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Abstract. These notes are devoted to the analysis on a capacity space, with capacities as
substitutes of measures of the Orlicz function spaces. The goal is to study some aspects of the
classical theory of Orlicz spaces for these spaces including the classical theory of interpolation.

1. Introduction. The purpose of this paper is to present some basic developments
connected with properties of the capacitary Orlicz function spaces, defined on a capacity
space instead of a measure space, and their interpolation theory. We also extend briefly
the classical theory of Calderón products. It is our feeling that these developments deserve
to be widely known. On the one hand they relate to important aspects of mathematical
analysis and on the other hand they have a simple and basic character.

One of the main problems that we have when dealing with capacities is that we are
forced to work with a non-additive integral, the Choquet integral, so that some basic
properties, such as the dominated convergence theorem or Fubini’s Theorem are not
longer available.

In the literature, a capacity on a space Ω is usually supposed to be an increasing set
function C : Σ → [0,∞], with different properties depending on the context, and the
Choquet integral is defined as∫

f dC :=
∫ ∞

0
C{f > t} dt (f ≥ 0),

where {f > t} ∈ Σ for every t > 0.
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In many important examples of capacities the domain Σ is a σ-algebra. This is the case
of the variational capacity, and those of the Fuglede [Fu] and Meyers [Me] of potential
theory. They are countably subadditive set functions which include the Riesz and the
Bessel capacities.

Orlicz spaces appear naturally. They have been recently studied in connection with
potential theory, harmonic analysis, risk measures theory, variational problems, unilateral
problems, PDE, etc. (see [A], [Ar], [BY], [Ci], et al.) Therefore, these new Orlicz spaces
are of interest.

The organization of the paper is as follows: Section 2 is devoted to recall some basic
facts and to study the quasi-normed capacitary function spaces, a new class of function
spaces that extends the usual quasi-normed function spaces.

In Section 3 we study Calderón products of quasi-normed capacitary function spaces.
In particular, we show that under quite general assumptions on the capacity, the Calderón
product of a pair of capacitary Lebesgue spaces is a capacitary Lebesgue space.

Sections 4 and 5 are devoted to extend the classical theory of Orlicz spaces. First
we define the capacitary Orlicz function spaces as usual but replacing the underlying
measure by a capacity. Then, we study some of their properties as function spaces and,
in particular, we show that the concavity of C and the continuity of ϕ give a Banach
function space Lϕ(C) with the usual Luxemburg functional. Finally, in Section 5, we
study their interpolation properties extending the interpolation method developed by
Gustavsson and Peetre [GP].

As usual, f . g means that f ≤ cg for a certain constant c > 0, and f ' g means
that f . g . f .

2. Capacitary function spaces. Let (Ω,Σ) be a measurable space. Sets will always
be assumed to be in Σ and functions in L0(Ω), the set of all (equivalence classes of) real
valued measurable functions on Ω, and L0(Ω)+ the positive ones. As in [Ce, CMS], by a
capacity C we mean a set function on Σ satisfying the following properties:

(a) C(∅) = 0,
(b) 0 ≤ C(A) ≤ ∞,
(c) C(A) ≤ C(B) if A ⊂ B,
(d) Fatou: C(An) ↑ C(A) whenever An ↑ A,
(e) quasi-subadditivity: C(A ∪B) ≤ c(C(A) + C(B)), where c ≥ 1 is a constant.

If c = 1, we say that the capacity is subadditive.
By (Ω,Σ, C) we denote a capacity space. It plays the role of a measure space in

the theory of Banach function spaces. In this setting, a property is said to hold quasi-
everywhere (C-q.e. for short) if the exceptional set has zero capacity.

The relation {f + g > t} ⊂ {f > t/2} ∪ {g > t/2} shows that the Choquet integral,
defined on nonnegative functions, is quasi-subadditive with constant 2c,∫

(f + g) dC ≤ 2c
(∫

f dC +
∫
g dC

)
.



CAPACITARY ORLICZ SPACES AND INTERPOLATION 217

The Choquet integral is subadditive on sets,∫
(χA + χB) dC ≤

∫
χA dC +

∫
χB dC,

if and only if
C(A ∪B) + C(A ∩B) ≤ C(A) + C(B).

Then the Choquet integral is also subadditive on nonnegative simple functions as it was
proved by Choquet in [Ch] (see also [CCM] or [Ce] for a direct elementary proof). In this
case C is called concave.

From now on, let (Ω,Σ, C) be the underlying capacity space. Let L0(C) be the real
vector space of all measurable functions, two functions being equivalent if they coincide
C-q.e., endowed with the topology of the convergence in capacity on sets of finite capacity
and with the lattice structure given by f ≤ g meaning that f(x) ≤ g(x) C-q.e.

A set X ⊂ L0(C) is a quasi-normed capacitary function space if X = {f ∈ L0(C) :
%(f) <∞}, where % : L0(Ω)+ → [0,∞] satisfies:

• %(f) = 0 ⇔ f = 0 q.e., %(f + g) ≤ k(%(f) + %(g)) and %(αf) = α%(f) for every
α ∈ R+,
• f ≤ g (C-q.e.) implies %(f) ≤ %(g),
• C(A) < ∞ implies %(χA) < ∞ and there exists kA > 0 such that

∫
χB dC ≤

kA%(χB) for every B ⊂ A, and
• if %(f) < ∞, then {f > 0} is C-sigma-finite, that is, {f > 0} =

⋃∞
k=1 Ωk with

C(Ωk) <∞ (k ∈ N).

We endow X with ‖f‖X := %(|f |), that does not depend on the representative. Then,
X is Fatou if it satisfies (a) and (b) in Theorem 2.1.

Theorem 2.1. Let X be a quasi-normed capacitary function space. The following con-
ditions are equivalent:

(a) If supn ‖fn‖X = M <∞, fn → f C-q.e., then f ∈ X and ‖f‖X ≤ lim infn ‖fn‖X .
(b) If 0 ≤ fn ↑ f C-q.e., then limn %(fn) = %(f).

Proof. To prove that (a) implies (b), take 0 ≤ fn ↑ f C-q.e. If %(f) < ∞, then %(f) =
‖f‖X ≤ limn ‖fn‖X = %(fn) by (a) and %(fn) ≤ %(f) (n ∈ N). So limn %(fn) = %(f). If
%(f) =∞, since fn ↑ f C-q.e., necessarily limn %(fn) =∞ because supn %(fn) = M <∞
would imply f ∈ X by (a).

To prove the converse, suppose that (b) holds and that supn ‖fn‖X = M < ∞ and
fn → f C-q.e. Define gn := infm≥n |fm| (n ∈ N), so gn ↑ |f | C-q.e. and ‖f‖X = %(|f |) =
limn %(gn). Since gn ≤ |fm| for every m ≥ n, it follows that %(gn) ≤ infm≥n %(|fm|) and
then ‖f‖X ≤ limn infm≥n %(|fm|) = lim infn ‖fn‖X .

Conditions (a) and (b) are called the Fatou conditions. If they hold, then we say that
X has the Fatou property.

Theorem 2.2. Any quasi-normed capacitary function space X on (Ω,Σ, C) is continu-
ously imbedded in L0(C).
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Proof. It is sufficient to prove that the condition ‖fn‖X → 0 for {fn}n∈N ⊂ X implies
fn → 0 in capacity on any set Ω0 of finite capacity.

Assume the contrary, so that there exist a set Ω0 with 0 < C(Ω0) <∞ and a positive
number ε such that for some subsequence fnk , the inequality |fnk(t)| > ε is satisfied on
a set Ωk ⊂ Ω0 with capacity C(Ωk) > δ > 0, for all k = 1, 2, . . . Then εχΩk(t) ≤ |fnk(t)|
and so ε‖χΩk‖X ≤ ‖fnk‖X . Since C(Ω0) <∞ we have

ε

CX

∫
χΩk dC ≤ ε‖χΩk‖X ≤ ‖fnk‖X ,

and if k → ∞, it follows that limk C(Ωk) = 0, which is impossible. Hence fn → 0 in
capacity on any set of finite capacity.

3. Calderón products of quasi-normed capacitary function spaces. From now
on, let X0 and X1 be quasi-normed capacitary function spaces and α ∈ (0, 1). The
Calderón product of X0 and X1, denoted by X = X1−α

0 Xα
1 , is the class of all f ∈ L0(C)

such that
|f(t)| ≤ λ|f0(t)|1−α|f1(t)|α (t ∈ Ω) (1)

for some λ > 0, and each f0 ∈ X0 and f1 ∈ X1 with ‖f0‖X0 ≤ 1, ‖f1‖X1 ≤ 1.
We endow X with ‖f‖X := inf λ, where the infimum runs over all λ satisfying (1).

Note that {f 6= 0} is C-sigma-finite and if

%α(f) :=
{
‖f‖X if f ∈ X,
∞ if f 6∈ X,

(2)

then X = {f ∈ L0(C) : %α(f) <∞}. We can also write for f ≥ 0,

%α(f) = inf{λ > 0 : f ≤ λf1−α
0 fα1 , fi ≥ 0, ‖fi‖Xi ≤ 1, i = 0, 1},

and note that %α satisfies all the required properties to define a quasi-normed capacitary
function space with ‖f‖X = %α(|f |).

Indeed, we just follow the usual arguments but recalling that given sequences con-
vergent to zero in X0 and X1, respectively, by Theorem 2.2 and [CMS, Theorem 5] they
converge to zero in capacity on any A ⊂ {f 6= 0} of finite capacity. Hence, by passing
to subsequences, they can be supposed to be convergent to zero C-q.e. on A. Then the
proof follows.

We may canonically associate to X a couple of spaces in the following way:

(a) X0 ∩X1 consists of the elements common to X0 and X1. The quasi-norm is intro-
duced by

‖f‖X0∩X1 = max{‖f‖X0 , ‖f‖X1} (x ∈ X0 ∩X1),

(b) X0 +X1 denotes the set of elements of the form x = u+ v, where u ∈ X0, v ∈ X1,
and it is equipped with the quasi-norm

‖x‖X0+X1 = inf{‖u‖X0 + ‖v‖X1},

where the infimum is taken over all elements u ∈ X0, v ∈ X1 whose sum is equal
to x.
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Proposition 3.1. X1−α
0 Xα

1 satisfies

X0 ∩X1 ↪→ X1−α
0 Xα

1 ↪→ X0 +X1.

Proof. The first embedding follows as usual.
Let f ∈ X1−α

0 Xα
1 . Then, if |f(t)| ≤ λ|f0(t)|1−α|f1(t)|α, with f0, f1 and λ > 0 satisfy-

ing the required conditions, then

|f(t)| ≤ λ{(1− α)|f0(t)|+ α|f1(t)|}

and then
‖f‖X0+X1 . λ{(1− α)‖f0‖X0+X1 + α‖f1‖X0+X1} ≤ λ

which implies that f ∈ X0 +X1 and ‖f‖X0+X1 . ‖f‖X1−α
0 Xa1

.

Theorem 3.2. The space X1−α
0 Xα

1 is complete.

Proof. Let {fn}n∈N be a Cauchy sequence satisfying
∑
n ‖fn‖X < ∞. Given ε > 0, we

can find λn > 0, f0,n ∈ X0 and f1,n ∈ X1 with norms less than one, and λn ≤ ‖fn‖X + ε
2n

such that |fn(t)| ≤ λn|f0,n(t)|1−α|f1,n(t)|α. Then∑
n

|fn(t)| ≤ Λ ·
∑
n

(λn
Λ |f0,n(t)|

)1−α(λn
Λ |f1,n(t)|

)α
, where Λ =

∑
n

λn.

By Corollary 1.2.10 of [S] (see [CMS, Theorem 2]) applied with 1
p = 1−α and 1

q = α

to f̄pn := λn
Λ |f0,n| and gn :=

(
λn
Λ |f1,n|

)α,∑
n

|fn| ≤ kΛ ·
(∑

n

f̄pn

)1/p(∑
n

gqn

)1/q

= k · Λ ·
(∑

n

λn
Λ |f0,n|

)1−α(∑
n

λn
Λ |f1,n|

)α
.

As the functions in brackets are defined C-q.e. belonging to X0 and X1, then
∑
n |fn| ∈ X.

If f :=
∑
n fn, then f ∈ X, ‖f‖X ≤ k

∑
n ‖fn‖X .

Applying this inequality to f(·)−
∑N
n=1 fn(·) =

∑∞
N+1 fn(·) and letting N →∞, we

see that limN→∞
∑N
n=1 fn = f C-q.e.

Theorem 3.3. Let 0 < p0, p1 ≤ ∞, α ∈ (0, 1) and 1
p = 1−α

p0
+ α

p1
. Then

Lp0(C)1−αLp1(C)α = Lp(C)

with equivalent quasi-norms (or equal norms in the normed case).

Proof. Let Xi = Lpi(C) (i = 0, 1) and f ∈ X1−α
0 Xα

1 , and suppose that |f(t)| ≤
λ|f0(t)|1−α|f1(t)|α as in (1). By applying Corollary 1.2.10 of [S] with conjugate expo-
nents p0

(1−α)p and p1
αp , it follows that∫

Ω
|f |p dC ≤

∫
Ω
λp|f0|(1−α)p|f1|αp dC

. λp‖f0‖(1−α)p
X0

‖f1‖αpX1
≤ λp,

from which we obtain Lp0(C)1−αLp1(C)α ↪→ Lp(C). The opposite embedding follows
trivially.
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Recall that the distribution function Cf (see [CMS]) of f ∈ L0(Ω) is defined by

Cf (t) := C{|f | > t} (t > 0)

and the decreasing rearrangement f∗C of f as

f?C(x) = inf
{
t > 0 : C{|f | > t} ≤ x

}
(x > 0).

Define f∗∗ := 1
t

∫ t
0 f

?
C(s) ds, which is decreasing and f?C ≤ f∗∗ (see [S]).

Then, two functions g and g̃ are called equicapacitable on Ω if

C{x ∈ Ω : |g(x)| > λ} = C{x ∈ Ω : |g̃(x)| > λ} (λ > 0).

For a quasi-Banach lattice X, we define

X∗ := {f ∈ L0(C) : f∗∗ ∈ X}, ‖f‖X∗ = ‖f∗∗‖X .

Then X∗ is a vector space and fn ↑ f C-q.e. implies ‖fn‖X∗ ↑ ‖f‖X∗ .
In this capacitary setting the relation between (X∗0 )1−α(X∗1 )α and X∗ = (X1−α

0 Xα
1 )∗

for 0 < α < 1, X0 and X1 be Banach lattices can be partially analyzed. Let f ∈
(X∗0 )1−α(X∗1 )α. The embedding

(X∗0 )1−α(X∗1 )α ↪→ (X1−α
0 Xα

1 )∗

follows as usual.
The proof of (X1−α

0 Xα
1 )∗ ↪→ (X∗0 )1−α(X∗1 )α can be done under some additional con-

ditions. The function f∗C is related to Cf (t) as follows:

Cf [f∗C(t)] ≥ t, f∗C [Cf (t)] ≥ t (t > 0). (3)

Then
f∗C
{
Cf [|f(x)|]

}
≥ |f(x)|. (4)

Consider the Hardy operators P and Q defined as

(Pf)(t) := 1
t

∫ t

0
f(s) ds, (Qf)(t) :=

∫ ∞
t

f(s)
s

ds.

If g ≥ 0, then it is well-known that

Q(Pg)(t) = (Pg)(t) + (Qg)(t) (t > 0).

On the other hand, if g1, g2 ≥ 0, then by the Hölder inequality,

Q(g1−α
1 gα2 ) ≤ 2c(Qg1)1−α(Qg2)α.

Now we are ready to show that if f ∈ X with finite norm and P and Q are bounded
in X0 and X1, then the desired result holds. Indeed, let c be a bound for the norms of P
and Q in X0 and X1. Suppose that f∗∗(·) ≤ λg1(·)1−αg2(·)α for f ∈ X. Define

h1 = 1
c2
Qg1, h2 = 1

c2
Qg2, hi(0) =∞, hi(+∞) = lim

t→∞
hi(t) (i = 1, 2).

Then f∗C ≤ Qf∗∗ ≤ λQ(g1−α
1 gα2 ) ≤ 2c3λh1−α

1 hα2 since f∗∗ = Pf∗C .
Define now f1(·) := h1

{
Cf (|f(·)|)

}
and f2(·) := h2

{
Cf (|f(·)|)

}
. Since |f | and f∗C are

equicapacitable, then fi is equicapacitable with hi{Cf (f∗C)} (i = 1, 2). Hence, (fi)∗C =
hi{Cf (f∗C)} at all points of continuity of (fi)∗C . (3) and the non-increasing character
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of hi imply (fi)∗C ≤ hi, except perhaps at the discontinuity points of (fi)∗C . Then
f∗∗i ≤ 1

c2PQgi. The boundedness of P and Q gives fi ∈ X∗i−1, i = 1, 2, but

|f | ≤ 2c3λh1
{
Cf{|f |}

}1−α
h2
{
Cf{|f |}

}α = 2c3λf1−α
1 fα2 by (4).

Then, the conclusion follows.

Remark 3.4. In particular, for 1/p = (1− α)/p0 + α/p1,

Lp(C)∗ ↪→
(
(Lp0(C))∗

)1−α((Lp1(C))∗
)α

↪→
(
Lp0(C)1−αLp1(C)α

)∗
,

where Lp0(C)1−αLp1(C)α = Lp(C) (see Theorem 3.3).

4. Capacitary Orlicz spaces. From now on, ϕ : [0,∞) → [0,∞] is an unbounded
increasing function, ϕ(0) = 0, which is neither identically zero nor identically infinite.

Define the Orlicz class PC(ϕ) as the set of all f ∈ L0(Ω) for which

Mϕ(f) := ρϕ(f) =
∫

Ω
ϕ(|f |) dC <∞.

Then
Lϕ(C) := {f ∈ L0(Ω) : ‖f‖ϕ <∞},

where
‖f‖ϕ := inf{λ > 0 : Mϕ(λ−1f) ≤ 1}.

The space Lϕ(C) is called a capacitary Orlicz function space.

Definition 4.1. A function H on [0,∞) (or on a linear space) is called quasi-convex
with constant β ≥ 1, if

H(λx+ (1− λ)y) ≤ β
{
λH(x) + (1− λ)H(y)

}
for 0 ≤ λ ≤ 1 and x, y > 0.

Let us observe that the quasi-subadditivity of the Choquet integral implies that Mϕ

is quasi-convex when ϕ is. We say that ϕ satisfies the ∆2-condition if there exist s0, c > 0
such that

ϕ(2s) ≤ cϕ(s) <∞ (s0 ≤ s <∞).

Let C be a finite capacity and ϕ a quasi-convex function with the ∆2-condition. Then,
as usual, PC(ϕ) is a linear subspace of L0(Ω).

Proposition 4.2. f = 0 C-q.e. ⇔Mϕ(kf) ≤ 1 (k > 0).

Proof. If f = 0 C-q.e., then Mϕ(kf) = 0 (k > 0). Conversely, suppose that Mϕ(kf) ≤ 1
(k > 0), but for some ε > 0, |f | ≥ ε on E ⊂ Ω with C(E) > 0. Then

Mϕ(kf) =
∫

Ω
ϕ(k|f |) dC ≥

∫
E

ϕ(εk) dC = C(E)ϕ(εk).

Since ϕ(s) ↑ ∞ as s ↑ ∞, we obtain a contradiction.

Note that Lp(C) is an Orlicz space since, if ϕ(t) = tp, then

‖f‖ϕ := inf
{
λ > 0 : 1

λp

∫
Ω
|f(x)|p dC ≤ 1

}



222 P. SILVESTRE

and Lϕ(C) = Lp(C) with ‖f‖Lϕ(C) = ‖f‖Lp(C), for any p ∈ (0,∞). It is complete also
when 0 < p < 1 although in that case ϕ is not convex. It is a p-convex function, where a
function ϕ : [0,∞)→ [0,∞) is called s-convex (resp. (s)-convex) (0 < s ≤ 1) if

ϕ(αt1 + βt2) ≤ αsϕ(t1) + βsϕ(t2) for each t1, t2 ∈ [0,∞)
and all α, β ≥ 0 such that αs + βs = 1 (resp., such that α+ β = 1).

Any convex function is 1-convex and every (s)-convex function is s-convex. The con-
verse is false, ϕ(t) = tp (0 < p < 1) is not (p)-convex.

From now on, if nothing else is said, ϕ will be any s-convex function and 0 < s ≤ 1.
Define

Lϕ(C) := {f : lim
λ→0+

ρϕ(λf) = 0}.

Trivially, Lϕ(C) ⊂ Lϕ(C).
Modular spaces were first defined by H. Nakano in 1950 (see [Nak]) on vector lattices.

Independently, another version was introduced by J. Musielak and W. Orlicz around 1959
(see [MO1] and [MO]).

Let X be a real vector space on L0(Ω). A functional ρ : X → [0,∞] is called a modular
if it satisfies the following conditions:

(a) ρ(x) = 0⇐⇒ x = 0,
(b) ρ(−x) = ρ(x) for each x ∈ X,
(c) ρ(αx+ βy) ≤ ρ(x) + ρ(y) for x, y ∈ X, α, β ≥ 0 such that α+ β = 1.

It is a pseudo-modular if ρ(0) = 0 and it satisfies (b) and (c), and the pseudo-modular ρ
is said to be s-convex if ρ is an s-convex function.
Proposition 4.3. If C is a concave capacity, then ρϕ is an s-convex pseudo-modular on
L0(Ω).
Proof. By observing that ϕ is an s-convex function and C concave.
Theorem 4.4. If ρ is an s-convex pseudo-modular in Lϕ(C), then Lϕ(C) = Lϕ(C) and
a norm can be defined on Lϕ(C) as follows

‖f‖ϕ,s := inf
{
λ > 0 : ρϕ

( f

λ1/s

)
≤ 1
}
.

Proof. If f ∈ Lϕ(C), then ρϕ(λ0f) <∞ for some λ0 > 0. Hence, if 0 < λ < λ0, then

ρϕ(λf) = ρϕ

( λ
λ0

λ0f
)

= ρϕ

( λ
λ0

(λ0f) +
(

1− λ

λ0

)
0
)
≤
( λ
λ0

)s
ρϕ(λ0f)→ 0

as λ→ 0, so that f ∈ Lϕ(C).
Now, let us show that ‖ · ‖ϕ,s is a norm. By a direct proof ‖f‖ϕ,s = 0 if and only if

f = 0 C-q.e. and ‖λf‖ϕ,s = |λ|s‖f‖ϕ,s for all λ ∈ R.
Let u, v > 0 such that ‖f‖ϕ,s < u, ‖g‖ϕ,s < v. It follows that

ρϕ

( f + g

(u+ v)1/s

)
= ρϕ

(
u1/s

(u+ v)1/s
f

u1/s + v1/s

(u+ v)1/s
g

v1/s

)
≤ u

u+ v
ρϕ

( f

u1/s

)
+ v

u+ v
ρϕ

( g

v1/s

)
≤ 1,

and thus, ‖f + g‖ϕ,s ≤ ‖f‖ϕ,s + ‖g‖ϕ,s.
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Thus, if C is concave, then Lϕ(C) = Lϕ(C) and ‖ · ‖ϕ,s is a norm. In this case, Lϕ(C)
is called a capacitary s-convex Orlicz function space.

Remark 4.5. ‖f‖ϕ,s = ‖f‖sϕ since

inf
{

(u1/s)s > 0 : ρϕ
( f

u1/s

)
≤ 1
}

=
[
inf
{
λ > 0 : ρϕ

(f
λ

)
≤ 1
}]s

= ‖f‖sϕ.

By Theorem 4.4 and Remark 4.5, if ρ is an s-convex pseudo-modular in Lϕ(C), then
‖ · ‖ϕ is a quasi-norm in Lϕ(C) since, for f, g ∈ L0(Ω),

‖f + g‖ϕ = (‖f + g‖ϕ,s)1/s ≤ 21/s(‖f‖1/sϕ,s + ‖g‖1/sϕ,s) = 21/s(‖f‖ϕ + ‖g‖ϕ).

Proposition 4.6. ‖ · ‖ϕ is a quasi-norm on Lϕ(C).

Proof. Observe that, since ϕ is s-convex, we have

ϕ(a1/st) = ϕ
(
a1/st+ (1− a)1/s0

)
≤ aϕ(t) (0 < a < 1)

and hence, ϕ(λt) ≤ λsϕ(t) (λ ∈ (0, 1)). Then, the first two properties of a quasi-norm
follow.

Moreover, let f, g ∈ Lϕ(C) and take u1/s > ‖(2c)1/sf‖ϕ and v1/s > ‖(2c)1/sg‖ϕ. By
the quasi-subadditivity, we have for θ := u

u+v ,

Mϕ
( f + g

(u+ v)1/s

)
≤
∫

Ω

(
θϕ
( |f |
u1/s

)
+ (1− θ)ϕ

( |g|
v1/s

))
dC

≤
∫

Ω

( θ
2cϕ

( (2c)1/s|f |
u1/s

)
+ 1− θ

2c ϕ
( (2c)1/s|g|

v1/s

))
dC

≤ θMϕ
( (2c)1/sf

u1/s

)
+ (1− θ)Mϕ

( (2c)1/sg

v1/s

)
≤ 1.

The assertion follows since ‖f + g‖ϕ ≤ (u+ v)1/s ≤ 21/s(u1/s + v1/s).

Theorem 4.7. Under the same conditions,

(i) ‖fk − f‖ϕ,s
k→∞−→ 0 if and only if ρϕ(λ(fk − f)) k→∞−→ 0 (λ > 0).

(ii) {fk}k is a Cauchy sequence in Lϕ(C) with respect to ‖ · ‖ϕ,s if and only if
ρϕ(λ(fk − fl))

k,l→∞−→ for all λ > 0.

Proof. If ρϕ(λfk) k→∞−→ 0, then there exists kλ ∈ N such that

ρϕ

( fk
(λ−s)1/s

)
≤ 1 for each k ≥ kλ and λ > 0.

Hence, ‖fk‖ϕ,s ≤ 1
λs for all k ≥ kλ, λ > 0, and so ‖fk‖ϕ,s

k→∞−→ 0.
Conversely, if ‖fk‖ϕ,s

k→∞−→ 0, then given ε > 0, there exists kλ,ε ∈ N such that
ρϕ( λfk

ε1/s ) ≤ 1 for all k ≥ kλ,ε and

ρϕ(λfk) =
∫

Ω
ϕ
(
ε1/s

(λ|fk|
ε1/s

))
dC

≤
∫

Ω

(
εϕ
(λ|fk|
ε1/s

)
+ (1− ε)ϕ(0)

)
dC = ερϕ

(λfk
ε1/s

)
.

Hence, ρϕ(λfk)→ 0 as k → 0 for any λ > 0.
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Theorem 4.8. Let C be a concave capacity and ϕ an increasing convex function. Then
(Lϕ(C), ‖ · ‖ϕ) is a Banach function space.

Proof. Let {fn}n∈N be a Cauchy sequence for ‖ · ‖ϕ and x0 := sup{x ∈ R : ϕ(x) = 0}.
Then, 0 ≤ x0 <∞ since {ϕ = 0} is relatively compact.

Since by Remark 4.5 it follows that Theorem 4.7 holds also for ‖ ·‖ϕ, then there exists
kmn ≥ 0 such that ∫

Ω
ϕ
(
kmn|fn − fm|

)
dC ≤ 1 (m,n ∈ N).

First note that Amn :=
{
kmn|fn− fm| > x0

}
∈ Σ is at most σ-finite. Indeed, defining

Bk :=
{
kmn|fn− fm| > x0 + k−1} (k ∈ N), we have Amn =

⋃∞
k=1Bk, where C(Bk) <∞

for all k since

C(Bk)ϕ(x0 + k−1) =
∫
Bk

ϕ(x0 + k−1) dC ≤
∫
Bk

ϕ
(
kmn|fn − fm|

)
dC ≤ 1.

Therefore, each Amn is σ-finite and so is A :=
⋃
m,n≥1Amn.

On Ac, kmn|fn − fm| ≤ x0 and then |fn − fm| → 0 uniformly. Hence, there exists
g0 ∈ L0(Ac) such that fn → g0 and |g0| ≤ x0 on Ac.

Temporarily, write Ω for A. If B satisfies C(B) <∞, then

C
(
B ∩ {|fn − fm| ≥ ε|}

)
≤ 1
ϕ(kmnε)

∫
Ω
ϕ
(
kmn|fn − fm|

)
dC ≤ 1

ϕ(kmnε)
.

Since kmn →∞ and ε > 0 is fixed, {fn}n∈N is a Cauchy sequence in capacity on B. Then,
by [CMS, Theorem 5], there is a subsequence pointwise convergent on B to some f̃ , and
on
⋃
k Bk since C(Bk) < ∞ (k ∈ N). Then, there exists {fni}i∈N such that fni → f̃

C-q.e.
Let f := f̃χA + g0χAc . Hence, fni → f C-q.e., and by Cauchy, ‖fn‖ϕ → ρ. Then, by

the Fatou property, f ∈ Lϕ(C) and by continuity,

ϕ
(
|fni − fnj |k

)
→ ϕ

(
|f − fnj |k

)
C-q.e. as i→∞ (k ≥ 0).

Then, if n0 ≥ 1 is chosen such that ni, nj ≥ n0 implies kninj ≥ k,∫
Ω
ϕ
(
k|fni − fnj |

)
dC ≤

∫
Ω
ϕ
(
kninj |fni − fnj |

)
dC ≤ 1.

Letting ni →∞, we have ‖f − fnj‖ϕ ≤ k−1 and the result then follows.

In general, the continuity property of an s-convex function is needed for the complete-
ness of the capacitary s-convex Orlicz function space because s-convex functions are not
always continuous.

Example 4.9. Let 0 < s < 1 and k > 1. Define for u ∈ R+,

f(u) =
{
us/(1−s) if 0 ≤ u ≤ 1, kus/(1−s) if u ≥ 1

}
.

Then f ≥ 0, discontinuous at u = 1, s-convex not (s)-convex.

Theorem 4.10. Let ϕ be a continuous s-convex, or an increasing convex function. Then
(Lϕ(C), ‖ · ‖ϕ) is a quasi-Banach function space.
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Proof. For all λ, η > 0, there exists N ∈ N such that

ρϕ(λ(fn − fm)) < η (m,n ≥ N).

Thus, defining An,m :=
{
x ∈ Ω : λ|fn(x)− fm(x)| ≥ ε

}
(ε > 0) we have

C(An,m)ϕ(ε) ≤ ρϕ(λ(fn − fm)) < η (m,n ≥ N).

Then, by [CMS, Theorem 5], {λfn}n∈N is convergent in capacity to a function λf and
contains a subsequence {λfnk}k∈N convergent to λf C-q.e. in Ω. By continuity,

ϕ(λ|fn(x)− fnk(x)|)→ ϕ(λ|fn(x)− f(x)|) C-q.e. in Ω

and, by the Fatou property, it follows that

ρϕ(λ(fn − f)) ≤ lim inf
k→∞

ρϕ(λ(fn − fnk)) < η (n ≥ N).

Thus ‖fn − f‖ϕ → 0 as n→∞, and f ∈ Lϕ(C).

Example 4.11. Let (Ω,Σ, µ) be a measure space, and ψ(t) := t1−p (0 < p < 1) which
is concave and continuous. Then Cψ(A) := ψ(µ(A)) defines a concave Fatou capacity
(see [Ce]). Hence, if for instance ϕ(t) = t2, then Lϕ(Cψ) is a Banach function space
with ‖ · ‖ϕ.

Nevertheless, if ϕ(t) := tp, then Lϕ(C) defined by the condition ‖f‖ϕ < ∞ is a
capacitary p-convex Orlicz function space.

5. Interpolation of capacitary s-convex spaces

Definition 5.1. Let ϕ be a positive function on R+ such that, for every λ ∈ R+ there
exists a constant C̄ = C(λ) such that ϕ(λx) ≤ C̄ϕ(x). Then, ϕ is of lower type p0 and
upper type p1 when

ϕ(λx) ≤ C̄ max(λp0 , λp1)ϕ(x).

Assume further that ϕ is continuous increasing with ϕ(R+) = R+ so that, ϕ−1 exists
and is continuous increasing too. Then, if ϕ is of type (p0, p1) with p0 > 0, then ϕ−1 is
of type (p−1

1 , p−1
0 ) (see [GP]).

Every s-convex function is of positive lower type since for all α > 0, if we take
β = (1− αs)1/s and y = 0, it follows that

ϕ(αx) = ϕ(αx+ β0) ≤ αsϕ(x) + βsϕ(0) = αsϕ(x).

A positive function ρ on R+ is quasi-concave when it is equivalent to a concave one,
and it is pseudo-concave if and only if for a suitable C̄

ρ(λx) ≤ C̄ max(1, λ)ρ(x). (5)

The class of functions satisfying (5) will be denoted by B(C) (see [Pe]).

Remark 5.2. Let us introduce R(x, y) = xρ(y/x). Then ρ ∈ B(1) if and only if
R is non-decreasing in each variable separately. In fact, it fulfils in the strong sense
x < x′ and y < y′ ⇒ R(x, y) < R(x′, y′).

Given ρ ∈ B(1), it follows for any positive sequences {xη}η, {yη}η,∑
R(xη, yη) ≤ 2R

(∑
xη,
∑

yη

)
.
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Definition 5.3. A function ρ : X → [0,∞] is called a quasi-modular if it satisfies the
following properties:

(a) ρ(x) = 0⇐⇒ x = 0,
(b) ρ(λx) ≤ ρ(x) if |λ| ≤ 1, ρ(−x) = ρ(x),
(c) limλ→0 ρ(λx) = 0 if ρ(x) <∞,
(d) ρ((x+ y)/h) ≤ k(ρ(x) + ρ(y)) for certain constants h and k.

From now on, let ϕ, ϕ0 and ϕ1 be continuous increasing functions on R+ such that
ϕ,ϕi((0,∞)) = (0,∞), i = 0, 1, and ϕ(0) = 0. It follows by similar techniques to the
ones in Theorem 4.10 that (Lϕ(C), ‖ · ‖ϕ) is a quasi-Banach function space when ϕ is of
positive lower type.
Proposition 5.4. Assume that ϕ is of positive lower type and it can be expressed by
ϕ−1 = ϕ−1

0 ρ
(ϕ−1

1
ϕ−1

0

)
with ρ quasi-concave. If∫
Ω
ϕi(|ai|) dC ≤ Ci, i = 0, 1, |a| ≤ |a0|ρ

( |a1|
|a0|

)
,

then ∫
Ω
ϕ(|a|) dC ≤ 2c(C0 + C1),

where c is the subadditivity constant associated with the capacity.
Proof. Following [GP], put bi := ϕi(|ai|), i = 0, 1, and b = b0 + b1. We see that ϕ−1

0 , ϕ−1
1

are increasing, b0 ≤ b and b1 ≤ b. So that ϕ−1
0 (b0) ≤ ϕ−1

0 (b), ϕ−1
1 (b1) ≤ ϕ−1

1 (b) and by
Remark 5.2,

|a| ≤ R(|a0|, |a1|) = R
(
ϕ−1

0 (b0), ϕ−1
1 (b1)

)
≤ R

(
ϕ−1

0 (b), ϕ−1
1 (b)

)
= ϕ−1(b).

The positive lower type of ϕ and the quasi-subadditivity,∫
Ω
ϕ(|a|) dC ≤ 2c

{∫
Ω
ϕ0(|a0|) dC +

∫
Ω
ϕ1(|a1|) dC

}
≤ 2c(C0 + C1).

Remark 5.5. Let us interpret the last proposition. Let X0, X1 be two rearrangement
invariant (r.i. for short)1 quasi-Banach function spaces, a capacity space (Ω,Σ, C), and
ρ be a quasi-concave function. Introduce X = X0ρ(X1

X0
) as the space of those h ∈ L0(Ω)

for which one can find C̃ and a0 ∈ X0 and a1 ∈ X1 such that

|h| ≤ C̃|a0|ρ
( |a1|
|a0|

)
.

We equip X with ‖ · ‖X = inf
C̃
C̃. Then, it follows similarly to Theorem 4.10 that

‖ · ‖X is a quasi-norm and X is a quasi-Banach space.
If ρ = ρα in (2), then X is the Calderón product X1−α

0 Xα
1 in (1).

Let ϕi be continuous increasing functions on R+ and Xi = Lϕi(C), i = 0, 1. It follows
that

Lϕ0(C)ρ
(Lϕ1(C)
Lϕ0(C)

)
↪→ Lϕ(C), ϕ−1 = ϕ−1

0 ρ
(ϕ−1

1
ϕ−1

0

)
. (6)

1X is r.i. if the following is satisfied: for every f ∈ X if g measurable with µf = µg, then
g ∈ X and ‖f‖X = ‖g‖X , where µf (λ) := µ{x : |f(x)| > λ}, λ > 0.
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At this point it is natural to study the converse embedding.
Consider the same interpolation method as in [GP]. Let X̄ = (X0, X1) be a quasi-

Banach couple and ρ a quasi-concave function.

〈X0, X1, %〉 = {a ∈ Σ(X̄) : there exists u = {uν}ν∈Z, uν ∈ ∆(X̄)
such that (7) and (8) are satisfied},

where for an absolute constant Ĉ,
a =

∑
ν∈Z

uν with convergence in Σ(X̄), (7)

for all finite F ⊂ Z and every real sequence {ξν}ν∈F , |ξν | ≤ 1 we have∥∥∥∑
ν∈F

ξνuν
ρ(2ν)

∥∥∥
X0
≤ Ĉ,

∥∥∥∑
ν∈F

2νξνuν
ρ(2ν)

∥∥∥
X1
≤ Ĉ. (8)

We equip 〈X̄, ρ〉 = 〈X0, X1, ρ〉 with the quasi-norm
‖a‖〈X̄,ρ〉 = inf Ĉ.

Then, if ρ is of lower type 0 and upper type 1, 〈X̄, ρ〉 is complete.
From now on, assume that ϕ0 and ϕ1 have positive lower type. If ρ ∈ B(1) and ϕ is

defined by ϕ−1 = ϕ−1
0 ρ(ϕ

−1
1
ϕ−1

0
), then Lϕ(C), Lϕ0(C) and Lϕ1(C) are quasi-Banach spaces

(see [GP]).
Theorem 5.6. If one of the functions ϕ0, ϕ1, say ϕ0, has finite upper type and ρ ∈ B(1),
then ϕ defined by ϕ−1 = ϕ−1

0 ρ(ϕ
−1
1
ϕ−1

0
) satisfies Lϕ(C) ↪→ 〈Lϕ(C), ρ〉.

Proof. It follows similarly to [GP, Theorem 7.1].
The converse is unknown for us. Let us just comment that we do not have a capacitary

version of Fubini’s theorem.
Theorem 5.7. Under the same conditions Lϕ(C) ↪→ Lϕ0(C)ρ(L

ϕ1 (C)
Lϕ0 (C) ).

Proof. Let f ∈ Lϕ(C) with norm less than one and ψ(t) := ϕ0( |f |ρ(t) ) − ϕ1( t|f |ρ(t) ). By
hypothesis, ψ is decreasing, continuous, limt→0 ψ(t) > 0 and limt→∞ ψ(t) < 0. Thus,
there exists a unique t such that ψ(t) = 0. Let us denote this unique t by the same
symbol t. Defining x = |f |

ρ(t) and y = t|f |
ρ(t) , since ψ(t) = 0, we have ϕ0(x) = ϕ1(y).

Moreover, ϕ−1(ϕ0(x)) = |f |. Thus∫
Ω
ϕ0

( |f |
ρ(t)

)
dC =

∫
Ω
ϕ(|f |) dC ≤ 1,

and we can write |f | as an element in Lϕ0(C)ρ
(Lϕ1 (C)
Lϕ0 (C)

)
.

In particular, (6) together with Theorem 5.7 recover Theorem 3.3.

Corollary 5.8. Assume that ϕ0 and ϕ1 have finite upper type. Define ϕ−1 = ϕ−1
0 ρ

(ϕ−1
1
ϕ−1

0

)
for ρ being a quasi-concave function in B(1). Then

Lϕ(C) = Lϕ0(C)ρ
(Lϕ1(C)
Lϕ0(C)

)
↪→ 〈Lϕ(C), ρ〉.
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Theorem 5.9. Let ϕ0 be of finite upper type such that ϕ0((0,∞)) = (0,∞). Define
ϕ−1 = ϕ−1

0 ρ( 1
ϕ−1

0
) for ρ ∈ B+(1) being quasi-concave. Then

Lϕ(C) = Lϕ0(C)ρ(L
∞(C)

Lϕ0(C) ) ↪→ 〈Lϕ0(C), L∞(C), ρ〉.

Proof. See [GP, Theorem 9.1].
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[CCM] J. Cerdà, H. Coll, J. Mart́ın, Entropy function spaces and interpolation, J. Math. Anal.
Appl. 304 (2005), 269–295.
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