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Abstract. Binary operations on algebras of observables are studied in the quantum as well as
in the classical case. It is shown that certain natural compatibility conditions with the associative
product imply properties which are usually additionally required.

1. Introduction. It was an observation of P. A. M. Dirac, when considering the
quantum Poisson bracket of observables in foundations of Quantum Mechanics, that the
Leibniz rule

[A,B1B2] = B1[A,B2] + [A,B1]B2,

[B1B2, A] = B1[B2, A] + [B1, A]B2,

is sufficient to determine the bracket. The Leibniz rule simply tells us that fixing an
argument in the bracket we get a derivation, i.e. an infinitesimal automorphism, of the
algebra of observables. This shows that, in fact, most of the axioms of the Lie bracket for
the corresponding operator algebra are superfluous and one can insist only on the proper
behaviour with respect to the composition (Leibniz rule).
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In the classical case, however, the Leibniz rule is not enough to determine proper
classical brackets, since every operation on the algebra C∞(M) of smooth functions on
a manifold M , associated with the contraction with any contravariant 2-tensor, will do.
We have to impose a version of the Jacobi identity:

[x, [y, z]] = [[x, y], z] + [y, [x, z]].

However, as observed in [GM], the Jacobi identity and the Leibniz rule for a bracket on
C∞(M) imply the skew-symmetry, i.e. we are dealing with a Poisson bracket.

Note that the Jacobi identity alone (without the skew-symmetry assumption) is the
axiom of a generalization of a Lie algebra proposed by J.-L. Loday [Lo]. Such non-skew-
symmetric Lie algebras do exist and give rise to a well-defined (co)homology theory. The
result of [GM] just shows that such Loday algebras are not possible (except for the skew-
symmetric ones, of course) on algebras of functions when the Leibniz rule is required. The
natural question arises if we can break the skew-symmetry by passing to more general
structures like Jacobi brackets or local Lie algebras in the sense of A. A. Kirillov [Ki].

Our main result shows that this is impossible. More precisely, we show that assuming
the differentiability of the bracket and the Jacobi identity, we get the skew-symmetry
automatically, so that no local Loday brackets exist except for the well-known skew-
symmetric ones. The differentiability condition may be viewed as a compatibility condi-
tion with the associative product in the algebra. These observations seem interesting to
us in the context of finding a minimal set of requirements for the structures of classical
and quantum mechanics.

2. Commutator brackets in associative rings. It was already observed by Dirac
([Di], p. 86) that the Leibniz rule defines the commutator bracket in the algebra of
quantum observables uniquely up to a constant factor. In fact, the following holds for
any associative ring (cf. [Di]).

Proposition 1. If [·, ·]0 is a bilinear operation in an associative ring A for which the
Leibniz rule is satisfied (with respect to both arguments):

[A,B1B2]0 = B1[A,B2]0 + [A,B1]0B2,

[B1B2, A]0 = B1[B2, A]0 + [B1, A]0B2,(1)

then

[A1, B1][A2, B2]0 = [A1, B1]0[A2, B2],(2)

for all Ai, Bi ∈ A, i = 1, 2, where [A,B] = AB −BA is the commutator bracket.

Proof. Using the Leibniz rule first for the second argument and then for the first one,
we get

[A1A2, B1B2]0 = B1[A1A2, B2]0 + [A1A2, B1]0B2 =
B1A1[A2, B2]0 +B1[A1, B2]0A2 +A1[A2, B1]0B2 + [A1, B1]0A2B2.

Doing the same calculations in reverse order we get

[A1A2, B1B2]0 = A1B1[A2, B2]0 + B1[A1, B2]0A2 +A1[A2, B1]0B2 + [A1, B1]0B2A2.
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Hence
A1B1[A2, B2]0 + [A1, B1]0B2A2 = B1A1[A2, B2]0 + [A1, B1]0A2B2

and the proposition follows.

Theorem 1. If A is a unital associative ring which is strongly non-commutative, that
is, the two-sided associative ideal of A generated by the derived algebra A′ = span{[A,B] :
A,B ∈ A} equals A, then, under the assumptions of Proposition 1, we get

[A,B]0 = C[A,B](3)

for some central element C ∈ A.
In particular, every bilinear operation [·, ·]0 on A which satisfies the Leibniz rule is a

Lie bracket, i.e. it is skew-symmetric and satisfies the Jacobi identity. If, moreover, A is
an algebra over a commutative ring k and the center of A is trivial, i.e. equals k1, then
[A,B]0 = λ[A,B] for some λ ∈ k.

Proof. By assumption, the unit 1 ∈ A can be written in the form

1 =
∑

i

Ci[Ai, Bi] +
∑

j

[A′j , B
′
j ]C
′
j .(4)

From (2) we get then
(∑

i

Ci[Ai, Bi]
)

[A,B]0 =
(∑

i

Ci[Ai, Bi]0
)

[A,B].(5)

Since both brackets satisfy the Leibniz rule, we have

[A′j , B
′
j ]C
′
j [A,B]0 = [A′j , B

′
jC
′
j ][A,B]0 −Bj [A′j , C ′j ][A,B]0 =(6)

[A′j , B
′
jC
′
j ]0[A,B]−Bj [A′j , C ′j ]0[A,B] = [A′j , B

′
j ]0C

′
j [A,B],

so that

[A,B]0 =
(∑

i

Ci[Ai, Bi] +
∑

j

[A′j , B
′
j ]C
′
j

)
[A,B]0 =

(∑

i

Ci[Ai, Bi]0 +
∑

j

[A′j , B
′
j ]0C

′
j

)
[A,B] = C[A,B],

where C is a fixed element of A not depending on A,B ∈ A.
To show that C is central, rewrite (6) in the form

[A′, B′]XC[A,B] = C[A′, B′]X[A,B],(7)

so that
[[A′, B′]X,C] · [A,B]Y = 0,(8)

where A,B,A′, B′, X, Y are arbitrary elements of A. Since every one-sided associative
ideal of A containing the derived Lie algebra A′ is, due to the Leibniz rule, two-sided
and thus equals A, we get from (8) [A, C]A = 0, whence [A, C] = 0 and the theorem
follows.

Remark 1. Obviously, if A contains elements P,Q satisfying the canonical com-
mutation rules PQ − QP = 1, then the assumption of the above theorem is satisfied
automatically. This is exactly the Dirac case.
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Corollary 1. Let A be the algebra gl(n,k) of n × n-matrices with coefficients in a
commutative unital ring k. Then every binary operation [·, ·]0 on A, satisfying the Leibniz
rule (1), is of the form

[A,B]0 = λ(AB −BA)(9)

for some λ ∈ k.

Proof. It is easy to see that the derived Lie algebra A′ is the Lie algebra sl(n,k) of
trace-less matrices. Of course, gl(n,k) 6= sl(n,k), but sl(n,k) contains invertible matrices,
so that the associative ideal generated by A′ is the whole A. Due to theorem 1, [A,B]0 =
C(AB−BA) for some central element C ∈ gl(n,k). Since, as is easily seen, the center of
gl(n,k) is trivial, we get (9).

3. Differential Loday brackets for commutative algebras. The important bra-
ckets of classical mechanics, like the Poisson bracket on a symplectic manifold or the
Lagrange bracket on a contact manifold, were generalized by A. A. Kirillov [Ki] to local
Lie algebra brackets on one-dimensional vector bundles over a manifold M , that is, to Lie
brackets on their sections given by local operators. The fundamental fact discovered in
[Ki] is that these operators have to be of the first order and then, locally, they reduce to the
conformally symplectic Poisson or Lagrange brackets on the leaves of the corresponding
generalized foliation of M . For the trivial bundle, i.e. for the algebra C∞(M) of functions
on M , the local brackets reduce to the so called Jacobi brackets associated with the
corresponding Jacobi structures on the manifold M (cf. [Li]).

A purely algebraic version of Kirillov’s result has been proved in [Gr], theorems 4.2
and 4.4, where Lie brackets on associative commutative algebras with no nilpotents, given
by bidifferential operators, have been considered.

On the other hand, J.-L. Loday (cf. [Lo1]), while studying relations between Hoch-
schild and cyclic homology in the search for obstructions to the periodicity of algebraic
K-theory, discovered that one can skip the skew-symmetry assumption in the definition
of a Lie algebra, still having a possibility to define appropriate (co)homology (see [Lo1,
LP] and [Lo], Chapter 10.6). His Jacobi identity for such structures was formally the
same as the classical Jacobi identity in the form

[x, [y, z]] = [[x, y], z] + [y, [x, z]].(10)

This time, however, this is no longer equivalent to

[[x, y], z] = [[x, z], y] + [x, [y, z]],(11)

nor to
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0,(12)

since we have no skew-symmetry. Loday called such structures Leibniz algebras, but since
we have already associated the name of Leibniz with the Leibniz rule, we shall call them
Loday algebras. This is in accordance with the terminology of [KS], where analogous struc-
tures in the graded case are defined. Of course, there is no particular reason not to define
Loday algebras by means of (11) instead of (10) (and in fact, it was the original Loday
definition), but both categories are equivalent via transposition of arguments. Similarly,



BINARY OPERATIONS 167

for associative algebras we can obtain associated algebras by transposing arguments, but
in this case we still get associative algebras.

The natural question arises whether local Loday algebras, different from the local Lie
algebras, do exist. In [GM] it has been proved that no new n-ary Loday-Poisson algebras
and, in principle, no new Loday algebroids (in the sense of [GU]) are possible. Here we
will prove that local Loday algebras on sections of one-dimensional vector bundles must
be skew-symmetric, that is, they reduce to local Lie algebras of Kirillov. We will start
with a general algebraic result on this subject.

Let now A be an associative commutative algebra with unit 1 over a field k of char-
acteristic 0. Recall that a (linear) differential operator of order ≤ n on A is a k-linear
operator D : A → A such that δ(x)n+1D = 0 for all x ∈ A, where δ(x) is the commutator
with the multiplication by x:

(δ(x)D)(y) = D(xy)− xD(y).(13)

This is the same as to say that δ(x1) · · · δ(xn+1)D = 0 for any x1, . . . , xn+1 ∈ A. Note
that a zero-order differential operator D is just the multiplication by D(1) and that δ(x)
acts as a derivation of the associative algebra Endk(A) of linear operators on A:

δ(x)(D1D2) = (δ(x)D1)D2 +D1(δ(x)D2).(14)

For multilinear operators we define analogously

δyi(x)D(y1, . . . , yp) = D(y1, . . . , xyi, . . . , yp)− xD(y1, . . . , yp)(15)

the corresponding derivations with respect to the ith variable and call the multilinear
operator D to be of order ≤ n if δyi(x)n+1D = 0 for all x ∈ A and all i, i.e. D is of order
≤ n with respect to each variable separately. This means that fixing p− 1 arguments we
get a differential operator of order ≤ n. One can also consider multilinear operators such
that, fixing p − 1 arguments, we get a differential operator of some order depending on
what we have fixed (and possibly unbounded). In this paper, however, by a multilinear
differential operator we mean an operator of order n for some n. Note also that the
differentials δyi(x) and δyj (u) commute.

Definition 1. A differential Loday bracket on A is a Loday algebra bracket on A, i.e.
a bracket satisfying (10), given by a bidifferential operator of a certain order n.

Proposition 2. If A has no nontrivial nilpotent elements, then every differential
Loday bracket on A is of order ≤ 1.

Proof. Let D : A × A 3 (x, y) → [x, y] ∈ A be a differential Loday bracket. Denote
Dx = [x, ·], Dr

x = [·, x], and let n be the order of D with respect to the second argument,
i.e. the maximum of the orders of Dx for all x ∈ A. Then, δ(w)nDx is the multiplication
by δ(w)nDx(1) for all w, x ∈ A and δ(w)nDx(1) is different from zero for some w, x ∈ A.
Let now k be the maximum of the orders of δ(w)nDx(1) with respect to x. Obviously, k
is not greater than the order m of D with respect to the first variable. In other words,

δx(u)p(δ(w)qDx) = δ0(u)pδ1(w)qD(x, ·) = 0(16)

(where δ0, δ1 are the corresponding differentials with respect to the first and the second
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variable, respectively), if q > n, or q = n and p > k, and

δx(u)k(δ(w)nDx) = δ0(u)kδ1(w)nD(x, ·)(17)

is the multiplication by
δ0(u)kδ1(w)nD(1,1)(18)

which is different from zero for some u = u0 and w = w0. Note that since we do not
assume that the bracket is skew-symmetric, we do not have Dx + Dr

x = 0 and that n is
the order of D with respect to the first argument. We claim first that n ≤ 1.

Suppose the contrary. Then 2n− 1 > n and

δy(v)kδx(u)k+1δz(w)2n−1(D(D(x, y), z) +D(y,D(x, z))−D(x,D(y, z)) =(19)

(k + 1)
(

2n− 1
n

)(
δ0(u)kδ1(w)nD(1,1) · δk0 (v)δ1(u)δ1(w)n−1D(1,1)

)
,

where we identify the right-hand-side term with the corresponding zero-order differential
operator. Indeed, δ(w)2n−1 vanishes on the first summand D[x,y]. For the rest we get

δ(w)2n−1[Dy, Dx]c(z) =(20) (
2n− 1
n

)(
[δ(w)nDy , δ(w)n−1Dx]c + [δ(w)n−1Dy , δ(w)nDx]c

)
(z),

where the brackets are the commutator brackets. Since δ(w)nDy is multiplication by
δ(w)nDy(1), the first summand is just δ(δ(w)nDy(1))δ(w)n−1Dx(z), so it vanishes after
applying δx(u)k+1 in view of (16). From the second summand, after applying δx(u)k+1,
we get clearly

δx(u)k+1(δ(w)n−1Dy ◦ δ(w)nDx)(z) =(21)

(k + 1)(δ0(u)kδ1(w)nD(1,1) · δ1(u)δ1(w)n−1Dy(z)).

Applying now δy(v)k we get (19). Since

D(D(x, y), z) +D(y,D(x, z))−D(x,D(y, z)) = 0(22)

due to the Jacobi identity, we get

δ0(u)kδ1(w)nD(1,1) · δk0 (v)δ1(u)δ1(w)n−1D(1,1) = 0.(23)

Putting now u := u + tw in (23) with t varying through k and passing to the first
derivative with respect to t (the coefficient by t) we get

0 = kδ0(u)k−1δ0(w)δ1(w)nD(1,1) · δk0 (v)δ1(u)δ1(w)n−1D(1,1) +(24)

δ0(u)kδ1(w)nD(1,1) · δk0 (v)δ1(w)nD(1,1).

Multiplying both sides of (24) by δ0(u)kδ1(w)nD(1,1) and using (23) we get, after putting
u = v,

(δ0(u)kδ1(w)nD(1,1))3 = 0,(25)

thus
δ0(u)kδ1(w)nD(1,1) = 0,(26)

since there are no nontrivial nilpotents in A. But the latter is different from zero for
u = u0, w = w0; a contradiction.
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Thus n ≤ 1 and we will finish by showing that m, the order of D with respect to
the first argument, is also ≤ 1. As above, suppose the contrary and let s be the maximal
order of δ(w)mDr

y(1) with respect to y, so that there are w0, u0 ∈ A such that

δ0(w0)mδ1(u0)sD(1,1) 6= 0.(27)

We get from (22)

0 = δz(u)sδy(u)sδx(w)2m (D(D(x, y), z) +D(y,D(x, z))−D(x,D(y, z))) =(28) (
2m
m

)
(δ1(u)sδ0(w)mD(1,1))2

which contradicts (27). Indeed, since 2m > m > 1 and

D(D(x, y), z) +D(y,D(x, z))−D(x,D(y, z)) = (Dr
zD

r
y +DyD

r
z −D[y,z])(x),(29)

δx(w)2m vanishes on D[y,z] (2m > m) and on DyD
r
z (we already know that Dy is of order

≤ 1), so for the middle term of (28) we get

δz(u)sδy(u)sδx(w)2m (Dr
z ·Dr

y

)
(x) =(30)

x

(
2m
m

)
δz(u)sδy(u)s

(
δ(w)m(Dr

z) · δ(w)m(Dr
y)
)

=

xyz

(
2m
m

)
(δ1(u)sδ0(w)mD(1,1))2

.

Remark 2. The bi-orders (k, n) and (m, s) correspond to bidifferential parts of D of
maximal orders with respect to the anti-lexicographical and the lexicographical orderings,
respectively. We could say that they are the corresponding bi-symbols of this bidifferential
operator. Note, however, that it is not true in the general algebraic case that differential
operators of higher orders are polynomials in derivatives, like for differential operators on
C∞(M) (cf. [Gr], remark 3.2). It is only for first-order differential operators on A that
we have the decomposition Der(A)⊕A into the direct sum of derivations and zero-order
operators (multiplications by elements of A).

Remark 3. The assumption concerning the nilpotent elements is essential. For in-
stance, if A is freely generated by elements x, y with the constraint x2 = 0, then

D(u, v) = xu
∂n

∂yn
(v)(31)

is a differential Loday bracket of order n.

Theorem 2. If A has no nontrivial nilpotent elements, then every differential Loday
bracket on A is a standard skew-symmetric Jacobi bracket given by

[x, y] = Λ(x, y) + xΓ(y)− yΓ(x),(32)

where Λ and Γ are, respectively, a biderivation and a derivation on A which satisfy the
compatibility conditions

[Γ,Λ]NR = 0;

[Λ,Λ]NR = −2Λ ∧ Γ,
(33)

for [·, ·]NR being the Nijenhuis-Richardson bracket of skew-multilinear maps.
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Remark 4. The above theorem generalizes theorem 4.4 in [Gr]. The Nijenhuis-
Richardson graded Lie algebra bracket [NR] (see also [Gr]) is in this algebraic case the
analog of the Schouten-Nijenhuis bracket of multivector fields.

Proof. In view of proposition 2, we can assume that the bracket D = [·, ·] is of first
order and, according to [Gr], theorem 4.4, it is sufficient to prove that the bracket is
skew-symmetric. The bracket being of the first order satisfies the generalized Leibniz
rule:

[x, yz] = y[x, z] + [x, y]z − yz[x, 1];

[yz, x] = y[z, x] + [y, x]z − yz[1, x].
(34)

Indeed, Dx is of the first order, so δ(z)Dx is the multiplication by δ(z)Dx(1). But
δ(z)Dx(y) = [x, yz]− z[x, y], so

[x, yz]− z[x, y] = (δ(z)Dx(1))y = ([x, z]− z[x, 1])y.(35)

One proves analogously the second equation. The equations (34) mean that the operators
Rx and Ly defined by

Lx(y) = [x, y]− [x,1]y,

Ry(x) = [x, y]− [1, y]x,
(36)

are derivations of A. They are just obtained from the decompositions of the corresponding
first-order differential operators mentioned in remark 4. Moreover,

(δ(y)Dx)(z) = Lx(y)z,

(δ(y)Dr
x)(z) = Rx(y)z.

(37)

From the Jacobi identity (10) we get immediately that

[[x, x], z] = 0(38)

and, using the Jacobi identity once more, that

[[y, [x, x]], z] = 0(39)

for all x, y, z ∈ A. The linearized version of (38) reads

[[x, y] + [y, x], z] = 0.(40)

From (40) we get easily

0 = δx(u)2([[x, y] + [y, x], z]) = xδ(u)2(Dr
z(Dy +Dr

y))(1) =(41)

2xRz(u)(Ly(u) +Ry(u)),

so
Rz(u)(Ly(u) +Ry(u)) = 0.(42)

In view of (38), D[x,x] = 0, so that L[x,x] = 0. But putting y = z = [x, x] in (42) we get
(R[x,x](u))2 = 0, so that R[x,x] = 0 and hence

[z, [x, x]] = z[1, [x, x]].(43)

Putting now y = [1, [x, x]] in (43) we get, in view of (39),

([1, [x, x]])2 = [[1, [x, x]], [x, x]] = 0,(44)
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so that [1, [x, x]] = 0 and finally
[z, [x, x]] = 0.(45)

Now, using (45) instead of (38) we get, similarly to (42),

Lz(u)(Ly(u) +Ry(u)) = 0(46)

which, together with (42), yields

(Lz(u) +Rz(u))(Ly(u) +Ry(u)) = 0.(47)

The latter, after putting z = y, implies clearly Ly +Ry = 0. But (Ly +Ry)(x) = 0 means

[x, y] + [y, x] = x([y,1] + [1, y]).(48)

Since the right-hand side of (48) is symmetric with respect to x and y,

x([y,1] + [1, y]) = y([x,1] + [1, x])(49)

which implies
[y,1] + [1, y] = 2y[1,1].(50)

Putting in (50) y = [1,1] we get, due to (38), [1,1]3 = 0, so that

[y,1] + [1, y] = 0(51)

and the skew-symmetry [x, y] + [y, x] = 0 follows from (48).

Corollary 2. Every local binary operation on sections of a one-dimensional bundle
over a manifold M which satisfies the Jacobi identity (10) is skew-symmetric, i.e. it is a
local Lie algebra bracket.

In particular, every such operation on the algebra C∞(M) is a Jacobi bracket associ-
ated with a Jacobi structure on M .

Proof. Since the operation is local, we can reduce locally to the algebra of smooth
functions and, due to locality of the operation, to a bidifferential operator. In the algebra
of smooth functions there are no nontrivial nilpotents, so, according to theorem 2, the
operation is of first order and skew-symmetric.
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