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Abstract. Following the line of Ouyang et al. in [Ouy2] to study the Qp spaces of holomorphic
functions in the unit ball of Cn, we present in this paper several results and relations among
Qp(Bn), the α-Bloch, the Dirichlet Dp and the little Qp,0 spaces.

1. Introduction. In 1998 C. Ouyang, W. Yang and R. Zhao in [Ouy2] introduced theQp
and Qp,0 spaces associated with the Green function for the unit ball of Cn as an extension
from the case of one complex variable, providing basic properties and relationships of these
spaces with some others like Bloch and BMOA spaces. K. Stroethoff in 1989 [Str] was
one of the first in generalizing those functions spaces to the unit ball in several complex
variables working directly with the gradient of a holomorphic function.

J. S. Choa et al. in [Choa] and Ouyang et al. in [Ouy1] gave several characterizations of
Bloch functions in Cn working with the invariant gradient. [Ouy2] includes mathematical
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tools according to the settings you must do to work practically with spaces in several
complex variables such as the gradient and measure invariant. They present in that work
many properties. In this paper we shall give additional properties since these spaces are
plenty of material to study. For example the inclusion relations between the spaces Qp,
α-Bloch and Dp spaces.

2. Preliminaries. The general reference for this section is the book of K. Zhu [Zh]. We
adopt his notation.

The open unit ball in Cn (n ≥ 2 throughout this paper) is the set

Bn = {z ∈ Cn : |z| < 1}.

The boundary of Bn will be denoted by Sn. For a ∈ Bn \ {0} define the involutive
automorphisms or Möbius transformation as

φa(z) =
a− 〈z,a〉|a|2 a−

√
1− |a|2

(
z − 〈z,a〉|a|2 a

)
1− 〈z, a〉 (z ∈ Bn) ,

and φ0(z) = −z, where 〈z, w〉 = z1w1 + . . . + znwn denotes the inner product. Then
φa(0) = a, φa(a) = 0, φa = φ−1

a and φa ∈ Aut (Bn), where Aut (Bn) is the group of
biholomorphic authomorphisms of Bn. It is known that

1− |φa(z)|2 = (1− |a|2)(1− |z|2)
|1− 〈z, a〉|2 = (1− |z|2)JRφa(z)1/(n+1) (1)

where JRφa(z) is the real Jacobian determinant of φa.
Let dv denote the normalized volume measure of Bn, that is v(Bn) = 1. The norma-

lized surface measure on Sn will be denoted by dσ. Thus σ(Sn) = 1 and we have in polar
coordinates the formula∫

Bn

f(z) dv(z) = 2n
∫ 1

0
r2n−1 dr

∫
Sn

f(rζ) dσ(ζ). (2)

for all f ∈ L1(Bn, dv). Let dλ(z) = dv
(1−|z|2)n+1 , then dλ is anM-invariant measure, which

means ∫
Bn

f(z) dλ(z) =
∫
Bn

f ◦ φ(z) dλ(z)

for each f ∈ L1(Bn, dλ) and φ ∈ Aut (Bn).
The space of holomorphic functions in Bn will be denoted by Hol(Bn). The complex

gradient is denoted by ∇f = ( ∂f∂z1
, . . . , ∂f∂zk

) and Rf =
∑n
k=1 zk

∂f
∂zk

is the radial derivative
of f .

Let f ∈ Hol(Bn), the invariant gradient of f is defined by |∇̃f(z)| = |∇(f ◦ φz)(0)|
which means

|∇̃(f ◦ φ)| = |(∇̃f) ◦ φ| (3)

for all φ ∈ Aut (Bn).
For each f ∈ Hol(Bn) we have

|∇̃f(z)|2 = (1− |z|2)(|∇f(z)|2 − |Rf(z)|2). (4)
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The Bloch space B of Bn is defined as the set of holomorphic functions f ∈ Hol(Bn) such
that

‖f‖B = sup
z∈Bn

|∇̃f(z)| <∞.

The function
g(z) = 1

2n

∫ 1

|z|

(1− t2)n−1

t2n−1 dt, z ∈ Bn,

is called Green’s function for the invariant Laplacian ∆̃. The invariant Green’s function
of Bn is defined by G(z, a) = g(φa(z)).
Proposition 2.1. Let n ≥ 2 be an integer, then there are positive constants C1 and C2
such that for all z ∈ Bn\{0},

C1(1− |z|2)n|z|−2(n−1) ≤ g(z) ≤ C2(1− |z|2)n|z|−2(n−1). (5)
The following definitions are due to Ouyang et al. [Ouy2]:
For f ∈ Hol(Bn), 0 < p <∞, a ∈ Bn, let

Ip(f, a) =
∫
Bn

|∇̃f(z)|2Gp(z, a) dλ(z)

Jp(f, a) =
∫
Bn

|∇̃f(z)|2(1− |φa(z)|2)np dλ(z).

They defined the Qp(Bn) space as
Qp(Bn) = {f ∈ Hol(Bn) : sup

a∈Bn

Ip(f, a) <∞}

and its associated Qp,0(Bn) space as
Qp,0(Bn) = {f ∈ Hol(Bn) : lim

|a|→1−
Ip(f, a) = 0}.

They proved
Qp(Bn) = {f ∈ Hol(Bn) : sup

a∈Bn

Jp(f, a) <∞}

and
Qp,0(Bn) = {f ∈ Hol(Bn) : lim

|a|→1−
Jp(f, a) = 0} ⊂ Qp(Bn).

There are some basic differences with the case n = 1:
• In general |∇̃f(z)|2 is not a subharmonic function.
•
∫
Bn
G(z, a) dλ(z) =∞.

• When 0 < p ≤ n−1
n or n

n−1 ≤ p, Qp(Bn) consists only of constant functions.
A very useful result is the following theorem [Zh, Theorem 1.12]:
Theorem 2.2. Suppose c is real and t > −1. Then the integral

Jc,t(z) =
∫
Bn

(1− |w|2)t dv(w)
|1− 〈z, w〉|n+1+t+c , z ∈ Bn , (6)

has the following asymptotic properties:
(1) If c < 0, then Jc,t is bounded in Bn.
(2) If c = 0, then Jc,t ∼ log 1

1−|z|2 as |z| → 1−.
(3) If c > 0, then Jc,t ∼ (1− |z|2)−c as |z| → 1−.
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3. Some properties. In this section we show some properties and relations between
the Dp, Qp and Bα spaces.
Definition 3.1. Let 0 ≤ p < ∞. The space Dp is the set of holomorphic functions
f ∈ Hol(Bn) such that

sup
z∈Bn

∫
Bn

|∇̃f(z)|2 (1− |z|2)np dλ(z) <∞.

Proposition 3.2. Let n ≥ 2 and 0 ≤ p < ∞. If f ∈ Dp with development in power
series given by

f(z) =
∑
α

aαz
α

where α = (α1, α2, . . . , αn) is a multi-index with αi ∈ Z for all i = 1, 2, . . . , n. Then for
all N ∈ N ∑

|α|≤N

aαz
α

belongs to Dp.
Proof. Since Dp is a vectorial space (∇̃(δf +h) = δ∇̃f + ∇̃h), it is enough to prove that,
for each α, the monomial aαzα = aαz

α1
1 · · · zαn

n ∈ Dp(Bn).
It is easy to see that

F (z) = aαz
α = 1

(2π)n

∫ 2π

0
· · ·
∫ 2π

0
f(z1e

iθ1 , . . . , zne
iθn)e−i(α1θ1+...+αnθn) dθ1 · · · dθn . (7)

If U is the diagonal matrix diag(eiθ1 , . . . , eiθn) then
f(z1e

iθ1 , . . . , zne
iθn) = f ◦ U(z1, . . . , zn) = h(z).

By (7) and φz ∈ Aut(Bn),

(F ◦ φz)(w) = 1
(2π)n

∫ 2π

0
· · ·
∫ 2π

0
(h ◦ φz)(w)e−i(α1θ1+...+αnθn) dθ1 · · · dθn.

Thus
∂

∂wj
(F ◦ φz)(w) = 1

(2π)n

∫ 2π

0
· · ·
∫ 2π

0

∂

∂wj
(h ◦ φz)(w)e−i(α1θ1+...+αnθn) dθ1 · · · dθn .

Setting w = 0, we get

∇̃jF (z) = 1
(2π)n

∫ 2π

0
· · ·
∫ 2π

0
∇̃jh(z)e−i(α1θ1+...+αnθn) dθ1 · · · dθn .

By Jensen’s inequality

|∇̃jF (z)|2 ≤ 1
(2π)n

∫ 2π

0
· · ·
∫ 2π

0
|∇̃jh(z)|2 dθ1 · · · dθn

and

|∇̃F (z)|2 =
n∑
j=1
|∇̃jF (z)|2 ≤ 1

(2π)n

∫ 2π

0
· · ·
∫ 2π

0

n∑
j=1
|∇̃jh(z)|2 dθ1 · · · dθn

= 1
(2π)n

∫ 2π

0
· · ·
∫ 2π

0
|∇̃h(z)|2 dθ1 · · · dθn.
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Now we apply Fubini’s theorem. Since U ∈ Aut (Bn) is unitary, we obtain by (3)∫
Bn

|∇̃F (z)|2(1− |z|2)np dλ(z)

≤
∫
Bn

1
(2π)n

∫ 2π

0
· · ·
∫ 2π

0
|∇̃h(z)|2 dθ1 · · · dθn (1− |z|2)np dλ(z)

= 1
(2π)n

∫ 2π

0
· · ·
∫ 2π

0

∫
Bn

|∇̃(f ◦ U)(z)|2(1− |z|2)np dλ(z) dθ1 · · · dθn

=
∫
Bn

|∇̃(f)(z)|2(1− |z|2)np dλ(z) <∞ .

Proposition 3.3. Let n ≥ 2. Then

(i) If 0 ≤ p ≤ n−1
n , Dp(Bn) contains only the constant functions.

(ii) If n−1
n < p ≤ 1 then Qp(Bn) ⊂ Dp(Bn).

(iii) If 1 < p, Qp(Bn) = B(Bn) ⊂ Dp(Bn).

Proof. i) Let 0 ≤ p ≤ n−1
n and f ∈ Dp(Bn) be a nonconstant function given by

f(z) =
∑
α

aαz
α.

Choose aα 6= 0, then by Proposition 3.2, zα ∈ Dp. A straightforward calculation shows
that

|∇̃(zα)|2 = (1− |z|2)(|∇(zα)(z)|2 − |R(zα)(z)|2)
= (1− |z|2)

(
α2

1|z
α1−1
1 · · · zαn

n |2 + . . .+ α2
n|z

α1
1 · · · zαn−1

n |2 − |α|2|zα|2
)
.

Thus∫
Bn

|∇̃(zα)|2(1− |z|2)np dλ(z)

=
∫
Bn

(
α2

1|z
α1−1
1 · · · zαn

n |2 + . . .+ α2
n|z

α1
1 · · · zαn−1

n |2 − |α|2|zα|2
)
(1− |z|2)np−n dv(z)

=
∫ 1

0
r2n−1+2|α|−2(1− r2)np−n

·
∫
Sn

(
α2

1|ζ
α1−1
1 · · · ζαn

n |2 + . . .+ α2
n|ζ

α1
1 · · · ζαn−1

n |2 − |α|2r2|ζα|2
)
dσ(ζ) dr

≥
∫ 1

0
r2(n−1+|α|)−1(1− r2)np−n

·
∫
Sn

(
α2

1|ζ
α1−1
1 · · · ζαn

n |2 + . . .+ α2
n|ζ

α1
1 · · · ζαn−1

n |2 − |α|2|ζα|2
)
dσ(ζ) dr

= (n− 1)|α|(n− 1)!α!
(n− 1 + |α|)!

∫ 1

0
r2(n−1+|α|)−1(1− r2)np−n dr =∞

because np− n ≤ −1. Therefore f /∈ Qp .
ii) With a = 0∫

Bn

|∇̃f(z)|2(1− |φa(z)|2)np dλ(z) =
∫
Bn

|∇̃f(z)|2(1− |z|2)np dλ(z).
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iii) If f ∈ B(Bn) then∫
Bn

|∇̃f(z)|2(1− |z|2)np dλ(z) ≤ sup
z∈B
|∇̃f(z)|2

∫ 1

0
r2n−1(1− r2)np−n−1 dr <∞,

since 1 < p.

Proposition 3.4. If 0 < p < ∞ and Jp(f, a) < ∞ for all a ∈ Bn, then Jp(f, a) is a
continuous function as a function of a.

Proof. If f is constant on Bn it is clear that Jp(f, a) is continuous for all a ∈ Bn. Therefore
suppose that f is not constant, in particular Jp(f, a) 6= 0. Let a ∈ Bn be fixed and let δ > 0
be such that B(a, δ) = {z ∈ Cn : |z − a| ≤ δ} ⊂ Bn. The function l : Bn × B(a, δ) → R
defined by

(z, ζ) 7→ (1− |ζ|2)np

|1− 〈ζ, z〉|2np

is uniformly continuous on Bn × B(a, δ). Then given ε > 0, there exists ρ > 0 such that
if |z′ − z| < ρ and |ζ ′ − ζ| < ρ then

|l(z′, ζ ′)− l(z, ζ)| < ε

Jp(f, 0) .

Then if |a− b| < ρ,

|Jp(f, a)− Jp(f, b)| ≤
∫
Bn

|∇̃f(z)|2(1− |z|2)np |l(z, a)− l(z, b)| dλ(z) < ε.

Corollary 3.5. For n−1
n < p < n

n−1 , the following inclusions are true:

Qp,0(Bn) ⊂ Qp(Bn) ⊂ Dp(Bn).

Proof. Let f ∈ Qp,0. We can extend Jp(f, a) continuously to Bn by setting

J̃p(f, a) =
{
Jp(f, a) if a ∈ Bn
0 if a ∈ ∂Bn.

Then J̃p(f, a) is uniformly continuous on Bn and therefore

max
a∈Bn

J̃p(f, a) = max
a∈Bn

Jp(f, a) = Jp(f, b),

for some b ∈ Bn. Finally f ∈ Qp.

The inclusion Qp,0 ⊂ Qp was proved in [Ouy2], however the previous corollary gives
a shorter proof.

Definition 3.6. Let B∇(Bn) be the set of holomorphic functions such that

B∇(Bn) = {f ∈ Hol(Bn) : sup
z∈Bn

|∇f(z)| <∞}.

Proposition 3.7. The following inclusion is true

B∇(Bn) ⊂
⋂{
Qp,0(Bn) : n− 1

n
< p <

n

n− 1

}
.
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Proof. Let 0 < r < 1 be fixed. Since f ∈ B∇(Bn), by (4) we have

|∇̃f(z)|2 ≤ (1− |z|2)|∇f(z)|2 ≤ (1− |z|2)C(f).

In this way∫
Bn

|∇̃f(z)|2Gp(z, a) dλ(z) ≤ C1(f)
∫
Bn

(1− |z|2) (1− |φa(z)|2)np

|φa(z)|2(n−1)p dλ(z).

By the change of variable formula and (1)∫
Bn

(1− |z|2) (1− |φa(z)|2)np

|φa(z)|2(n−1)p dλ(z) =
∫
Bn

(1− |φa(z)|2) (1− |z|2)np

|z|2(n−1)p dλ(z)

= (1− |a|2)
∫
Bn

(1− |z|2)np+1

|z|2(n−1)p|1− 〈z, a〉|2
dλ(z).

Since 1− |z| < |1− 〈z, a〉| and p < n
n−1 we have

C1(f)(1− |a|2)
∫
Bn(0,r)

(1− |z|2)np+1

|z|2(n−1)p|1− 〈z, a〉|2
dλ(z)

≤ C1(f) 1− |a|2

(1− r2)2

∫
Bn(0,r)

dλ(z)
|z|2(n−1)p = C ′ <∞. (8)

On the other hand, since n−1
n < p, we have np− n > −1. Thus by Theorem 2.2

C1(f)(1− |a|2)
∫
Bn\Bn(0,r)

(1− |z|2)np+1

|z|2(n−1)p|1− 〈z, a〉|2
dλ(z)

≤ C1(f) 1− |a|2

r2(n−1)p

∫
Bn

(1− |z|2)np−n

|1− 〈z, a〉|2 dv(z) ≤ C(r, f)(1− |a|2). (9)

The claim follows from these estimations by taking the limit when |a| → 1− in (8)
and (9).

The proof of Proposition 3.7 suggests the following definition.

Definition 3.8. Let α ∈ R. The space Bα(Bn) of Bn is the set of holomorphic functions
f ∈ Hol(Bn) such that

‖f‖B,α = sup
z∈Bn

(1− |z|2)α|∇̃f(z)| <∞.

Proposition 3.9. Let −1 < α < 0. Then

Bα(Bn) ⊂
⋂{
Qp,0(Bn) : n− 1

n
< p <

n

n− 1

}
.

Proof. Let 0 < r < 1 be fixed and −1 < α < 0. Setting β = 1− α > 1, by (4) we have

|∇̃f(z)|2 ≤ (1− |z|2)1−α sup
z∈Bn

(1− |z|2)α(|∇f(z)|2 − |Rf(z)|2) = (1− |z|2)β‖f‖B,α.

Since (1− |z|2)β ≤ 1− |z|2 it follows from the proof of Proposition 3.7 that

lim
|a|→1−

∫
Bn

(1− |z|2)β (1− |φa(z)|2)np

|φa(z)|2(n−1)p dλ(z) = 0.
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Proposition 3.10. Let 0 < α < 1. Then

Bα(Bn) ⊂
⋂{
Qp,0(Bn) : n+ α− 1

n
< p <

n

n− 1

}
.

Proof. Let 0 < r < 1 be fixed and 0 < α < 1. Setting β = 1− α > 0, by (4) we have

|∇̃f(z)|2 ≤ (1− |z|2)1−α sup
z∈Bn

(1− |z|2)α(|∇f(z)|2 − |Rf(z)|2) = (1− |z|2)β‖f‖B,α

with 0 < β < 1.
In this way∫

Bn

|∇̃f(z)|2Gp(z, a) dλ(z) ≤ C1(p) ‖f‖B,α
∫
Bn

(1− |z|2)β (1− |φa(z)|2)np

|φa(z)|2(n−1)p dλ(z).

By the change of variable formula∫
Bn

(1− |z|2)β (1− |φa(z)|2)np

|φa(z)|2(n−1)p dλ(z) =
∫
Bn

(1− |φa(z)|2)β (1− |z|2)np

|z|2(n−1)p dλ(z)

= (1− |a|2)β
∫
Bn

(1− |z|2)np+β

|z|2(n−1)p|1− 〈z, a〉|2β
dλ(z).

Since 1− |z| < |1− 〈z, a〉| and p < n
n−1 we have

(1− |a|2)β
∫
Bn(0,r)

(1− |z|2)np+β

|z|2(n−1)p|1− 〈z, a〉|2β
dλ(z)

≤ (1− |a|2)β

(1− r2)2β

∫
Bn(0,r)

dλ(z)
|z|2(n−1)p = C ′ <∞. (10)

On the other hand, since n+α−1
n < p, we have −1 < np− α− n. Hence by Theorem 2.2

(1− |a|2)β
∫
Bn\Bn(0,1/2)

(1− |z|2)np+β

|z|2(n−1)p|1− 〈z, a〉|2β
dλ(z)

≤ (1− |a|2)β

r2(n−1)p

∫
Bn

(1− |z|2)np+β−n−1

|1− 〈z, a〉|2β dv(z) <∞. (11)

Since n+α−1
n < p < n

n−1 , (11) has only the asymptotic properties (1) and (2) in The-
orem 2.2, nevertheless, the property (3) is never satisfied because of the range of the
parameter p.

Now the claim follows from these estimations by taking the limit when |a| → 1− in
(10) and (11).

The following corollary shows an interesting relation among the α-Bloch spaces and
the hyperbolicQ∗p classes of holomorphic functions. The classes of this kind are introduced
in [JRT]. These classes are defined below:

For a holomorphic function f : (Bn, | · |Euc)→ (D, | · |Hyp), 0 < p <∞, a ∈ Bn, define
the invariant hyperbolic gradient of f as

|∇̃∗f(z)| = |∇̃f(z)|
1− |f(z)|2 . (12)
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Let
I∗p (f, a) =

∫
Bn

|∇̃∗f(z)|2Gp(z, a) dλ(z) ,

and define the Q∗p(Bn) class as
Q∗p(Bn) = {f ∈ Hol(Bn) : sup

a∈Bn

I∗p (f, a) <∞}

and its respective little class
Q∗p,0(Bn) = {f ∈ Hol(Bn) : lim

|a|→1−
I∗p (f, a) = 0}.

Definition 3.11. The class B† is the set of holomorphic functions such that
B† = {f ∈ B∇(Bn) : f(Bn) ⊂ D is a compact set} .

Corollary 3.12. The following inclusions are true:

B†(Bn) ⊂
⋂{
Q∗p,0(Bn) : n− 1

n
< p <

n

n− 1

}
;(i)

if −1 < α < 0, then Bα(Bn) ∩B†(Bn) ⊂
⋂{
Q∗p,0(Bn) : n+ α

n
< p <

n

n− 1

}
;(ii)

if 0 < α < 1, then Bα(Bn) ∩B†(Bn) ⊂
⋂{
Q∗p,0(Bn) : n+ α− 1

n
< p <

n

n− 1

}
.(iii)

Proof. If f ∈ B†(Bn) then there exists M > 0 such that
1

(1− |f(z)|2)2 ≤M and |∇̃∗f(z)|2 ≤M |∇̃f(z)|2.

The result follows from this inequality and the previous proofs.
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