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Abstract. For each (commutative) Frobenius algebra there is defined a skein module of surfaces

embedded in a given 3-manifold and bounding a prescribed curve system in the boundary. The

skein relations are local and generate the kernel of a certain natural extension of the correspond-

ing topological quantum field theory. In particular the skein module of the 3-ball is isomorphic to

the ground ring of the Frobenius algebra. We prove a presentation theorem for the skein module

with generators incompressible surfaces colored by elements of a generating set of the Frobenius

algebra, and with relations determined by tubing geometry in the manifold and relations of the

algebra.

1. Introduction. In [P] the idea of algebraic topology based on knots originated. The
idea is to study quotients of formal linear combinations of links by local relations that al-
low computation of the modules and understanding of the interplay between link theory
and geometric topology of the 3-manifold. Most interesting skein modules of links in
3-manifolds are based on skein relations with the property that the modules of the
3-ball are isomorphic to the ground ring. Typically one considers relations suggested
by link polynomials like the Jones, Homflypt or Kauffman bracket polynomials. Under-
standing the structure of these modules for general 3-manifolds is an important question
which is related to basic problems of quantum topology like the volume conjecture [L].
From their definition as quantum invariants all these polynomial link invariants have
operator-valued extensions as 1-dimensional embedded topological quantum field theo-
ries [T1], [T2].

It is well-known that theories of surfaces in 3-manifolds provide powerful tools towards
the understanding of 3-manifold topology. So it seems surprising that general skein the-
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ories of surfaces in 3-manifolds have not yet been developed. Probably the reason is that
embeddings of surfaces appear to be too rigid. In fact, the local theory is not interesting
because there are just no nontrivial local embeddings of surfaces. Contrary, knot theory
should be interesting for 3-manifolds because of the interplay of local knotting and linking
with the global topology and geometry of 3-manifolds.

Recently the study of skein relations between surfaces was suggested by Bar-Natan
[B]. It has been put forward into the framework of general 3-manifolds by Asaeda and
Frohman [AF]. The structure of skein modules and related categories have been studied by
Gad Naot [N1], [N2]. In [Kh] Khovanov initiates the discussion of skein relations between
surfaces originating from more general Frobenius algebras. The abstract 2-dimensional
topological quantum field theories defined from Frobenius algebras turned out to be very
interesting for Khovanov theory. Their role in general 3-manifold theory (and hopefully
the relation to 4-manifold theories) remains to be explored, see [AF], [FK]. But we will
see that globalizing skein relations of surfaces yields structures which, actually not very
surprisingly, measure global embedding phenomena of surfaces in 3-manifolds in a nice
nontrivial way.

Until now, because of the justified emphasis on the Khovanov theory background,
many results have been proven separately for different skein relations. It is the goal of
this paper to initiate a discussion of a large class of skein modules defined from embedded
surfaces in 3-manifolds. We will see that many properties of modules defined using Frobe-
nius algebras are closely related to the corresponding 2-dimensional topological quantum
field theories. In fact we will show that the skein relations naturally emerge from a dis-
cussion of the kernel of a suitably extended topological quantum field theory. Also many
results proven for specific skein relations will hold in broad generality. In section 9 we
prove a presentation theorem which shows that in the case of free Frobenius algebra the
module can be generated by surfaces colored with elements of the basis, and relations de-
fined from tubing geometry of the 3-manifold. For example the tunnel number of a knot
naturally appears in the discussion of skein modules of surfaces in knot complements.
In general the relations of our skein modules of surfaces in 3-manifolds with respect
to natural generating sets, can be expressed through the difficult geometric problem of
understanding the different ways to compress a given surface in a 3-manifold.

Frobenius algebras also naturally appear in the study of quantum cohomology, and
through the concept of Frobenius manifolds are related with loop spaces, symplectic
geometry and Landau-Ginzburg models. See [H] for a good introduction.

Most of the ideas that we discuss here are already present in the work of Asaeda and
Frohman [AF]. But we will elaborate on various subtleties emerging in the discussion of
skein modules of surfaces in 3-manifolds from general Frobenius algebras, which do not
seem to appear elsewhere in the published literature. The author is aware that some of
the material in this paper is folklore in the community of Khovanov theory researchers.

2. Frobenius algebras and Frobenius systems. For further details about some of
the following algebraic concepts see [K] and [Kh]. We would like to point out that what
we call a Frobenius algebra is called a Frobenius system in [Kh].
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Throughout let R be a commutative ring with 1. All tensor products are over R, so
⊗ = ⊗R.

A Frobenius algebra F = (R,A,∆, ε) is a commutative ring A with 1 and inclusion
ι : R→ A such that ι(1) = 1. Thus A is an R-algebra with product

µ : A⊗A→ A

and unit ι. Also
∆ : A→ A⊗A

is a cocommutative and coassociative coproduct, which is an A-bimodule map, and has
as counit the R-module map ε : A→ R.

Note that the counit condition means

(1) (ε⊗ Id) ◦∆ = Id,

where we identify R⊗A = A⊗R = A using the restrictions of µ.
The R-algebra A is a special case of a Frobenius extension of R, see [K]. Note that all

our Frobenius algebras are commutative by definition.
If we write ∆(1) =

∑r
i=1 ui ⊗ vi for ui, vi ∈ A then (1) and cocommutativity imply

that for all a ∈ A:

(2) a =
r∑
i=1

ε(aui)vi =
r∑
i=1

ε(avi)ui.

In particular, A is a finitely generated R-module with the two generating sets {ui|i =
1, . . . r} and {vi|i = 1, . . . , r}.

Conversely, each set {(ui, vi)|i = 1, . . . r} ⊂ A×A such that
∑r
i=1 ui⊗vi =

∑r
i=1 vi⊗

ui and (2) holds for a given ε, defines a cocommutative and coassociative A-bimodule
coproduct by

∆(1) =
r∑
i=1

ui ⊗ vi

with counit ε.
Following [K] we call (R,A, {(ui, vi)|i = 1, . . . , r}, ε) a Frobenius system. Each Frobe-

nius system determines a Frobenius algebra, and conversely for each Frobenius algebra
there exists a not necessarily unique Frobenius system. The rank of a Frobenius system is
defined by

∑r
i=1 ε(uivi) = εµ∆(1) ∈ R. This only depends on the underlying Frobenius

algebra.

Remark 2.1. (a) Let {(ui, vi)|i = 1, . . . r} define a Frobenius system on the R-algebra
A and let {wi|i = 1, . . . , s} be a generating set of A. Then there exist λij ∈ R for
i = 1, . . . , r and j = 1, . . . , s such that vi =

∑s
j=1 λijwj .Thus {(zj , wj)|j = 1, . . . s} with

zj =
∑r
i=1 λijui define a (usually different) Frobenius system with the same underlying

Frobenius algebra.
(b) Often one has the additional assumption that A is a projective R-module, i.e. sum-
mand of a free R-module. This condition plays a role in discussions about the structure
theory of topological quantum field theories associated to Frobenius algebras. It will not
at all be relevant for our discussions.
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(c) To avoid redundancies one can assume in the definition of Frobenius systems that for
each subset J ⊂ {1, . . . , r} ∑

i∈J
ui ⊗ vi 6= 0.

The natural R-module map

(3) A 3 a 7→ (A 3 b 7→ ε(ba))

defines an R-isomorphism
A→ A∗ = HomR(A,R).

If A is a free R-module then we can find a Frobenius system for it with both {ui}
and {vi} R-bases. Then by (3), applied to the functionals mapping some ui to 1 and all
other uj to 0, it follows that there exists a dual basis {wi} of A such that

ε(uiwj) = δij ,

where δij = 1 for i = j and = 0 for i 6= j. A free Frobenius algebra is a Frobenius algebra
with A a free R-module. For a ∈ A let µa : A→ A be defined by

µa(c) = µ(a⊗ c) = ac

for all c ∈ A.
In Khovanov theory gradings are important. A Frobenius algebra is graded if A is a

graded ring (a graded abelian group with µ a degree 0 mapping) such that all structure
maps are graded.

Example 2.2. (a) Following [K] we define the universal rank two Frobenius structure
with R = Z[h, t], A = R[X]/(X2−hX−t) and ε(1) = 0, ε(X) = 1, and {(1, X−h), (X, 1)}
defining the system (corresponding to the bases {1, X} and {X − h, 1}). Then

∆(1) = 1⊗X +X ⊗ 1− h1⊗ 1.

It follows from A-bilinearity that:

∆(X) = ∆(1)X = (1⊗X +X ⊗ 1− h(1⊗ 1))X

= 1⊗X2 +X ⊗X − h(1⊗X)

= 1⊗ (hX + t) +X ⊗X − h(1⊗X)

= X ⊗X + t(1⊗ 1).

Note that the values εn := ε(Xn) ∈ R are recursively determined by ε0 = 0, ε1 = 1
and

εn+2 = hεn+1 + tεn

for all n ≥ 0. The corresponding universal Frobenius algebra FU is graded by deg(X) = 1
and deg(h) = 2, deg(t) = 4.
(b) Let R = Z and G a finite abelian group. Then the group algebra Z[G] is a Frobenius
extension of Z. The natural Frobenius algebra FG is defined by ∆(1) =

∑
g g
−1⊗ g, with

ε(g) = 0 for g 6= e and ε(e) = 1, where e ∈ G is the identity of the group. This is a free
Frobenius algebra with basis G.
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(c) Given a Frobenius algebra F = (R,A,∆, ε) and some invertible element y ∈ A there
is defined the twisted Frobenius algebra Fy := (R,A,∆′, ε′) by ∆′ = ∆ ◦ µy−1 and
ε′ = ε ◦ µy. It is known that any two Frobenius algebras defining the same Frobenius
extension differ by twisting, see [K], Theorem 1.6.

Given a Frobenius algebra F we letM(F) denote the symmetric monoidal subcategory
of the category of all (projective) R-modules with objects A⊗r, r ≥ 0 (A0 := R), which is
generated by tensor product and composition from the structure morphisms µ, ι,∆, ε, τ
and µa for all a ∈ A. Note that all structure morphisms are R-module maps, and only
ι and ε are not A-module respectively A-bimodule maps. The set of objects is naturally
identified with the set of natural numbers {0, 1, 2, . . .}.

3. Extending 2-dimensional topological quantum field theories. It is well-known
that Frobenius algebras (with ground ring R) define (orientable) 2-dimensional topolog-
ical quantum field theories with values in the category of R-modules. Let Cob denote
the category with objects 1-dimensional closed manifolds, standardly embedded in R2

(thus the objects are naturally identified with the natural numbers). The morphisms are
isotopy classes of orientable 2-manifolds, embedded in RN × [0, 1], for N large, bounding
corresponding input respectively output 1-manifolds in R2 × 1 respectively R2 × 0. The
monoidal structure is defined by disjoint union and the symmetric structure is defined
by the switch surface defined from two cylinders.

For r ≥ 0 the topological quantum field theory assigns to the 1-manifold qrS1 (q is
disjoint union) the R-module A⊗r with A⊗0 := R. The structure maps ∆, µ, ε, ι and τ of
the Frobenius algebra are assigned to the pair of pants as you wear it, the pair of pants
turned upside down, the cap (local maximum), the cap upside down (local minimum), and
the disjoint union of two cylinders switching the order of two input and output circles.

This defines the symmetric monoidal functor:

F (F) : Cob→M(F)

with values in the symmetric monoidal subcategory of M(F), which is monoidally gen-
erated by the structure maps of F (in fact into the subcategory of M(F) generated by
the structure morphisms except the µa but we will need the extension soon).

Recall the usual way to calculate the R-module morphism assigned to a surface by
F (F): Approximate the height function S ⊂ RN× [0, 1]→ [0, 1] by a Morse function with
values in [0, 1]. We assume that it takes value 1 on input circles and value 0 on output
circles. Then break up [0, 1] into subintervals, each containing only one nondegenerate
critical point. Then the R-module map is determined by the monoidal functor property
of the topological quantum field theory from the values on the standard surfaces. Finally
represent possible permutations by sequences of transpositions of neighboring circles.
Note that this in general will lead to a difficult calculation if carried out explicitly.

It is essentially Bar-Natan’s observation [B], at least in a special case, that the cal-
culation can be carried out locally using skein relations. This is important if one tries to
understand what properties are necessary such that Khovanov homology can be defined
when using a particular Frobenius algebra, see [Kh].
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We will extend some of his ideas in this framework to the general case of Frobenius
algebras.

Definition 3.1. Let A be a commutative ring with 1. Then we define the category
Cob(A) as follows: The objects are the same as those of Cob. The morphisms are isotopy
classes of surfaces with components colored by elements of A. Using the multiplication
of A the composition of morphisms is defined. Moreover Cob ⊂ Cob(A) is the obvious
subcategory of those morphisms with all colors 1.

The morphisms of Cob(A) can also be considered as pairs (S,w) where S is an object
of Cob and w ∈ H0(S,A) = Hom(H0(S), A) is the coloring.

Theorem 3.2. The functor F naturally extends to a symmetric monoidal functor, also
denoted

F (F) : Cob(A)→M(F).

Proof. Using monoidal structures it suffices to define the functor for connected surfaces
in Cob(A). Suppose a connected orientable surface S is colored by a ∈ A. First assume
that the boundary of S is not empty. Then choose an input or output circle and pre-
or postcompose by the corresponding map Id ⊗ . . . ⊗ µa ⊗ . . . ⊗ Id. We know that ∆
respectively µ are A-bimodule maps and cocommutative respectively commutative. Thus
it does not matter which input or output circle is chosen. In fact, if a = a1a2 . . . ar+s is any
factorization then the factors can be distributed in an arbitrary way to the r+s boundary
circles. If S is a closed nonempty connected surface choose a Morse function on S as above
and consider a nonempty preimage of a regular value. Then the corresponding R-module
map R → R assigned to S is computed by breaking the surface and the corresponding
morphism R → A⊗r → R where r ≥ 1 is the number of circles at the regular value.
The extended topological quantum field theory now inserts µa ⊗ Idr−1 : A⊗r → A⊗r

between the two R-module maps. It is not hard to show that the above construction
is well-defined. A multiplication morphism can be moved through a connected surface
using the fact that µ and ∆ are A-bimodule maps. For example consider the pair of
pants morphism A→ A⊗A. If the pant is colored a we associate to it the morphism

∆µa = (µa ⊗ Id)∆ = (Id⊗ µa)∆.

Note that these identities follow from ∆(ba) = ∆(b)a = ∆(ab) = a∆(b) for all b ∈ A, and
express the commutativity of µ and the A-bimodule property of ∆.

Let CobR(A) denote the category where the morphism sets of Cob(A) are replaced by
the free R-modules with bases the sets of morphisms of Cob(A). Then the above functor
extends by R-linearity uniquely to the functor:

F (F) : CobR(A)→M(F).

The definitions in the following section are motivated from analyzing the kernel of
this functor F (F), see section 5.

4. Skein modules of surfaces in 3-manifolds. Let M be a 3-manifold and let α ⊂
∂M be a closed 1-manifold. Let q denote disjoint union and |X| denote the number of
components of a topological space X.
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Let F = (R,A,∆, ε) be a Frobenius algebra as in section 2. Choose a Frobenius
system for F with ∆(1) =

∑r
i=1 ui ⊗ vi and ui, vi ∈ A.

For each subset a ⊂ A let S(M,α, a) denote the set of isotopy classes of properly
embedded surfaces S in M with boundary α (isotopy relative to the boundary), and
components colored by elements of a. The elements of S(M,α, a) are called a-colored
surfaces in M bounding α. For α = ∅ we also consider the empty surface ∅ (with empty
color) as an element of S(M, ∅, a).

The most important cases are S(M,α) := S(M,α,A), often just denoted S, and
S(M,α, 1). The second set will always be identified with the usual set of isotopy classes
of surfaces in M bounding α. Formally, elements of S(M,α) are pairs (S,w), where
w ∈ H0(S;A) is a locally constant continous map w : S → A.

For each multplicatively closed a ⊂ A we can also consider several colors on a com-
ponent. Then the commutative product of A associates a unique element of S(M,α, a).
There is the map defined by forgetting colors:

f : S(M,α,A)→ S(M,α, 1),

and f−1(S) is in one-to-one correspondence with A|S| for S ∈ S(M,α, 1), at least up to
possible reordering of components by isotopy.

In order to describe relations we use the following local patch notation. We let (a)
represent a local patch of a surface colored by a ∈ A. This can be the color of a whole
component, or there can be other colors on the same component, depending on the
situation. Also in (a)(a′) the two patches may be on the same or distinct components.
Sometimes we will also allow additional colors outside of the surface patch. Thus the
component of the patch (a) can be colored by a product of a with other elements of A.

Consider the R-submodule R := R(M,α;F) of RS that is generated by the following
three types of elements.

(1) (R-multi-linearity) For all a1, a2 ∈ A we have

(a1 + a2)− (a1)− (a2) ∈ R,

and for a ∈ A and r ∈ R we have
(ra)− r(a)

(Notice the similarity with the definition of tensor products).
(2) (sphere relations) Let S be a surface in S where the component colored by a is a
2-sphere bounding a 3-ball in M . Then the difference (in RS) between S and the product
with ε(a) of the surface we get by omitting the colored sphere component from (a), is
also in R.
(3) (neck cuttings) Let γ be a simple closed curve in the interior of a surface S such that
γ bounds a disk D in M with D ∩F = γ. (Such a curve is automatically two-sided. This
remark is due to Charlie Frohman.) Then

(a)−
r∑
i=1

(aui)(vi) ∈ R.

Here the surface on the right hand side results by replacing the annular neighborhood of
γ by two embedded disks in M , which are the indicated pieces.
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If γ is separating then the two disks are on different components, and we say this is
a separating neck cutting. If γ is non-separating then

(a)− (µ∆(a)) ∈ R,

where the right hand surface is defined by cutting the handle, and we have a nonseparating
neck cutting.

We want to prove that the submodule R defined as above only depends on the Frobe-
nius algebra and not on the Frobenius system giving the elements {(ui, vi)} used in (3).
In order to see this consider colored surfaces in S with two disjointly embedded ordered
disks on the surface. Let S̃ denote the resulting set of isotopy classes. There is defined a
mapping

(A⊗A)× S̃ → C ′,

where C ′ is the quotient of RS by the R-linearity relations, as follows. Given
∑s
j=1 xi ⊗

yi ∈ A⊗A and S with the distinguished disks colored a and 1, define the image by
s∑
i=1

(a1xi)(a2yi).

where we use the local notation as before. Note that this is well-defined in C ′ and only
depends on the element

∑s
i=1 xi ⊗ yi ∈ A ⊗ A. Now a curve γ on a surface like in the

neck-cutting relation defines several liftings to S̃, differing by the order of disks and the
different ways of splitting a = a1a2 if a is the coloring of the component containing γ.
But because of the cocommutativity of ∆ and the A-bimodule property the resulting
element of C′ does not depend on the choice of lifting, and the elements in C ′ determine
R up to relations (1) and (2).

Thus R is determined by the Frobenius system, and we have the following:

Definition 4.1. For each Frobenius algebra F and 3-manifold M with closed 1-manfold
α ⊂ ∂M there is defined the skein module

C(M,α;F) := RS(M,α,A)/R(M,α;F).

Usually we will omit the coefficient system from the notation. Let C(M) = C(M ;F) if
α = ∅.

The image of (S,w) in C(M,α) is usually also denoted (S,w), and we write S for
(S, 1), a surface with all components colored by 1 ∈ A. We just write 1 instead of ∅ in
linear combinations.

Remark 4.2. (a) Obviously S(M,α, a) 6= ∅ for a 6= ∅ if and only if S(M,α, 1) 6= ∅. If
S(M,α,A) = ∅ then C(M,α) = 0. But it is not a priori clear whether S(M,α, 1) 6= ∅
implies C(M,α) 6= 0. We will discuss some of these issues in section 7.
(b) The reason to allow nonorientable surface in the definition of skein modules is mo-
tivated from Khovanov theory on surfaces [M], [TT]. It is easy to define orientable or
oriented versions of the skein modules because the relations (1)-(3) above preserve orien-
tations. So there are obvious definitions of those skein module, for each Frobenius algebra.
For example let C̃(M, α̃) be the corresponding quotient of the free R-module generated
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by oriented properly embedded surfaces in M bounding the oriented 1-manifold α̃ ⊂ ∂M
by the oriented version of the relations (1)-(3).
(c) Given S ∈ S(M,α, 1) then the quotient of Rf−1(S) by the submodule spanned by
relations (1) is a certain quotient of A⊗|S|, the quotient coming from some action of
the symmetric group corresponding to possible reordering of colored components by iso-
topy. The structure of skein modules of surfaces in 3-manifolds as above very much is
determined by this algebraic relation.
(d) Let F be graded such that ε has degree −2 and ∆ has degree 2. Then the skein
module C(M,α) is graded using deg(S,w) = −χ(S) +

∑
j deg(aj), where the sum is over

all components of the colored surface S with w assigning aj to the j-th component.
(e) Let y ∈ R be invertible. Then multiplication by y defines an isomorphism of modules

C(M,α;F)→ C(M,α,Fy).

But if y ∈ A \R then the situation is more difficult because in general the skein modules
are not A-modules in a natural way. Note that for all y ∈ A there is defined the natural
bijective map on the level of isotopy of surfaces:

S(M,α)→ S(M,α)

by (S,w) 7→ (S, yw), i.e. by changing the colors of all components. This is obviously not
compatible with the geometric relations.

Let C1(M,α) ⊂ C(M,α) be the submodule generated by the image of S(M,α, 1) in
C(M,α).

Proposition 4.3. If the powers of µ(∆(1)) ∈ A form a set of R-generators of the algebra
A then C1(M,α) = C(M,α).

Proof. This follows because deleting a handle from a component of a surface in M using
a neck cutting amounts to multiplication of the color of that component by µ(∆(1)).
Thus we can eliminate the colors of components by adding trivial handles.

If 4.3 applies then we say that the skein modules are geometric. But often 4.3 does
not apply, even in the Bar-Natan case with R = Z because µ(∆(1)) = 2X. The powers
of this element oviously do not generate A. If we replace R by Z[ 12 ], and change A

correspondingly, then the skein modules become geometric. For the universal rank two
Frobenius algebra µ(∆(1)) = 2X−h. Again, if we replace R = Z[h, t] by Z[ 12 , h, t] then the
module becomes geometric. But then, using some easy isomorphisms, one can show that
the Frobenius algebra will just be the Gad Naot system (with an additional parameter h
added), see [Kh], Examples 1.

We will discuss the relation of our skein modules above with the examples that have
been previously discussed in the literature in section 8.

The following is immediate from the definitions.

Proposition 4.4. Suppose that the 3-manifold M has k components Mi, i = 1, . . . , k
and (M,α) = q1≤i≤k(Mi, αi), αi ⊂ ∂Mi for i = 1, . . . , k. Then

C(M,α) =
k⊗
i=1

C(Mi, αi).
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5. 2-dimensional topological quantum field theory and skein modules. Con-
sider the skein modules

C(r, s) := C(D2 × I, ru× {1} q su× {0}),

where for integers r ≥ 0 let ru denote the union of r standardly embedded trivial circles
in the disk D2.

There are R-module maps from S(D2×I, ru×1qsu×0, A) onto the sets of morphisms
of the category CobR(A). The relations in the definition of skein modules can be applied
abstractly to the morphism sets of CobR(A) to define a quotient category Cob(F). The
objects of this category are still the objects of Cob but the morphism sets are the quotients
of the morphism modules of CobR(A) by R-linearity and abstract sphere- and neck cutting
relations. The resulting quotient category is denoted Cob(F).

There are induced R-module maps

C(r, s)→ Cob(r, s)

where Cob(r, s) is the morphism module from r to s circles in the category Cob(F). We
want to prove that these are in fact isomorphisms.

Theorem 5.1. The functor F (F) defined in Theorem 3.2, more precisely its extension
to CobR(A), factors through Cob(F) and defines an isomorphism of categories

Cob(F)→M(F).

Proof. The observation that the functor factors through the quotient category Cob(F)
is by construction. For example, a sphere colored a ∈ A will map to the R-morphism
R → R given by ε ◦ µa ◦ ι = ε(a)IdR. But this is also the image of ε(a)∅, where ∅ is
the empty surface (which maps to the identity IdR : R→ R). A similar argument using
equation (2) from section 2 proves that the neck cutting relations are in the kernel of the
topological quantum field theory. Thus

F (F) : Cob(F)→M(F)

is well-defined and onto by the very definition of M(F). We have to prove injectivity of
the sets of morphisms. For r, s ≥ 0 consider the R-morphism

φr,s : A⊗(r+s) → Cob(r, s)

defined by mapping a1⊗ ar ⊗ b1⊗ bs to the surface consisting of r+ s disks colored with
a1, . . . , bs. This is well-defined in Cob(r, s) because of the R-multi-linearity relations.
Consider the composition with F (F). This is the R-morphism:

A⊗(r+s) → Hom(Ar, As)

a1 ⊗ . . .⊗ ar ⊗ b1 ⊗ . . .⊗ bs 7→ (a′1 ⊗ . . .⊗ a′r 7→ ε(a1a
′
1) . . . ε(ara′r)b1 ⊗ . . .⊗ bs).

It is not hard to see that these R-morphisms are injective. To keep notation simple we
show the case r = 2, s = 1. Let

∑N
k=1 ak ⊗ bk ⊗ ck be in the kernel of the composition. It

is mapped to the R-morphism A⊗A→ A defined by

(4) a⊗ b 7→
N∑
k=1

ε(aak)ε(bbk)ck,
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which we assume to be the trivial map. Now for k = 1, . . . , N we can write using equation
(2) of section 2:

ak =
r∑

ik=1

ε(akuik)vik and bk =
r∑

jk=1

ε(bkujk)vjk .

Thus
N∑
k=1

ak ⊗ bk ⊗ ck =
N∑
k=1

r∑
ik=1

r∑
jk=1

ε(akuik)ε(bkujk)vik ⊗ vjk ⊗ ck.

But substituting a = uik and b = ujk for fixed values of ik, jk ∈ {1, . . . , r} we get
N∑
k=1

ε(akuik)ε(bkujk)ck = 0

and thus the sum is vanishing.

It follows from the proof of 5.1 that the R-module maps φr,s are isomorphisms. This
proves the second half of

Corollary 5.2. For all r, s we have natural isomorphisms

C(r, s) ∼= Cob(r, s) ∼= A⊗(r+s).

Under these isomorphisms the composition morphisms

Cob(s, t)⊗ Cob(r, s)→ Cob(r, t)

correspond to

(b′1 ⊗ b′s ⊗ c1 ⊗ ct)⊗ (a1 ⊗ ar ⊗ b1 ⊗ bs) 7→ ε(b1b′1) . . . ε(bsb′s)(a1 ⊗ ar ⊗ c1 ⊗ ct).

Proof. Since all surfaces embedded in D2 × I are completely compressible we can apply
neck cutting and sphere relations to see that the modules C(r, s) also are also R-generated
by A-colored disks bounding the corresponding input and output circles. So the R-module
maps

ψr,s : A⊗(r+s) → C(r, s)

defined by coloring disks as above is onto, and factors the R-module map φr,s from above.
Because φr,s is injective, ψr,s is also injective. Thus the projections c(r, s) → Cob(r, s)
are isomorphisms.

Theorem 5.1. and its corollaries contain several results concerning Bar-Natan modules
previously discussed in the literature, see e.g. [N1], [N2]. For example the cases s = 0
respectively r = s = 0 give the following results:

Corollary 5.3. The skein module C(D3, ru;F) is isomorphic to A⊗r for all Frobenius
algebras F . In particular for r = 0 we have

C(D3) ∼= R.

The image of a connected surface of genus g colored by a ∈ A is

ε((µ(∆(1))ga) ∈ R

and the isomorphism maps disjoint unions to products.
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6. Some properties of skein modules. The following result has been proved for
Bar-Natan modules in [FK]. For i = 1, 2 let Mi be two 3-manifolds with disks Di ⊂ ∂Mi

and closed 1-manifolds αi ⊂ ∂Mi \Di. Then we can define the boundary connected sum
M1]M2 with the closed 1-manifold α := α1∪α2 in its boundary. Note that Mi ⊂M1]M2

for i = 1, 2.

Theorem 6.1.
C(M1]M2, α1 ∪ α2) ∼= C(M1, α1)⊗ C(M2, α2).

Proof. Let M := M1]M2. Let D ⊂ M1]M2 be the disk along which the connected sum
has been formed. First we define an R-module map:

φ : C(M1, α1)⊗ C(M2, α2)→ C(M,α).

Since C(M1, α1)⊗C(M2, α2) is R-generated by the image of S(M1, α1, A)⊗S(M2, α2, A)
under the tensor product of the natural projections, we can let φ map the image of
S1 ⊗ S2 to the disjoint union S1 q S2 ⊂ M1]M2, which bounds α. It is immediate from
the definitions that this map is well-defined. The map is surjective because we can apply
neck cutting relations to all the circles in the transversal intersection D ∩ S for a surface
S ∈ S(M,α). Note that the set of intersection circles is partially ordered by nesting. The
neck cuttings have to be performed starting from innermost circles. In order to show that
φ is injective we will construct the inverse R-module map:

ψ : C(M,α)→ C(M1, α1)⊗ C(M2, α2)

as follows. For each generating (colored) surface S ⊂M bounding α apply neck cuttings to
the transverse intersection S∩D. We have to prove that the resulting linear combination
in C(M1, α1) ⊗ C(M2, α2) does not depend on the choice of surface in its isotopy class
relative boundary. Now isotopies St where the intersection D ∩ St is only changes by
isotopy in D will give rise to isotopies of the cut surfaces in M1 respectively M2. Otherwise
it suffices to consider elementary isotopies with a single time parameter t0 for which the
surface St0 is not transversal as follows (or its inverse): (i) this surface touches the disk at
some point, and thus pushing through the disk will create a new intersection circle, (ii)
the surface intersects D in a saddle, so for t < t0 the intersection consists of two circles
that are connected to a single circle when pushing the saddle through D from M1 into
M2. Because the cutting is done in order of the partial order of circles we can assume that
all these circles are innermost. Now in case (i) there is a 2-sphere bounding a 3-ball in M
and application of the neck cutting does not contribute. In the second case we compare
the result of the two neck cuttings for t < t0 with the neck cutting along the one circle
for t > t0. But an additonal neck cutting in M2 gives the same result. What we have to
check can, because of R-multi-inearity, be expressed in the patch notation by:∑

i,j

(auiuj)(vj)(vi) =
∑
ij

(aui)(uj)(vivj)

for all a ∈ A. But this is the relation

(Id⊗∆) ◦∆ = (∆⊗ Id) ◦∆,

which follows from cocommutativity of ∆ and A-bilinearity. It corresponds to switching
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two consecutive saddle points of a surface in the topological quantum field theory as-
sociated to F . Finally compatibility with relations (1)-(3) is easly seen from locality of
the relations.(For the neck cuttings one has to use the disks in M bounding the cutting
curves on M to find isotopies to push the disks away from D.) Thus ψ is well-defined,
and ψ ◦ φ = Id proves that φ is also injective.

The special case of M2 a 3-ball, with a trivial loop u in its boundary disjoint from
the connected sum disk, proves by induction on r the following:

Corollary 6.2. Let r ≥ 0. Suppose ru is any disjoint union of r simple closed loops
in ∂M , each of which bounds a disk in ∂M and is contained in the complement of a
1-manifold α ⊂ ∂M . Then there is an isomorphism of R-modules

C(M,α q ru) ∼= C(M,α)⊗A⊗r.
Remark 6.3. For F free one can also give give a direct proof of 6.1. without reference
to 5.3. (which in fact reproves 5.3 in this case). Again it suffices to prove the case r = 1.
Let b = {ui|i = 1, . . . , r} be a R-basis of A and {wj |j = 1, . . . , r} be a dual basis such
that ε(uiwj) = δij . Using 8.1. we can identify C(M,α) and C(M,α, b) (see 8.1.). Then
define the R-module map

φ : S(M,α, b)⊗A→ S(M,α q u, b)

by
φ((S,w)⊗ b) = (S′, w′)

for b ∈ b. Here S′ is the disjoint union of S with a disk D bounding u in a collar
neighborhood of ∂M and define w′|S = w, w′|D = b. It is important to observe that
elements of R can move freely between components of S and the disk using the R-
linearity relations. Because the skein relations are local there is the induced R-module
map C(M,α) ⊗ A → C(M,α q u). This map is onto because we can apply the neck
cutting relations to elements of S(M,α q u, b) to expand in linear combinations of b-
colored surfaces given by a marked disk bounding u and a marked surface bounding α. It
suffices to prove that φ is injective. Let φ(

∑r
i=1 xi ⊗ ui) = 0 with xi ∈ C(M,α) for and

i = 1, . . . , r. Then define for j = 1, . . . , r:

ψj : C(M,α q u)→ C(M,α)

on marked surfaces (S,w) ∈ C(M,α q u) by adding a collar to M along ∂M , capping
off u by a disk colored wj and adding a cylinder over ω. This results in a well-defined
element of C(M,α). It follows from the definitions that for j = 1, . . . , r

ψj

(
φ
( r∑
i=1

xi ⊗ ui
))

=
r∑
i=1

xiε(uiwj) = xj

Thus φ is also injective.

The proof of the following result is very similar to the proof of 6.2.

Proposition 6.4. For (M,α) let (M ′, α) be the result of attaching a 1-handle H to M

along ∂M such that H ⊂ ∂M \ α. Then the inclusion M ⊂M ′ induces the isomorphism

C(M,α)→ C(M ′, α).
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Corollary 6.5. C(Hg) ∼= R for Hg the genus g handlebody.

It follows that C(Hg, ru) ∼= A⊗r for trivial curves in ∂Hg. Also C(Hg, µ) ∼= A for a
meridian µ follows by attaching a solid 1-handles to (D3, u) suitably.

In general it seems difficult but interesting to determine C(Σ×I, α) for α ⊂ ∂(Σ×I),
see also 7.5. Note that is relatively easy to describe the beviour of the modules under
attaching 1-handles while it is difficult to study the effect of attaching 2-handles. This
is in a certain way dual to the situation for skein modules of links in 3-manifolds where
attaching 2-handles admits a conceptual description (handle slides induce relations) while
the skein modules of handlebodies are hard to describe and represent difficult objects,
see [P].

7. Naturality properties of the skein modules. First we discuss a universal coef-
ficient theorem. Let F = (R,A,∆, ε) and F ′ = (R′, A′,∆′, ε′) be two Frobenius system.
Let φ : F → F ′ be a morphism of Frobenius algebras. This is an R-algebra morphism
A→ A′, also denoted φ, which commutes with all obvious diagrams relating the structure
maps of F with those of F ′. For example ι′ ◦ φ|R = φ ◦ ι, and

(φ⊗ φ) ◦∆ = ∆′ ◦ φ.

Note that φ induces on R′ the structure of R-module. A morphism of Frobenius algebras
is called epimorphism if both morphisms A→ A′ and R→ R′ are onto. An epimorphism
of Frobenius algebras is called coefficient induced if A′ = A⊗RR′ and all structure maps
of (R′, A′,∆′, ε′) are induced via tensor product ⊗R in the obvious way from (R,A,∆, ε).

Example 7.1. Let G,G′ be two finite groups. Then each group homomorphism φ : G→
G′ extends to an epimorphism of the Frobenius algebras FG → FG′ defined by the natural
morphism of group algebras. In particular this applies to the morphism G→ {1}.

The first claim of the following proposition is obvious, and the second one is proven
in the same way as the universal coefficient theorem for link skein modules, see [P].

Proposition 7.2. Let φ : F → F ′ be an epimorphism of Frobenius algebras. Then φ

induces an epimorphism of R-modules

C(M,α;F)→ C(M,α;F ′),

where C(M,α;F ′) is considered as R-module via R→ R′. If φ is coefficient induced then
there is a natural isomorphism

C(M,α;F ′) ∼= C(M,α;F)⊗R R′

Next consider for α ⊂ ∂M the exact sequence

H2(α; Z2)→ H2(M ; Z2)→ H2(M,α; Z2) ∂−−−−→ H1(α; Z2)
j∗−−−−→ H1(M ; Z2)

and
∂−1[α] ⊂ H2(M,α; Z2) = H2(M,N(α); Z2),

where [α] is the fundamental class and N(α) is a neighborhood of α in ∂M .
By the Pontrjagin-Thom construction the set

∂−1[α] ⊂ H2(M,N(α); Z2) ∼= H1(M/N(α); Z2) ∼= [M/N(α),RP∞]



FROBENIUS ALGEBRAS AND SKEIN MODULES 73

can be interpreted as the set of bordism classes of surfaces in M with boundary Z2-
homologous to α. It is possible that ∂−1[α] = ∅, in which case S(M,α,A) = ∅ and
C(M,α) = 0. (For example take for α an odd number of longitudes in the boundary of
a solid torus.) On the other hand, each element in S(M,α,A) determines an element in
H2(M,N(α); Z2).

The skein modules of surfaces always decompose with respect to Z2-homology.

Proposition 7.3.
C(M,α) ∼=

⊕
a∈∂−1[α]

Ca(M,α),

where Ca(M,α) is the skein module spanned by all surfaces representing a∈H2(M,α; Z2).
If j∗[α] = 0 then ∂−1[α] is in one-to-one correspondence with H2(M ; Z2). Otherwise
∂−1[α] = ∅.

Proof. This follows from the fact that the skein relations imply Z2-homology of the
underlying surfaces and the exactness of the homology sequence.

For skein modules of surfaces bounding oriented curve systems the analogous result
holds with Z-homology replacing Z2-homology. The discussion of skein modules of ori-
entable surfaces bounding curve systems leads to the study the image of Z-homology in
Z2-homology.

Suppose α is two-sided on ∂M such that N(α) is a union of tori. Then any surface
with boundary Z2-homologous to α can be modified by glueing annuli to pairs of parallel
boundary components to a surface bounding α. For each a ∈ ∂−1[α] there exists an
element of S(M,α,A) with homology class a.

Proposition 7.4. Suppose S1, S2 ∈ S(M,α) are two surfaces with

[S1] = [S2] ∈ H2(M,α; Z2).

Then by adding tubes to S1 and S2 we get surfaces S′1 and S′2 which are isotopic relative
boundary.

Proof. It obviously suffices to consider the case M connected. The basic idea is classical
and often used in the discussion of S-equivalence of Seifert surfaces (see [Ka] for a detailed
account) with the main argument given in [KL]. Actually a quite subtle argument is
necessary here to prove first that S1 and S2 bound a 3-manifold W ⊂ M × I such that
W ∩ (∂M × I) = α × I. This is shown by obstruction theory of maps into RP∞. Then
by adding 1-handles (respectively tubes), we can make both S1, S2 connected. Finally a
handle cancellation argument, see [KL], proves the claim.

Let d : M →M be a diffeomorphism of M . Then d induces an R-module map

d∗ : C(M,α)→ C(M,h(α)).

The induced morphism is an automorphism for diffeomorphisms that are constant on the
boundary. In particular the modules C(M,α) are representations of the mapping class
group Diff(M,∂M) of isotopy classes of diffeomorphisms that are the identity on ∂M .
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Example 7.5. For the understanding of Khovanov theory of diagrams on oriented sur-
faces Σ the calculation of the skein modules

C(Σ× I, α× {1} ∪ β × {0})

for α, β ⊂ Σ two closed 1-manifolds is important, at least for the universal rank 2 Frobe-
nius system. Note that by 6.2. we can assume that both α and β are essential. The
skein modules here are also morphism sets of a certain category Cob(Σ,F), essentially
first essentially defined by Turner and Turaev in [TT] (and denoted UCob(Σ) there to
emphasize the possibility of unorientable surfaces). The understanding of the R-algebras

C(Σ× I, α× {0, 1})

seems interesting for a possible construction of the tautological topological quantum field
theories suggested by Bar-Natan in [B]. The first important cases obviously are the two
algebras for α a simple closed non-separating curve respectively α empty. See [FK] for
calculations in the Bar-Natan case.

8. Presentations of skein modules and presentations of A. First we show how a
presentation of the R-module A induces a presentation of the R-module C(M,α).

Let g ⊂ A be a generating set of A as R-module and r ⊂ Rg be a set of relations such
that

A ∼= Rg/span(r),

where span(r) is the R-submodule of Rg generated by r. Let p denote the presentation
(g, r).

Recall that
S(M,α, g) ⊂ S(M,α,A)

is the set of isotopy classes of surfaces in M bounding α, with the colors of all components
in g. If a component is colored by several elements of A then we always assume that their
product is in g, even if g is not multiplicatively closed. The elements of S(M,α, g) are
called marked surfaces with respect to g. Then let

R(M,α, p) ⊂ RS(M,α, g)

to be the submodule generated by (using the patch notation from section 4):

(1′)
∑s
i=1 ri(gi) = 0 where

∑s
i=1 rigi ∈ r and gi ∈ g and ri ∈ R for i = 1, . . . , s;

(2′) sphere relations for all 2-spheres bounding 3-balls which are colored by elements of g;
(3′) neck cutting relations for which the component of the neck is colored by some element
of g and the right hand side is expanded using R-linearity into a linear combination of
g-colored surfcaes.

Let C(M,α; p) be the quotient of RS(M,α, g) by R(M,α, p).

Theorem 8.1. The inclusion

S(M,α, g) ⊂ S(M,α,A)

induces the isomorphism
C(M,α, p) ∼= C(M,α).
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Proof. Obviously R(M,α, p) is contained in the kernel of the induced R-module map

RS(M,α, g)→ C(M,α)

which is onto because g is a generating set and the R-linearity relations hold in C(M,α).
Let φ be the R-module map induced on the quotient module. Construct an inverse of φ
by first defining

S(M,α,A)→ C(M,α, p)

using expansion of elements of A in terms of g and R-multi-linearity. It is clear from
the definitions that R = R(M,α;F) ⊂ RS(M,α,A) is contained in the kernel of this
mapping. The induced R-module map proves that φ is an isomorphism.

Remark 8.2. (a) Suppose g is closed under multiplication in A. Then the neck cutting
relations (3′) above are just special neck cutting relations (3) (there is no need to expand
the right hand side).
(b) If g is a basis and r = 0 then there are no relations (1′).

Example 8.3. (a) Consider the universal rank 2 Frobenius algebra FU, so A is a free
R-module with basis {1, X}. Let g = {Xi, i = 0, 1, 2, . . .} be the multiplicatively closed
generating set with relation X2 = hX + t. Then S(M,α, g) is the set of dotted surfaces
(with possibly many dots) where a dot on a component corresponds to the color X. The
relations (1′) − (3′) above in this case have been used in [C] to describe the universal
Bar-Natan module. But of course one can give a reduced description based on the basis
{1, X} and relations (2′) and (3′) alone.
(b) If we reduce the universal rank 2 Frobenius algebra by t = h = 0 we have R = Z and
the relation that each surface with a component with two dots is 0 because X2 = 0 (two
dot relation). This is the Frobenius system FBN studied in [AF] and first described in [B].
It is relevant to the categorification of the Jones polynomial as originally described by
Khovanov. In this case the module C(M,α) is the Bar-Natan module of the 3-manifold
M with respect to α ⊂ ∂M . Those modules have been essentially computed for α = ∅
and M a closed Seifert fibred 3-manifold in [AF].
(c) In [N1], [N2] Gad Naot defines the following version of Bar-Natan modules. He takes
the quotient of the free abelian group generated by the set of elements S(M,α,A) with all
components colored 1 (the usual isotopy classes of surfaces) by the Bar-Natan relations:
(2′′) if a surfaces has a 2-sphere component then the surface is trivial, (3′′) 2S = S+ +S−,
where S is a surface with a neck given by a compressible loop γ on S, S± are the two
surfaces which result by cutting as before but with adding an additional trivial 1-handle
inserted into the left respectively right hand disk. Then he proves that adding two 1-
handles into a component does not depend on the component. Even though his argument
is given in the abstract setting it is easy to see that it can be generalized to our skein
modules of embedded surfaces in 3-manifolds using connectedness and the possibility
appearances of unorientable surfaces. In this way the Gad Naot module becomes a Z[T ]-
module where T is the two handles operator. Gad Naot discusses the situation if 1

2 is
added to the ground ring. Then it is easy to see that the resulting module is essentially the
h = 0 reduction of our skein module for the universal rank 2 Frobenius system. We call
the resulting Frobenius algebra FGN . Note that labeling a component by X corresponds
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to multiplication by 1
2 and adding a trivial 1-handle to this component. Multiplication

by T in Gad Naot’s module thus corresponds to multiplication by 4t in our module.
The skein modules from [B], [N1] and [N2] actually are originally based on the 4-tube

relation instead of the neck cutting relation. It has been proved in [B] that the neck
cutting relation implies the 4-tube relation. If 2 is invertible in R, as in Z[ 12 , t], then the
4-tube relation also imples the neck cutting relation. The 4-tube relation is motivated
from the Khovanov construction, giving the essential invariance of link homology un-
der Reidemeister moves. But from the viewpoint of topological quantum field theory or
Frobenius algebras the neck cutting relations seem more fundamental.

Following 2.2 we calculate for the Gad Naot modules εn = 0 for n even nonnegative
integers and εn = t

n−1
2 for n odd integers. Also µ(∆(1)) = 2X. Thus for a genus g

trivially colored surface by 5.3, the image in C(D3) is

(1 + (−1)g+1)gt
g−1
2 ∈ Z[t],

see [N1].
Note that examples (a)-(c) define epimorphisms of Frobenius algebras

FU → FGN → FBN .

(d) Let F{e} be the Frobenius algebra defined in 2.2 (b) for G = {e} the trivial group.
Then A = R with identity 1 = e and the neck cutting relation following ∆(1) = e ⊗ e
allows to replace a surface with the surface resulting from cutting the neck. Moreover,
the trivially colored 2-sphere is 1 in this case. Thus it follows that

C(M,α;F{e}) ∼= ZH2(M ; Z2)

for each α with j∗[α] = 0. If j∗[α] 6= 0 then C(M,α;F{e}) = 0. It follows from 7.1 and 7.2
that C(M,α;FG)→ ZH2(M ; Z2) is an epimorphism. Thus skein modules for finite group
Frobenius algebras appear as natural deformations of the group algebra ZH2(M ; Z2)

9. Presentations of skein modules from incompressible surfaces. First we gen-
eralize an important observation of Asaeda and Frohman [AF]. Recall that a compression
disk D for a surface S ⊂M is a disk in M such D ∩ S = γ where γ is an essential curve
on S. Then γ is called a compression curve. The surface S is called incompressible if
there are no compression disks and no components which are 2-spheres bounding 3-balls
in M . A surface which does not have any compression curves but possibly has 2-sphere
components bounding 3-balls in M is called weakly incompressible. Colored surfaces are
called (weakly) incompressible if their underlying topological surfaces are (weakly) in-
compressible. For each a ⊂ A let I(M,α, a) denote the set of incompressible surfaces in
M bounding α with components colored by elements of a.

Theorem 9.1. Let A be generated by g ⊂ A. Then the skein module C(M,α) is generated
by the images in C(M,α) of the set I(M,α, g) ⊂ S(M,α, g), which is called the set of
marked incompressible surfaces.

Proof. By 8.1 the module is certainly generated by S(M,α, g), the set of marked surfaces.
If such a surface S is not weakly incompressible then there is a simple closed loop γ on S
which bounds a disk D in M such that D∩F = γ. Moreover, if γ is not 2-sided on S then
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the normal bundle of γ in M is nontrivial. But this is not possible since γ bounds a disk
in M . (The fact that orientability of M is not relevant in this situation and the argument
above have been pointed out to me by Charlie Frohman.) Thus we can apply a neck
cutting relation and expand in terms of marked surfaces. After finitely many steps the
surface will be weakly incompressible. Finally we can apply sphere relations to eliminate
all 2-spheres which bound 3-balls in M .

Recall that a 3-manifold is irreducible if each 2-sphere in M bounds a 3-ball. It is a
simple but important observation that for irreducible M we can assume that neck cutting
relations only apply to curves γ which are essential on a colored surface S. In fact a neck
cutting relation for an inessential loop on a surface is in patch notation:

(a) =
∑
i

(aui)(vi)

with the second patch indicating a 2-sphere, which bounds a 3-ball in M because of
irreducibility. But also∑

i

(aui)(vi) =
∑
i

ε(vi)(aui) =
(∑

i

ε(vi)aui
)

= ((Id⊗ ε) ◦∆(a)) = (a)

using the R-multi-linearity relations, sphere relations and equation (1).
Let p = (g, r) be as in section 8. Let Let C(M,α, p) ⊂ R(M,α, p) ∩ RI(M,α, g) be

the submodule of RI(M,α, g), which is generated by all relations (1′) with all colored
surfaces in I(M,α, g).

Next we define the tubing submodule

T(M,α, g) ⊂ RS(M,α, g)

of tubing relations in M . The importance of this module comes from the following:

Main Theorem 9.2. Let F be a Frobenius algebra with presentation p = (g, r). Let M
be an irreducible 3-manifold with 1-manifold α ⊂ ∂M . Then we have the isomorphism

C(M,α) ∼= RI(M,α, g)/(T(M,α, g) + C(M,α, p)) =: D(M,α).

Note that in its definition D(M,α) depends on the presentation p. We omit the
presentation from the notation here because our result shows that the quotient actually
does not depend on it.

Example 9.3. If F is free with basis g then for the usual presentation, C(M,α, p)=0.
Then in 9.2 all relations necessary are the tubing relations involving incompressible sur-
faces marked by basis elements.

We now define the isomorphism of the theorem and the tubing submodule. First
consider S ∈ S(M,α, g) and use 9.1 to expand a representative surface, also denoted S,
as R-linear combination of incompressible marked surfaces. We do this in two steps.

Definition 9.4. Let M be a 3-manifold with α ⊂ ∂M a closed 1-manifold. Let a ⊂ A.
Then an a-pattern Γ is a finite graph with (i) a decomposition of its vertex set into
a disjoint union of two sets, the black and the white vertices, (ii) a coloring of the
components of the graph by elements of a and, (iii) a one-to-one correspondence between
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the black vertices and the components of an irreducible surface in M . The set of a-patterns
is denoted P(M,α, a).

For g a generating set we call a g-pattern just a pattern. Define the projection

h : P(M,α, a)→ I(M,α, 1)

by assigning to each pattern the incompressible surface defined by its black vertices with
trivial coloring of its components.

Now each presentation p = (g, a) of the algebra A of our Frobenius algebra defines a
state sum map

K : P(M,α, g)→ RI(M,α, g)/C(M,α, p).

Fix a Frobenius system for F such that

∆(1) =
r∑
i=1

ui ⊗ vi.

Also choose orientations of the edges of Γ. Let a state σ on Γ assign to each edge of Γ
an element of {1, . . . , r}. We calculate the state evaluation e(σ) ∈ I(M,α, g) as follows.
If an edge e is running from a vertex v to a vertex w and σ(e) = i then assign to v the
element ui and to w the element vi. Finally assign the color a of a component to any of its
vertices. Multiply all the elements assigned to the vertices. Consider the incompressible
surface determined by the black vertices. Use the relations of A to expand the colors in
terms of the generating set. This is only defined up adding elements of C(M,α, p). The
result is an element in RI(M,α, g)/C(M,α, p) where the underlying surface is always
the same but the colors in g can change. Finally each white vertex v is colored by some
element bv ∈ A. Multiply the element of RI(M,α, g)/C(M,α, p) determined above by∏

v white vertex

ε(bv) ∈ R

The resulting element is e(σ). The sum over all states σ defines K(Γ). While e(σ) in
general will depend on choice of edge orientations the full state sum does not because of
cocommutativity of ∆.

Example 9.5. Consider the Bar-Natan system FBN with Frobenius system defined by
{(1, X), (X, 1)}. Then there are only two states that assign the dots to the different
endpoints of edges. In this case the state itself can be identified with an orientation of
the edges of the graph.

Next we assign to S ∈ S(M,α, g) elements of Γ ∈ P(M,α, g) such that K(Γ) are ex-
pansions of S. Note that given S we can apply neck cut compressions until the resulting
surface is weakly incompressible. Because the neck cuttings always increase the Euler
characteristic by 2 this process stops after finitely many steps with a weakly incompress-
ible surface with the history of the neck cuttings defining the edges of the corresponding
graph.

Next consider the obvious map:

d : P(M,α, g)× P(M,α, g)→ RI(M,α, g)/C(M,α, p)
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defined by
(Γ1,Γ2) 7→ K(Γ1)−K(Γ2).

For each S ∈ S(M,α, 1) consider all possible Γ ∈ P(M,α, g) assigned to S using the
construction above. Let

D(S) ⊂ P(M,α, g)× P(M,α, g)

be the set defined by all possible pairs of elements constructed from S in this way and by
assigning arbitrary colors to the different components of Γ1 and Γ2 in an arbitrary way
such that corresponding components are colored in the same way.

Definition 9.6. Let T(M,α, g) be the submodule of I(M,α, g) which is generated by
the union of all sets K(d(D(S)) for all S ∈ S(M,α, 1).

Then by construction the map

t : S(M,α, g)→ D(M,α),

which chooses an expansion graph for S and assigns to it the equivalence class of the
state sum in D(M,α) as described above, is well-defined.

Proof of Theorem 9.2. Using 8.1 we identify C(M,α) and C(M,α, p). It is not hard to
check that the relations (1′)−(3′) from section 8 are in the kernel of the R-module map t :
RS(M,α, g)→ D(M,α). For example consider a neck cutting relation. Then because the
t-expansions are (by construction) independent of the way in which neck cutting relations
are applied we can choose the expansions compatibly. It is here important that we only
have to consider neck cuttings on essential curves. Also sphere relations will contribute
a factor that also is picked up in the state sum. The relations (1′) induced from r map
to C(M,α, p) under the t-expansions. Conversely, the inclusion I(M,α, g) → S(M,α, g)
defines the R-module map

s : RI(M,α, g)→ C(M,α, p).

It is immediate from the definitions that

T(M,α, g) + C(M,α, p)

is contained in the kernel and thus s induces an R-module map

D(M,α)→ C(M,α, p),

which is inverse to t.

Remark 9.7. (a) Irreducibility is important in the discussion of skein modules of surfaces
in 3-manifolds. This has first been pointed out in [AF]. The result above is not true in
general. For example one can show that in the Bar-Natan module of M = (S1×S2)](S1×
S2) the connected sum sphere represents an element S ∈ C(M) with 4S = 0.
(b) For each S1, S2 ∈ I(M,α, 1) such that [S1] = [S2] ∈ H2(M,α; Z2) there exists
S ∈ S(M,α, 1) such that there exist (Γ1,Γ2) ∈ D(S) which satisfy h(Γi) = Si for i = 1, 2.
This follows from 7.4. In particular D(S) 6= ∅. Thus two incompressible surfaces within
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the same homology class give rise to relations
n1∑
i=1

r1i (S1, w
1
i ) =

n2∑
j=1

r2j (S2, w
2
j )

for w1
i : S1 → g and w2

j : S2 → g suitable g-colorings and r1i , r
j
2 ∈ R for i = 1, . . . , n1 and

j = 1, . . . , n2.

Example 9.8. Consider our version of the Gad Naot skein module as discussed in 8.3 (c)
with R = Z. Let M = S3 \ int(N(K)) where N(K) ⊂ S3 is a tubular neighborhood of a
nontrivial knot K ⊂ S3. and int is its interior. Then the boundary torus S := ∂N(K) ⊂
M is an incompressible surface representing an element T ∈ C(M). Let g be the tunnel
number of the knot k. Then attaching g tubes to N(K) bounds a handlebody in M . Thus
by g applications of the neck cutting relation, 8.3 (c) and X2 = t, we conclude

(S, 2gXg) = (1 + (−1)g)g+1t
g
2 .

Thus for g even we get
2gt

g
2 S = 2g+1t

g
2

or
2gt

g
2 (S − 2) = 0,

and for g odd we get
2gt

g−1
2 (S,X) = 0.

The geometry of tunnel numbers of knots is highly nontrivial and one of the most inter-
esting subjects of the classical topology of knots in 3-manifolds, see e.g. [Mo].
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