and wave
functions φ, ψ we have a 1-current

H(φ,ψ)(A) =
∫

Q

φ̄ A(H)ψ, A ∈ C1(D,F ;D),

(divH(φ,ψ))(f) = −H(φ,ψ)(δf) = −
∫
φ̄ δf(H)ψ = −

∫
φ̄[H, f ]ψ.

Then treating ρ(φ,ψ) as an element of J0, we obtain

(∂tρ(φ,ψ))(f) = ∂t

∫

Q

φ̄fψ = i

∫

Q

φ̄[H, f ]ψ = −(div iH(φ,ψ))(f).

So
∂tρ(φ,ψ) = −div iH(φ,ψ)

as an equation of two Hochschild 0-currents. This suggests that iH(φ,ψ) be regarded as the
probability 1-current density. It is a Hochschild 1-current, not yet a de Rham 1-current.

To obtain a de Rham 1-current, which maps 1-forms into C, we need a way to extend
the domain of 1-forms from vector fields to all of D. But this map is to hand:

DΓ = Φ ◦ FΓ : Ω∗ → C∗(D,F ;D), ω 7→ ΦF
ω
Γ = Dω

Γ

satisfies Ddω
Γ = δDω

Γ and Dω
Γ |X = (p!)−1ω. So we take the de Rham current to be

J(φ,ψ)(θ) = iH(φ,ψ)(D
θ
Γ) = i

∫

Q

φ̄Dθ
Γ(H)ψ.

One can check that for Q = R3, H = − 1
2∇2 + V (r), Γ = Euclidean connection, and

Cartesian coordinates xi, we obtain the usual formula

J(φ,ψ)(θ) = − i
2

∫

Q

θi(φ̄∂iψ − (∂iφ̄)ψ).
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6.2. An F-relative metric 2-cochain for a Riemannian manifold. We now suppose
that Q possesses a Riemannian metric g. There are many F-relative 2-cochains on D
whose restrictions to X coincide with the symmetric covariant tensor field g. If there were
a natural choice for such a cochain then we could define an “inner product” g(H1, H2) ∈ D
of order ordH1+ord H2 − 2, perhaps extend the Levi-Civita covariant derivative from
∇X1X2 to ∇X1H2, and explore torsion and curvature in this wider context. In section
5.1 we showed how to obtain an F-relative p-cochain from an antisymmetric covariant
tensor field (a differential form) by integrating the form over a certain p-simplex. This
trick is not available for symmetric covariant tensor fields, and we must try something
else.

Instead of working with the partial differential operators ∂I of (10) it is convenient to
use the symmetrised covariant differential operators

∇I = ∇(i1,...ip), ∇Iψ = ψ;(i1...ip).

So

∇i = ∂i, ∇(i1,i2) = ∂i1∂i2 − Γki1i2∂k,

and so forth. Note that ∇ijk 6= ∇ij∇k.
Consider an F-relative 1-cochain θ of order 2; this kills differential operators of order

1 but spares operators of order 2 or more. The Taylor series (13) starts

θ = θ(ij)∂x
i ◦ ∂xj + θ(ijk)∂x

i ◦ ∂xj ◦ ∂xk + . . .

where the θ(ij) = θ(∂i∂j) are the components of a symmetric covariant tensor field. Let
us choose one such cochain θg such that θg(ij) = gij . Postponing the choice of the higher
coefficients in the Taylor series, we note that for X,Y ∈ X ,

δθg(X,Y ) = X ◦ θg(Y )− θg(XY ) + θg(X) ◦ Y
= −θg(Xi∂i ◦ Y j∂j) = −XiY jθg(∂i∂j) = −g(X,Y ).

For ord H = 2, H = hij∂i∂j + hi∂i + h∅, we have

θg(H) = gij∂x
i ◦ ∂xj(H) = hijgij = hii.

So θg is a sort of trace; not a true trace because usually θg([H1, H2]) 6= 0. We now
fix the higher coefficients of the Taylor series. Instead of the structure functions θg(I) =
θg(∂I)1 used earlier, we replace ∂I by ∇(I) and consider the “symmetrised covariant
structure functions” θg(∇(i1...ip))1. For fixed p these functions make up the compo-
nents of a symmetrical covariant tensor field, since the functions θg(hi1...ip∇(i1...ip))1 =
hi1...ipθg(∇(i1...ip))1 are scalar. We may therefore impose the condition that the tensor
components θg(∇(I))1 vanish for all |I| > 2. This determines the higher Taylor coefficients
of θg; for example θg(ijk) = θg(∂i∂j∂k)1 = 3Γ(i.jk), the symmetrised Christoffel symbols.
It follows that

θg(hi1...ip∇(i1...ip)) =
(
p

2

)
h ai1...ip−2
a ∇(i1...ip−2).

We may now define the metric 2-cochain g to be −δθg on all D. It is natural to
enquire whether we may define the covariant derivative of a differential operator. For
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W ∈ X , H ∈ D, can we define ∇WH so that

∇W : Dp → Dp,(P1)

∇fW = f∇W ,(P2)

∇W (fH) = W (f) ◦H + f∇WH,(P3)

∇W (g(H1, H2)) = g(∇WH1, H2) + g(H1,∇WH2) ?(P4′)

The fourth condition is clearly impossible since the first two terms are F-linear in W ,
but the third is not, when ord H1 ≥ 2. So let us replace (P4′) by the analogous condition
for the Hochschild potential θg of the metric g,

(P4) ∇W (θg(H)) = θg(∇WH).

One may deduce from (P4) that

∇i(∇(j1...jp)) = pSj1...jpΓaij1∇(j2...jpa).

Here Sj1...jp denotes symmetrisation over the indices j1, . . . , jp. This in turn implies that

∇W (hj1...jp∇(j1...jp)) = W ih
j1...jp

;i∇(j1...jp) (19)

as one might naively expect. So we adopt (19) as our definition of ∇W on D.
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