
FUNCTION SPACES X
BANACH CENTER PUBLICATIONS, VOLUME 102

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 2014

EMBEDDINGS OF DOUBLING
WEIGHTED BESOV SPACES

DOROTHEE D. HAROSKE and PHILIPP SKANDERA
Institute of Mathematics, Friedrich-Schiller-University Jena

D-07737 Jena, Germany
E-mail: dorothee.haroske@uni-jena.de, philipp.skandera@uni-jena.de

Abstract. We study continuous embeddings of Besov spaces of type Bs
p,q(Rn, w), where s ∈ R,

0 < p < ∞, 0 < q ≤ ∞, and the weight w is doubling. This approach generalises recent results
about embeddings of Muckenhoupt weighted Besov spaces, cf. [11, 13, 14]. Our main argument
relies on appropriate atomic decomposition techniques of such weighted spaces; here we benefit
from earlier results by Bownik [2]. In addition, we discuss some other related weight classes
briefly and compare corresponding results.

1. Introduction. In recent years some attention has been paid to the continuity and
compactness of embeddings of weighted function spaces of Besov and Sobolev (or, more
generally, Triebel–Lizorkin) type as well as to certain quantities like approximation and
entropy numbers which provide a refined description of this compactness. These investi-
gations (in the above described context) started in [9, 15, 16] (with a partial forerunner
in [24, Ch. V, §3]), and were continued and extended in the series of papers [17–19, 27].
As an application one obtains spectral estimates of certain pseudo-differential operators
in the spirit of the program proposed by Edmunds and Triebel [5]. In all those papers
above the class of so-called ‘admissible’ weights was considered: These are smooth weights
with no singular points. One can take w(x) = (1 + |x|2)α/2, α ∈ R, x ∈ Rn, as a promi-
nent example. Later we developed parallel investigations in the context of Muckenhoupt
weights A∞ in [11–14]. In contrast to ‘admissible’ weights the A∞ weights may have
local singularities which can influence properties of the embeddings of function spaces.
Here the weight w(x) = |x|%, % > −n, may serve as a typical example. Of particular
interest are always necessary and sufficient conditions on the parameters and weights
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of the Besov spaces which guarantee continuity and compactness of such embeddings.
Afterwards one tries to determine the exact asymptotic behaviour of corresponding en-
tropy and approximation numbers. Our methods in [11,16] essentially rely on appropriate
wavelet decompositions in weighted spaces which admit to deal with weighted sequence
spaces instead of weighted function spaces in the sequel. The approach is similar when
local Muckenhoupt weights Aloc

∞ are considered; this class was introduced in [25] and
contains both the admissible and the Muckenhoupt weights. Results in this context have
been obtained quite recently in [38].

We follow a different approach now and consider the extension of Muckenhoupt
weights by doubling weights. These are weight functions which satisfy∫

B(x,2r)
w(y) dy ≤ 2nβ

∫
B(x,r)

w(y) dy

for all x ∈ Rn and r > 0, where B(x, r) denotes the (open) ball centred at x with
radius r. The smallest constant β with the above property is called the doubling constant
(concerning balls). It is well-known that Muckenhoupt weights A∞ form a proper subset
of doubling weights, cf. [7, 36]. Sometimes, motivated also by some questions arising in
fractal geometry, the setting of doubling (or, respectively, non-doubling) weights seems
more appropriate and obvious than the class A∞. This was our starting point to inquire
what results known from the context of Muckenhoupt weights can be transferred to this
more general situation, and to what extent. Since we also aim at applications in the sense
sketched above we start with continuous embeddings in doubling weighted Besov spaces.
Naturally one would continue this by observations about compactness and other scales
of spaces, but this is postponed to another paper.

Our main theorem here concerns embeddings of weighted Besov spaces Bsp,q(Rn, w),
where w is doubling. More precisely, let s1 ≥ s2, 0 < p1, p2 < ∞, 0 < q1, q2 ≤ ∞ and
w1, w2 doubling weights. Then the embedding

id : Bs1
p1,q1

(Rn, w1)→ Bs2
p2,q2

(Rn, w2)

is continuous, if{
2−ν(s1−s2)∥∥{w1(Qν,m)−1/p1w2(Qν,m)1/p2}m | `p∗

∥∥}
ν
∈ `q∗ ,

where 1
p∗ = max( 1

p2
− 1

p1
, 0), 1

q∗ = max( 1
q2
− 1

q1
, 0), wk(Qν,m) =

∫
Qν,m

wk(y) dy,
k = 1, 2, and Qν,m are dyadic cubes with side-length 2−ν . This outcome coincides with
the corresponding one in [11] for the special case of Muckenhoupt weights, see also [38]
for local Muckenhoupt weights. The method to prove this result relies on appropriate
atomic decompositions in such weighted Besov spaces. Here we benefit from an earlier
paper by Bownik [2] and adapt it to our needs. As we shall discuss below, this result for
doubling weights is not covered by its fore-runners in case of Muckenhoupt or admissible
weights, but really new to the best of our knowledge. Though some of the used tech-
niques resemble similar considerations in related cases, one has to check all arguments
carefully concerning their validity and applicability. This turns out, in particular, when
we deal with some consequences of our main theorem: assuming that w1 = w2 = w
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and δ = s1 − n
p1
− s2 + n

p2
> n(γ − 1)( 1

p1
− 1

p2
), where γ is the doubling constant con-

cerning cubes, we need, in addition, some stronger assumption than in case of Mucken-
houpt weights to ensure continuity of the embedding, that is, we have to assume that
inf
∫
Q0,x

w(y) dy ≥ c > 0, where the infimum is taken over all unit cubes centred at
x ∈ Qn. Such phenomena occur occasionally when dealing with the larger class of dou-
bling weights.

Note that many of the arguments and results have their direct counterparts in the
scale of Sobolev, or more general, Triebel–Lizorkin spaces. But this, as well as refined
studies concerning compactness or necessary assumptions of those embeddings are out of
the scope of the present paper.

The paper is organised as follows. In Section 2 we recall basic facts about the above
weight classes and weighted Besov spaces. Section 3 is devoted to the continuity of the
embeddings, where we first state and prove our main result and conclude the short paper
by some discussion of known counterparts and collect further consequences. We always
illustrate our presentation with some well-known examples.

2. Weighted function spaces. We fix some notation. By N we mean the set of natural
numbers, by N0 the set N∪{0}, and by Zn the set of all lattice points in Rn having integer
components. The positive part of a real function f is denoted by f+(x) = max(f(x), 0),
the integer part of a ∈ R by bac = max{k ∈ Z : k ≤ a}. If 0 < u ≤ ∞, the number u′
is given by 1

u′ = (1− 1
u )+. For two non-negative functions φ, ψ we mean by φ(t) ∼ ψ(t)

that there exist constants c1, c2 > 0 such that c1φ(t) ≤ ψ(t) ≤ c2φ(t) for all admitted
values of t. Given two (quasi-) Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and
the natural embedding of X in Y is continuous.

Let for m ∈ Zn and ν ∈ N0, Qν,m denote the n-dimensional (open) cube with sides
parallel to the axes of coordinates, centred at 2−νm and with side length 2−ν . Occasionally
we shall also deal with n-dimensional (open) cubes Q = Q(x, l) with sides parallel to the
axes of coordinates, centred at x and with side length l. Then 2Q stands for the cube
centred at x and with doubled side-length 2l, i.e., 2Q = Q(x, 2l). For x ∈ Rn and r > 0,
let B(x, r) denote the open ball B(x, r) = {y ∈ Rn : |y − x| < r}.

All unimportant positive constants will be denoted by c, occasionally with subscripts.
For convenience, let both dx and | · | stand for the (n-dimensional) Lebesgue measure
in the sequel. As we shall always deal with function spaces on Rn, we may often omit the
‘Rn’ from their notation for convenience.

2.1. Weights. By a weight w we shall always mean a locally integrable function w,
positive a.e. in the sequel. We are mainly interested in doubling weights, but for later use
we briefly recall, in addition, the notions of Muckenhoupt weights and admissible weights
and some of their characteristic features.

Muckenhoupt weights. It is well-known that this weight class is closely connected with
the boundedness of the Hardy–Littlewood maximal operator M given by

Mf(x) = sup
B(x,r)∈B

1
|B(x, r)|

∫
B(x,r)

|f(y)|dy, x ∈ Rn, (1)
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acting in weighted Lebesgue spaces. Here B is the collection of all open balls B(x, r)
centred at x ∈ Rn, r > 0.

Definition 2.1. Let w be a weight on Rn.

(i) Then w belongs to the Muckenhoupt class Ap, 1 < p <∞, if there exists a constant
0 < A <∞ such that for all balls B the following inequality holds( 1

|B|

∫
B

w(x) dx
)1/p

·
( 1
|B|

∫
B

w(x)−p
′/p dx

)1/p′
≤ A. (2)

(ii) Then w belongs to the Muckenhoupt class A1 if there exists a constant 0 < A < ∞
such that the inequality

Mw(x) ≤ Aw(x) (3)

holds for almost all x ∈ Rn.
(iii) The Muckenhoupt class A∞ is given by

A∞ =
⋃
p>1
Ap. (4)

Since the pioneering work of Muckenhoupt [21–23], these classes of weight functions
have been studied in great detail, we refer, in particular, to the monographs [8, 28–30]
for a complete account on the theory of Muckenhoupt weights. As usual, we use the
abbreviation

w(Ω) =
∫

Ω
w(x) dx, (5)

where Ω ⊂ Rn is some bounded, measurable set. Then w ∈ Ar, 1 ≤ r <∞, implies that
|E|
|B|
≤ c′

(w(E)
w(B)

)1/r
, E ⊂ B. (6)

Another property of Muckenhoupt weights that will be used in the sequel is that w ∈ Ap,
p > 1, implies the existence of some number r < p such that w ∈ Ar. This is closely
connected with the so-called ‘reverse Hölder inequality’, see [28, Ch. V, §3, Prop. 3, Cor.].
In our case this fact will re-emerge in the number

rw = inf{r ≥ 1 : w ∈ Ar}, w ∈ A∞, (7)

that plays some role later on. Obviously, 1 ≤ rw <∞, and w ∈ Arw implies rw = 1.

Example 2.2. One of the most prominent examples of a Muckenhoupt weight w ∈ A∞
is given by w(x) = |x|%, % > −n. We modified this example in [11,14] by

wa,b(x) =
{
|x|a, |x| < 1,
|x|b, |x| ≥ 1,

(8)

where a, b > −n. Straightforward calculation shows that for 1 < r <∞,

wa,b ∈ Ar if and only if − n < a, b < n(r − 1),

such that rwa,b = 1 + max(a,b,0)
n . Moreover, wa,b ∈ A1 when max(a, b) ≤ 0. For further

examples we refer to [6, 10,11,13].
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Remark 2.3. Rychkov introduced in [25] the class of local Muckenhoupt weights Aloc
p ,

1 < p < ∞, by an essential modification of (2) in Definition 2.1: one only requires
the corresponding inequality to hold for small balls, that is, when |B| ≤ 1. The class
Aloc
∞ =

⋃
p>1Aloc

p obviously extends A∞. A typical example which is contained in Aloc
∞ ,

but not in A∞, is given by

wa,exp(x) =
{
|x|a, if |x| ≤ 1,
exp(|x| − 1), if |x| > 1,

where a > −n, see [38].

Doubling weights. We come to the most important weight class in this paper which
naturally extends Muckenhoupt weights.

Definition 2.4. We say that a nonnegative Borel measure µ on Rn is doubling (con-
cerning balls) if there exists a constant β > 0 such that

µ(B(x, 2r)) ≤ 2nβµ(B(x, r)), for all x ∈ Rn, r > 0. (9)

The smallest such β is called doubling constant of µ.

Remark 2.5. Note that the doubling measure µ need not be absolutely continuous with
respect to the Lebesgue measure on Rn, cf. [4]. On the other hand, any weight w ∈ A∞
defines a doubling measure µ by dµ = w(x) dx in view of (6), see also Example 2.8 below.

In the following we are only interested in doubling measures, which are absolutely
continuous with respect to the Lebesgue measure on Rn. So we introduce the so-called
doubling weights.

Definition 2.6. Let w be a locally integrable, positive a.e. function on Rn. w is called
doubling (concerning balls) if there exists a constant β > 0 such that

w(B(x, 2r)) ≤ 2nβw(B(x, r)), for all x ∈ Rn, r > 0. (10)

The smallest such β is called doubling constant of w (concerning balls).

Example 2.7. Plainly w ≡ 1 is doubling, because |B(x, 2r)| = 2n|B(x, r)| for arbitrary
balls B(x, r), i.e., β = 1.

Example 2.8. All Muckenhoupt weights w ∈ A∞ are doubling with β = crw given by (7).
On the contrary, there exist doubling weights which do not belong to A∞, see [7, 36].
Hence A∞ is a proper subset of all doubling weights which are absolutely continuous
with respect to the Lebesgue measure on Rn.

Now we introduce another definition of doubling weights with respect to cubes. This
is an equivalent definition. The constants depend on the dimension.

Definition 2.9. Let w be a locally integrable, positive a.e. function on Rn. w is called
doubling (concerning cubes) if there exists a constant γ > 0 such that for all cubes Q

w(2Q) ≤ 2nγw(Q). (11)

The smallest such γ is called doubling constant of w (concerning cubes).
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Proposition 2.10. Let w be a locally integrable, positive a.e. function on Rn.

(i) The conditions (10) and (11) are equivalent.
(ii) For the doubling constants

1
c
β ≤ γ ≤ cβ (12)

where c = blog2(
√
n)c+ 1.

(iii) The doubling constants satisfy β ≥ 1 and γ ≥ 1.

Proof. Assume that w satisfies (10). Let Q = Q(x, l) = l ·
[
− 1

2 ,
1
2
]n+x, x ∈ Rn, l > 0, be

an arbitrary cube. Then there exist balls B1 = B(x, l2 ), B2 = B(x,
√
n l), such that the

outer ball touches the corners of the cube and the inner ball touches the inner sidewalls.
Thus we have

w(2Q) =
∫
Q(x,2l)

w(y) dy ≤
∫
B(x,

√
n l)

w(y) dy = w(B(x,
√
n l))

≤ 2nβw
(
B
(
x,

√
n

2 l
))
≤ 2nβ(k+1)w

(
B
(
x,

√
n

2k
l

2

))
where we applied (10) and k ∈ N is chosen such that k ≥ log2

√
n, say, k = blog2(

√
n)c+1.

Thus we can continue our estimate by

w(2Q) ≤ 2nβ(k+1)w
(
B
(
x,
l

2

))
≤ 2nβ(k+1)w(Q)

and obtain for the doubling constants γ ≤ β
(
blog2(

√
n)c+ 1

)
.

Conversely, assume that (11) holds. Let B = B(x, r), x ∈ Rn, r > 0 be an arbitrary
ball. Then we obtain in the same way 2 cubes Q(x, 2r√

n
), Q(x, 4r) with

w(B(x, 2r)) ≤ w(Q(x, 2r)) = w
(
Q
(
x,

2r√
n

√
n
))
≤ 2nγkw

(
Q
(
x,

2r√
n

√
n

2k
))

in view of (11), where we have to choose again k ∈ N such that k ≥ log2
√
n, say,

k = blog2
√
nc+ 1. Hence,

w(B(x, 2r)) ≤ 2nγ(k+1)w
(
Q
(
x,

2r√
n

))
≤ 2nγ(k+1)w(B(x, r))

and we get β ≤ γ
(
blog2(

√
n)c+ 1

)
. This concludes the proof of (i) and (ii). It remains to

verify (iii).
Let w be doubling (concerning cubes). Let Q be a cube with side-length 1. Moreover,

let l be an arbitrary natural number. Q contains 2nl disjoint open cubes Qi with side-
length 2−l and

2nl⋃
i=1

Qi ⊂ Q, |Qi| = 2−nl, Qi ∩Qj = ∅.

Let Qi be such an arbitrary small cube in Q. Then Q is covered by αQi, where α2−l ≥ 2,
i.e., α ≥ 2l+1. Hence we get for all i ∈ N and all l ∈ N,

2nl min
j∈N

w(Qj) ≤
2nl∑
j=1

w(Qj) ≤ w
( 2nl⋃
j=1

Qj

)
≤ w(Q)

≤ w(2l+1Qi) ≤ 2nγ(l+1)w(Qi).
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For fixed l ∈ N we have only finitely many i = 1, . . . , 2nl and can thus choose i such that
w(Qi) is minimal. Hence we obtain l

l+1 ≤ γ for arbitrary l ∈ N, that is, γ ≥ 1. The proof
for β is similar.

Remark 2.11. In the following we will not distinguish between doubling weights con-
cerning balls or concerning cubes as long as their doubling constants do not play any
role. Otherwise we stick to our convention to label the doubling constant concerning
balls with β, and the one concerning cubes with γ.

We prove another feature of doubling weights which will be used in Section 3.3 below.

Proposition 2.12. Let w be a doubling weight. Then∫
Rn
w(y) dy =∞.

Proof. Let w be doubling with w(B(x, 2r)) ≤ cw(B(x, r)) for arbitrary x ∈ Rn,
r > 0, and c = 2nβ for convenience. Let R0 > 0 be arbitrary and x0 =

(
R0
2 , 0, . . . , 0

)
,

x1 =
(
2R0, 0, . . . , 0

)
. Then

B
(
x0,

R0

2

)
⊂ {y ∈ Rn : R0 ≤ |y − x1| ≤ 2R0}. (13)

Since w is doubling and non-trivial, we have w(B(x0,
R0
2 )) ≥ a0 > 0. Now

w(B(x1, 2R0)) =
∫
B(x1,R0)

w(y) dy +
∫
R0≤|y−x1|≤2R0

w(y) dy ≥ 1
c
w(B(x1, 2R0)) + a0

in view of (13). This leads to w(B(x1, 2R0)) ≥ a0
c
c−1 . Set R1 = 4R0, such that

x1 =
(
R1
2 , 0, . . . , 0

)
. Inductively we define Rk+1 = 4Rk, xk =

(
Rk
2 , 0, . . . , 0

)
for k ∈ N0

and repeat the argument above. Then we get

w
(
B
(
xk,

Rk
2

))
≥ a0

( c

c− 1

)k
which finally leads to∫

Rn
w(y) dy ≥ lim

k→∞

∫
B(xk,Rk/2)

w(y) dy ≥ a0 lim
k→∞

( c

c− 1

)k
=∞

as desired.

Admissible weights. We use the abbreviation 〈x〉 = (1 + |x|2)1/2, x ∈ Rn.

Definition 2.13. The class of admissible weight functions is the collection of all positive
C∞ functions w on Rn with the following properties:

(i) for all η ∈ Nn0 there exists a positive constant cη with

|Dηw(x)| ≤ cη w(x) for all x ∈ Rn;

(ii) there exist two constants c > 0 and α ≥ 0 such that

0 < w(x) ≤ cw(y) 〈x− y〉α for all x, y ∈ Rn.

Remark 2.14. These are the weights we dealt with in [15, 16], see also [5, 17–19]. Note
that for admissible weights w and v, also 1/w and vw are admissible weights.
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Example 2.15. Obviously, vα(x) = 〈x〉α, α ∈ R, is an admissible weight. Note that
vα ∈ A∞ for α > −n unlike in case of α ≤ −n. Conversely, wa,b given by (8) with
−n < a < 0, b > −n, is not admissible in the above sense, but belongs to A∞.

Remark 2.16. In view of the above examples the classes of Muckenhoupt weights A∞
and admissible weights are incomparable. However, replacing the class A∞ by their gen-
eralisation, the local Muckenhoupt weights Aloc

∞ , recall Remark 2.3, the situation changes:
According to [16,25,26] admissible weights are special local Muckenhoupt weights, too.

2.2. Weighted Besov spaces. First we introduce the weighted Lebesgue space Lp(w)
with a doubling weight w as usual via the weighted Lp norm,∥∥f |Lp(Rn, w)

∥∥ =
(∫

Rn
|f(x)|pw(x) dx

)1/p
, 0 < p <∞. (14)

It is clear that Lp(Rn, w) = Lp(Rn) for w ≡ 1. For p = ∞ one obtains the classical
(unweighted) Lebesgue space, L∞(Rn, w) = L∞(Rn); we thus mainly restrict ourselves
to p <∞ in what follows. The Schwartz space S(Rn) and its dual S ′(Rn) of all complex-
valued tempered distributions have their usual meaning here. Let ϕ0 = ϕ ∈ S(Rn) be
such that

suppϕ ⊂ {y ∈ Rn : |y| < 2} and ϕ(x) = 1 if |x| ≤ 1,

and for each j ∈ N let ϕj(x) = ϕ(2−jx) − ϕ(2−j+1x). Then {ϕj}∞j=0 forms a smooth
dyadic decomposition of unity. Given any f ∈ S ′(Rn), we denote by Ff and F−1f its
Fourier transform and its inverse Fourier transform, respectively.

Definition 2.17. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, {ϕj}∞j=0 a smooth dyadic decom-
position of unity and let w be a doubling weight. The weighted Besov space Bsp,q(w) =
Bsp,q(Rn, w) is the set of all distributions f ∈ S ′(Rn) such that∥∥f |Bsp,q(w)

∥∥ =
( ∞∑
j=0

2jsq
∥∥F−1(ϕjFf) |Lp(w)

∥∥q)1/q

is finite (with the usual modification in the limiting case q =∞).

Remark 2.18. The spaces Bsp,q(w) are independent of the choice of the smooth dyadic
decomposition of unity {ϕj}∞j=0 appearing in their definitions, cf. [2]. They are quasi-
Banach spaces (Banach spaces for p, q ≥ 1). Moreover, for w ≡ 1 we re-obtain the
usual (unweighted) Besov spaces; we refer, in particular, to the series of monographs by
Triebel, [31–35], for comprehensive treatment of the unweighted spaces.

We have also the usual basic embeddings for these weighted spaces, that is,

Bs0
p,q(w) ↪→ Bs1

p,q(w) and Bsp,q0
(w) ↪→ Bsp,q1

(w), (15)

where 0 < p <∞, w is doubling, −∞ < s1 ≤ s0 <∞ and 0 < q0 ≤ q1 ≤ ∞.

Atomic decomposition. In the proof of our main theorem we need another representation
of f ∈ Bsp,q(w) than defined above; we shall use an appropriate atomic decomposition
result. Let us first introduce corresponding sequence spaces and the concept of atoms.

Recall our definition of Qν,m, wherem ∈ Zn, ν ∈ N0, in the beginning. For 0 < p <∞,
ν ∈ N0 and m ∈ Zn we denote by χ(p)

ν,m the p-normalised characteristic function of the
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cube Qν,m defined by

χ(p)
ν,m(x) = 2νn/pχν,m(x) =

{
2νn/p, if x ∈ Qν,m,
0, if x /∈ Qν,m.

(16)

It is easy to see that
∥∥χ(p)

ν,m |Lp(Rn)
∥∥ = 1. For 0 < p <∞, 0 < q ≤ ∞, s ∈ R, w doubling,

we introduce suitable sequence spaces bsp,q(w) by

bsp,q(w) =
{
λ = {λν,m}ν,m : λν,m ∈ C,

∥∥λ | bsp,q(w)
∥∥ =

∥∥∥∥{2ν(s−n/p)
∥∥∥ ∑
m∈Zn

|λνm|χ(p)
ν,m

∣∣∣ Lp(w)
∥∥∥}

ν∈N0
| `q
∥∥∥∥ <∞}.

We briefly recall the definition of atoms.

Definition 2.19. Let K ∈ N0 and d > 1.

(i) The complex-valued function a ∈ CK(Rn) is said to be an 1K-atom if supp a ⊂ dQ0,m
for some m ∈ Zn, and |Dηa(x)| ≤ 1 for |η| ≤ K, x ∈ Rn.

(ii) Let L + 1 ∈ N0. The complex-valued function a ∈ CK(Rn) is said to be an (K,L)-
atom if for some ν ∈ N0,

supp a ⊂ dQν,m for some m ∈ Zn,

|Dηa(x)| ≤ 2|η|ν for all x ∈ Rn and η ∈ Nn0 with |η| ≤ K,∫
Rn
xθa(x) dx = 0 for all θ ∈ Nn0 with |θ| ≤ L.

We shall denote an atom a(x) supported in some dQν,m by aν,m in the sequel. Choos-
ing L = −1 in (ii) means that no moment conditions are required.

Remark 2.20. The next result that we want to apply is from Bownik, [2], see also [3]
for parallel observations. Note that Bownik dealt with anisotropic Besov spaces with
expansive dilation matrices and more general doubling measures. The difference is that
there are used quasi-norms %A associated with an expansive matrix A. In the standard
dyadic case A = 2I a quasi-norm %A satisfies %A(2x) = 2n%A(x) instead of the usual scalar
homogeneity. In particular, %A(x) = |x|n is an example for a quasi-norm for A = 2I.
Instead of this quasi-norm | · |n we will use the usual Euclidean norm | · | in Rn. For more
details we refer to [1, 20]. We recall that all quasi-norms associated to a fixed dilation
matrix A are equivalent. Moreover, there always exists a quasi-norm %A, which is C∞
on Rn except the origin. Note also that Bownik dealt with a different decomposition of
unity, but we get equivalent quasi-norms. In the main part of [2] Bownik works with
homogeneous spaces, later he showed that these results also hold for inhomogeneous
spaces. Furthermore the atoms and the sequence spaces are L2-normalised. In our case
we have an L∞-normalisation.

For convenience we adopt the usual notation

σp = n
(1
p
− 1
)

+
, 0 < p ≤ ∞. (17)
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Then the atomic decomposition result used below reads as follows, see [2, Thm. 5.10]
with the above-described modifications.
Proposition 2.21. Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R and w be a doubling weight with
doubling constant β. Let K,L+ 1 ∈ N0 with

K ≥ (1 + bsc)+ and L ≥ max
(
−1,

⌊n(β − 1)
p

+ σp − s
⌋)
. (18)

A tempered distribution f ∈ S ′(Rn) belongs to Bsp,q(Rn, w) if and only if it can be written
as a series

f =
∞∑
ν=0

∑
m∈Zn

λν,maν,m(x), converging in S ′(Rn), (19)

where aν,m(x) are 1K-atoms (ν = 0) or (K,L)-atoms (ν ∈ N) and λ = {λν,m}ν,m ∈
bsp,q(w). Furthermore

inf
∥∥λ | bsp,q(w)

∥∥ (20)
is an equivalent quasi-norm in Bsp,q(Rn, w), where the infimum ranges over all admissible
representations (19).

We exemplify the above result in two cases and compare it with known results.
Example 2.22. Let w ≡ 1. Then we have by Example 2.7 β = 1, such that (18) reads as
K ≥ (1 + bsc)+ and L ≥ max(−1, bσp − sc). This result coincides with [34, Thm. 13.8].
Example 2.23. Let w ∈ A∞. Then by Example 2.8 we have β = crw such that (18)
can be compared with [10, Thm. 3.10]. This result has better quantitative characteristics
than the ones obtained here as long as we stay in the realm of A∞ weights. This is the
price to pay by studying Besov spaces with doubling weights instead of A∞ weights.
Remark 2.24. Weighted Besov spaces and their atomic (and wavelet) decompositions
in case of admissible weights have been studied in some detail in [15–19]. As far as local
Muckenhoupt weights Aloc

p are concerned, we refer to [25,37–39].

3. Continuous embeddings

3.1. Embeddings of sequence spaces. Before we come to state our main result, we
return to our description of the sequence spaces bsp,q(w) and adapt it to our needs.

Let λ = (λν,m)ν,m ⊂ C, s ∈ R, 0 < p < ∞, and assume 0 < q < ∞ for convenience.
Then by the support property of the atoms,∥∥λ | bsp,q(w)

∥∥ =
( ∞∑
ν=0

2ν(s−n/p)q
∥∥∥ ∑
m∈Zn

|λν,m|χ(p)
ν,m |Lp(w)

∥∥∥q)1/q

∼
( ∞∑
ν=0

2ν(s−n/p)q
(∫

Rn

∑
m∈Zn

|λν,m|p2νnχν,m(x)w(x) dx
)q/p)1/q

=
( ∞∑
ν=0

2νsq
( ∑
m∈Zn

|λν,m|pw(Qν,m)
)q/p)1/q

=
( ∞∑
ν=0

ξqν

( ∑
m∈Zn

|λν,m|p|wν,m|p
)q/p)1/q

=:
∥∥λ | `q(ξν`p(w̃))

∥∥ (21)
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with ξ = (ξν)ν = (2νs)ν , and w̃ = (wν,m)ν,m, wν,m = w(Qν,m)1/p, ν ∈ N0, m ∈ Zn.
Note that, if w is doubling, then 0 < w(B) <∞ for all balls B. Therefore ξ = (ξν)ν and
w̃ = (wν,m)ν,m are sequences of positive numbers.
Corollary 3.1. Let −∞ < s2 ≤ s1 < ∞, 0 < p1, p2 < ∞, 0 < q1, q2 ≤ ∞ and let
w1, w2 be doubling weights. Then bs1

p1,q1
(w1) ↪→ bs2

p2,q2
(w2) if and only if{

2−ν(s1−s2)∥∥{w1(Qν,m)−1/p1w2(Qν,m)1/p2}m | `p∗
∥∥}

ν
∈ `q∗ , (22)

where
1
p∗

:=
( 1
p2
− 1
p1

)
+
,

1
q∗

:=
( 1
q2
− 1
q1

)
+
. (23)

Proof. Let bskpk,qk(wk) = `qk(ξ(k)
ν `pk(w(k))) with ξ

(k)
ν = 2νsk and w(k) = (w(k)

ν,m)ν,m,
w

(k)
ν,m = wk(Qν,m)1/pk , k = 1, 2, be given. We apply [18, Thm. 3.1] and deduce that

`q1(ξ(1)
ν `p1(w(1))) = bs1

p1,q1
(w1) ↪→ bs2

p2,q2
(w2) = `q2(ξ(2)

ν `p2(w(2)))
holds if and only if {

ξ
(2)
ν

ξ
(1)
ν

∥∥∥{w(2)
ν,m

w
(1)
ν,m

}
m
| `p∗

∥∥∥}
ν

∈ `q∗

which coincides with (22).

3.2. The main result
Theorem 3.2. Let −∞ < s2 ≤ s1 < ∞, 0 < p1, p2 < ∞, 0 < q1, q2 ≤ ∞ and let
w1, w2 be doubling weights with the corresponding doubling constants β1, β2. The embed-
ding Bs1

p1,q1
(w1) ↪→ Bs2

p2,q2
(w2) is continuous, if{

2−ν(s1−s2)∥∥{w1(Qν,m)−1/p1w2(Qν,m)1/p2}m | `p∗
∥∥}

ν
∈ `q∗ , (24)

where p∗ and q∗ are given by (23).
Proof. Let f ∈ Bs1

p1,q1
(w1) and ε > 0. Let K1, L1 + 1 ∈ N0 be such that K1 ≥ (1 + bs1c)+

and L1 ≥ max
(
−1,

⌊n(β1−1)
p1

+σp1 −s1
⌋)
. Then by Proposition 2.21 we can find (K1, L1)-

atoms aν,m(·) and numbers λ = (λν,m)ν,m ∈ bs1
p1,q1

(w1) such that f can be represented as
in (19) and

c1
∥∥f |Bs1

p1,q1
(w1)

∥∥ ≥ ∥∥λ | bs1
p1,q1

(w1)
∥∥− ε.

Assumption (24) together with Corollary 3.1 implies that bs1
p1,q1

(w1) ↪→ bs2
p2,q2

(w2), i.e.,∥∥λ | bs2
p2,q2

(w2)
∥∥ ≤ c2∥∥λ | bs1

p1,q1
(w1)

∥∥ ≤ c3∥∥f |Bs1
p1,q1

(w1)
∥∥+ c2ε.

Hence we have

f =
∞∑
ν=0

∑
m∈Zn

λν,maν,m(x) ∈ Bs2
p2,q2

(w2)

with
∥∥f |Bs2

p2,q2
(w2)

∥∥ ≤ c4
∥∥λ | bs2

p2,q2
(w2)

∥∥, granted that aν,m(·) are also (K2, L2)-atoms,
where K2 ≥ (1 + bs2c)+ and L2 ≥ max

(
−1,

⌊n(β2−1)
p2

+ σp2 − s2
⌋)
. So we choose

K ≥ max(K1,K2), L ≥ max(L1, L2) sufficiently large and start from the very begin-
ning with associated (K,L)-atoms aν,m(·). Thus we get for all ε > 0∥∥f |Bs2

p2,q2
(w2)

∥∥ ≤ c4 ∥∥λ | bs2
p2,q2

(w2)
∥∥ ≤ c5 ∥∥f |Bs1

p1,q1
(w1)

∥∥+ c6ε,

and letting ε→ 0 completes the argument.
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Remark 3.3. The above result extends its counterpart for Muckenhoupt weights nat-
urally, see [11]. Note that we obtained there even necessary and sufficient conditions,
but dealing with wavelet decompositions instead of atomic ones. This has not yet been
studied in case of doubling weights. In case of admissible weights parallel results can be
found in [15,16,18].

3.3. Some consequences. We collect a few examples and immediate implications of
our main result.

Example 3.4. For w1 ≡ w2 ≡ 1 we have w1(Qν,m) = w2(Qν,m) = 2−νn. Thus we get
in (24)

2−ν(s1−s2)∥∥{2νn/p1−νn/p2
}
m
| `p∗

∥∥ = 2−ν(s1−n/p1)+ν(s2−n/p2)∥∥{1}m | `p∗∥∥.
Then

∥∥1 | `p∗
∥∥ <∞ immediately implies p∗ =∞, that is, p1 ≤ p2. We set

δ := s1 −
n

p1
− s2 + n

p2
(25)

as the difference of the differential dimensions, as usual. Then it remains to consider
{2−νδ}ν ∈ `q∗ . For q∗ =∞, i.e., q1 ≤ q2, we need δ ≥ 0. Otherwise, for q1 > q2, δ > 0 is
required. Altogether the embedding Bs1

p1,q1
↪→ Bs2

p2,q2
is continuous, if

p1 ≤ p2, s2 ≤ s1,

{
δ ≥ 0, if q1 ≤ q2,

δ > 0, if q1 > q2.

Example 3.5. Sometimes it is interesting to consider the case where only the source
space is weighted and the target space is unweighted, i.e., we have w1 = w and w2 ≡ 1.
Then Theorem 3.2 implies that Bs1

p1,q1
(w) ↪→ Bs2

p2,q2
if{

2−ν(s1−s2+n/p2)∥∥{w(Qν,m)−1/p1}m | `p∗
∥∥}

ν
∈ `q∗ ,

where p∗ and q∗ are given by (23).

Example 3.6. Also interesting is the case where both spaces are weighted in the same
way, i.e., w1 = w2 = w. Here we get in (24) terms of type

2−ν(s1−s2)∥∥{w(Qν,m)1/p2−1/p1
}
m
| `p∗

∥∥. (26)

When p∗ <∞, i.e., p1 > p2, we have 0 < 1
p2
− 1

p1
= 1

p∗ . For any fixed ν ∈ N0 we have∥∥{w(Qν,m)1/p2−1/p1
}
m
| `p∗

∥∥ =
( ∑
m∈Zn

∣∣w(Qν,m)1/p∗ ∣∣p∗)1/p∗
=
( ∑
m∈Zn

w(Qν,m)
)1/p∗

=
( ∑
m∈Zn

∫
Qν,m

w(y) dy
)1/p∗

=
(∫

Rn
w(y) dy

)1/p∗
.

So we have to demand for our weight that
∫
Rn w(y) dy < ∞. But this impossible for a

doubling weight, recall Proposition 2.12. So we are left to consider the case p∗ =∞, i.e.,
p1 ≤ p2. Then 1

p2
− 1

p1
< 0. For a fixed ν ∈ N0 we have to deal with expressions of type

sup
m∈Zn

w(Qν,m)κ

for an arbitrary κ < 0.
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Now we want to simplify the expression in (24) a little bit using the doubling property.
For every cube Qν,m, ν ∈ N0, m ∈ Zn, we get the cube Q0,2−νm via ν-times application
of (11)

w(Q0,2−νm) ≤ 2νnγw(Qν,m).

So, for any κ < 0, we have

w(Qν,m)κ ≤ 2−νnγκw(Q0,2−νm)κ.

For p∗ =∞, i.e., p1 ≤ p2, we get∥∥{w(Qν,m)κ}m | `∞
∥∥ = sup

m∈Zn
w(Qν,m)κ ≤ 2−νnγκ sup

m∈Zn
(w(Q0,2−νm)κ)

= 2−νnγκ
(

inf
m∈Zn

w(Q0,2−νm)
)κ ≤ 2−νnγκ

(
inf
x∈Qn

w(Q0,x)
)κ

and we have to require
inf
x∈Qn

w(Q0,x) ≥ c > 0 (27)

for our weight.

Corollary 3.7. Let −∞ < s2 ≤ s1 < ∞, 0 < p1 ≤ p2 < ∞, 0 < q1, q2 ≤ ∞ and
let w be a doubling weight with the corresponding doubling constant γ. The embedding
Bs1
p1,q1

(w) ↪→ Bs2
p2,q2

(w) is continuous, if

inf
x∈Qn

w(Q0,x) ≥ c > 0, (28){
δ > n(γ − 1)( 1

p1
− 1

p2
), if q∗ <∞,

δ ≥ n(γ − 1)( 1
p1
− 1

p2
), if q∗ =∞,

(29)

where δ is given by (25).

Proof. As in Example 3.6 we have κ = 1
p2
− 1

p1
≤ 0. In view of our above considerations

(24) can be reduced to

2−ν(s1−s2)∥∥{w1(Qν,m)−1/p1w2(Qν,m)1/p2}m | `p∗
∥∥

≤ 2−ν(s1−s2)2−νnγ(1/p2−1/p1)( inf
x∈Qn

w(Q0,x)
)1/p2−1/p1

≤ c 2−ν(s1−s2+nγ(1/p2−1/p1))

in view of (28). This converges in `q∗ for (s1−s2)+nγ( 1
p2
− 1
p1

) = δ+n(γ−1)( 1
p2
− 1
p1

) > 0,
where we can admit, in addition, the limiting case δ = n(γ − 1)( 1

p1
− 1

p2
) if q∗ =∞, that

is, when q1 ≤ q2.

Corollary 3.8. Let −∞ < s2 ≤ s1 < ∞, 0 < p1 ≤ p2 < ∞, 0 < q1, q2 ≤ ∞ and
let w be a doubling weight with the corresponding doubling constant γ. The embedding
Bs1
p1,q1

(w) ↪→ Bs2
p2,q2

is continuous, if

inf
x∈Qn

w(Q0,x) ≥ c > 0, (30){
δ > n

p1
(γ − 1), if q∗ <∞,

δ ≥ n
p1

(γ − 1), if q∗ =∞.
(31)
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Proof. We obtain in (24) similarly as above,
2−ν(s1−s2)∥∥{w1(Qν,m)−1/p1w2(Qν,m)1/p2}m | `p∗

∥∥
= 2−ν(s1−s2)2−νn/p2 sup

m∈Zn
w(Qν,m)−1/p1

≤ 2−ν(s1−s2+n/p2−nγ/p1)( inf
x∈Qn

w(Q0,x)
)−1/p1 ≤ c 2−ν(δ−n(γ−1)/p1)

using (28). This converges in `q∗ , if δ − n
p1

(γ − 1) > 0, where we may again admit, in
addition, δ = n

p1
(γ − 1) when q1 ≤ q2.

Remark 3.9. Here we followed corresponding arguments from [11,13] for Muckenhoupt
weights.
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