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Abstract. Some relations between normal complex surface singularities and symplectic fillings

of the links of the singularities are discussed. For a certain class of singularities of general

type, which are called hypersurface K3 singularities in this paper, an inequality for numerical

invariants of any minimal symplectic fillings of the links of the singularities is derived. This

inequality can be regarded as a symplectic/contact analog of the 11/8-conjecture in 4-dimensional

topology.

1. Introduction. The geometry of the link L of an isolated singularity O of a com-
plex algebraic surface V is deeply related to properties of the singularity. For example,
Mumford’s theorem says that if L is a 3-sphere, then O is actually a non-singular point.
The link L carries a natural contact structure given by the maximal complex tangency
ξ. (See Section 2 for the precise definition.) We study symplectic fillings of the contact
manifold (L, ξ). The typical examples of symplectic fillings of the link of a singularity are
resolutions of the singularity and a smoothing (Milnor fiber), if it exists. In this note, we
discuss some relations between numerical invariants of the singularity and properties of
the set of symplectic fillings of the link.

In the series of papers [OO1],[OO2],[OO3], we considered the classes of simple singular-
ities and simple elliptic singularities, and completely classified the symplectic deformation
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types (in particular, diffeomorphism types) of minimal symplectic fillings of their links.
However, we cannot expect to determine all the deformation types of minimal symplectic
fillings of the link of a singularity, in general. In fact, in [OO4] we gave some examples
of isolated singularities whose links have infinitely (countably) many distinct minimal
symplectic fillings. From the point of view of the classification theory of normal surface
singularities explained in Section 3, these examples belong to the class of singularities of
general type. In this note, we will study general properties of minimal simplectic fillings
of the links of certain normal surface singularities of general type.

2. Preliminaries. In this section we briefly recall some basic notions and facts about
symplectic fillings which we will use.

Let L be the link of an isolated singularity in a complex algebraic surface V . L carries
a natural contact structure ξ defined by ξ = TL∩JTL. Here J is a complex structure on
V . Note that the contact structure on a (4k+ 3)-dimensional manifold induces a natural
orientation on it. In particular, L, which is 3-dimensional, is naturally oriented. A compact
symplectic manifold (W,ω) is called a strong symplectic filling (resp. strong concave filling)
of the contact manifold (L, ξ) if the orientation of L as a contact manifold is the same as
(resp. opposite to) its orientation as the boundary of the symplectic manifold W and there
exists a 1-form λ on L such that ξ = kerλ and dλ = ω|L. This condition is equivalent to
the existence of an outward (resp. inward) normal vector field X around ∂W such that
LXω = ω and i(X)ω vanishes on ξ. Hereafter, we call strong symplectic fillings simply
‘symplectic fillings’. (Recall that when L is a rational homology 3-sphere, the notion of
strong symplectic filling is equivalent to the notion of weak symplectic filling, see Lemma
1.1 in [OO1]. Here ‘weak symplectic fillings’ means that we replace the condition dλ = ω|L
by ω|ξ > 0. We do not use this fact in this note.) This condition may be regarded as
a symplectic analog of (pseudo) convexity for the boundary. Such a boundary (or a
hypersurface) is said to be of contact type. Simple examples are the boundaries of convex
domains, or more generally star-shaped domains in a symplectic vector space. Namely,
if the convex domain contains the origin, the Euler vector field

∑
(xi ∂

∂xi
+ yi

∂
∂yi

) is a
desired outward vector field. Here {xi, yi} are the canonical coordinates.

A symplectic 4-manifold is called minimal if it does not contain any symplectically
embedded spheres of self intersection number −1 (such a sphere would be referred to as
a symplectic (−1)-curve).

Two symplectic structures ω0 and ω1 on X are called symplectic deformation equiva-
lent if there exists a path of symplectic structures ωt joining ω0 and ω1.

3. Normal singularities vs symplectic fillings. Let O be a normal surface singularity
and (L, ξ) its link with the contact structure ξ defined in Section 2. As we mentioned
above, our working hypothesis is that numerical invariants of the singularity O deeply
reflect properties of the set of minimal symplectic fillings of the link (L, ξ) of O. To
see this correspondence, we first explain the singularity side. There is an attempt to
build a classification theory of normal surface singularities modeled on Kodaira-Enriques
classification theory of complex surfaces. Following [I1], we review the classification theory
of singularities very briefly. Let (X,x) be a normal isolated singularity (not necessary
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surface singularity) in X, and n = dimCX. We define the Kodaira dimension of (X,x),
which we denote by κδ, as follows. Firstly, we define

δm(X,x) := dimC Γ(X̃ \ E,O eX(mK eX))/Γ(X̃,O eX(mK eX + (m− 1)E))

for any natural number m. Here f : X̃ → X is a good resolution of singularity, E is
the exceptional divisor and K eX is the canonical divisor of X̃. Originally, δm(X,x) was
defined in [W] by

δm(X,x) := dimC Γ(X̃ \ E,O eX(mK eX))/L2/m(X \ {x}),

where the denominator denotes the set of L2/m-integrable m-ple holomorphic n-forms on
X \ {x}; according to [Sak], these two definitions coincide. One can show that δm(X,x)
is independent of the choice of the good resolution, and that δm(X,x) < ∞. This gives
a version of plurigenera. Then Ishii’s result [I2] implies that for any normal isolated
singularity, we have either

(i) δm(X,x) = 0 for all m, or
(ii) for some k = 0, 1, 2, . . . , n− 2, n = dimX,

0 < lim sup
m→∞

δm(X,x)
mk

<∞.

When (i) holds, we define κδ(X,x) = −∞. When (ii) holds, we define κδ(X,x) = k.
Here is the classification table of normal Gorenstein surface singularities by Kodaira

dimension. (We omit the classification table for the non-Gorenstein case here; it can be
obtained by taking quotients of Gorenstein singularities.)

Table 3.1

κδ Gorenstein surface singularity
−∞ simple singularity

0 simple elliptic singularity, cusp singularity
2 other (of general type)

We omit precise definitions of each class of singularities in the table. The interested reader
may consult [Sa2], [I1], for example.

On the other hand, we have the following table on symplectic deformation types of
minimal symplectic fillings of the links of singularities.

Table 3.2

κδ Symplectic deformation types of minimal symplectic fillings
−∞ unique [OO3]

0
simple elliptic singularity :
(smoothing or minimal resolution, completely classified [OO2]).
cusp singularity : (?)

2 ??
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For other related (non-Gorenstein and κδ = −∞ cases) results, see [Mc], [BO], [L]. From
these two tables, we can see that when κδ = −∞, the set of minimal symplectic fillings
can be viewed as ‘rigid’, and when κδ = 0, it has a ‘semi-rigid’ aspect. (For the cusp
singularity case, we do not know the complete list of minimal symplectic fillings.) When
κδ = 2, which is the case of the singularity of general type, we do not know how big (or
small) the set of minimal symplectic fillings of the link is, in general. We note that in
[OO4] we gave some examples of singularities whose links have infinitely many distinct
minimal symplectic fillings. The examples of singularities in [OO4] are of general type,
hence in general we cannot expect to get a complete list of minimal symplectic fillings of a
link of singularity of general type. One possible way to approach this problem is to study
‘sociology’ of symplectic fillings. For example, it would be interesting to find some general
inequality for minimal symplectic fillings of the link of singularity of general type, like the
Noether inequality or the Miyaoka-Yau inequality for minimal surfaces of general type.
In the next section, we give an inequality which is, in spirit, along this line of research.

4. An inequality. In this section we consider the class of singularities of Brieskorn type.
Let f ∈ C[x, y, z] be a polynomial in three variables. For integers p, q, r ≥ 2, we let

fp,q,r(x, y, z) = xp + yq + zr.

Consider the hypersurface f−1
p,q,r(0) in C3. The origin O is an isolated singularity of

f−1
p,q,r(0). We call (p, q, r) the type of singularity, and denote by Σ(p, q, r) its link.

Lemma 4.1. (1) If 1
p + 1

q + 1
r > 1, then κδ = −∞.

(2) If 1
p + 1

q + 1
r = 1, then κδ = 0.

(3) If 1
p + 1

q + 1
r < 1, then κδ = 2.

Proof. (1) This is the case of simple singularities. (2) The values (p, q, r) = (2, 3, 6),
(2, 4, 4) and (3, 3, 3) correspond to the simple elliptic singularities of types Ẽ8, Ẽ7, Ẽ6,
respectively, see for instance [Sa2]. (3) The minimal resolution diagram for the singularity
defined by fp,q,r is contractible. See for instance [OW]. A cusp singularity does not appear
in this case. Thus 1

p + 1
q + 1

r < 1 implies κδ = 2 using Table 3.1.

Next we would like to consider singularities of general type. We start with the simplest
example of case (3) in Lemma 4.1, namely, (p, q, r) = (2, 3, 7).

Theorem 4.2. Let X be any minimal symplectic filling of the link of the singularity of
type (2, 3, 7). Assume that b+2 (X) 6= 0. Then

3sign(X) + 2e(X) ≥ 3sign(V (2, 3, 7)) + 2e(V (2, 3, 7)) = 2.

Here V (2, 3, 7) is the Milnor fiber defined by

V (2, 3, 7) = {(x, y, z) ∈ C3 | x2 + y3 + z7 = 1}.

Remark 4.3. The minimal resolution of singularity is an example of minimal symplectic
filling with negative definite intersection form. In this case, the inequality obviously does
not hold. This shows that the assumption b+2 (X) 6= 0 is really necessary.

Proof of Theorem 4.2. We consider the Milnor fiber V (2, 3, 7). According to Pinkham [P],
V (2, 3, 7) can be compactified into a K3 surface W by using an appropriate embedding of
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the Milnor fiber V (2, 3, 7) into a certain weighted projective space, see also [Sa1], [Sa2].
We let

W = V (2, 3, 7) ∪Σ(2,3,7) V (2, 3, 7)out.

Recall that the intersection matrix of V (2, 3, 7) is given by E8 ⊕ 2
(

0 1
1 0

)
. (Here E8

is the negative definite Cartan matrix of type E8.) This follows from the fact that
b2(V (2, 3, 7)) = 12, Sign(V (2, 3, 7)) = −8 and c1(V (2, 3, 7)) = 0. See [Mi] and [B] for
this calculation. Thus the intersection form of V (2, 3, 7)out is equivalent to E8 ⊕

(
0 1
1 0

)
.

(We may also deduce this by using explicit description [P], [Sa1] of the compactifying
divisor.) Note that V (2, 3, 7)out gives a concave filling of the link Σ(2, 3, 7).

Now let X be any minimal symplectic filling of the link Σ(2, 3, 7). Then we can glue
X and V (2, 3, 7)out together to obtain a closed smooth symplectic 4-manifold (Z, ωZ) :

Z = X ∪Σ(2,3,7) V (2, 3, 7)out.

See Lemma 2.1 in [OO1] for the argument on gluing symplectic structures. We call Z a
compactification of the filling X.

We denote byKZ the canonical bundle of Z. Assume that c1(KZ) = 0. Since c21(KZ) =
3Sign(Z) + 2e(Z), the Novikov additivity and the equality e(Z) = e(X) + e(V (2, 3, 7)out)
imply that 3Sign(X) + 2e(X) = 2. Therefore the equality holds in this case. From now
on, we will assume that c1(KZ) 6= 0. Let λ be a contact form of ξ on Σ(2, 3, 7) such
that ωZ |Σ(2,3,7) = dλ. Denote by Rλ the Reeb vector field for λ. Namely, i(Rλ)ωZ = 0,
i(Rλ)λ = 1. We can take a compatible almost complex structure J on Z such that J is
compatible with λ, i.e., J preserves ξ and J sends Rλ to an inward normal vector field
for the symplectic filling X.

Proposition 4.4. The compactification Z is minimal.

Proof. Suppose Z is not minimal. Then there exists an embedded symplectic (−1) curve
E. Since b+2 (X) ≥ 1 and b+2 (V (2, 3, 7)out) = 1, we have b+2 (Z) ≥ 2. Then Taubes’ theorem
[T1] tells us that the Poincaré dual of c1(KZ) can be represented by a pseudo-holomorphic
curve, which we denote by D. If E is not contained in D, we have E · D ≥ 0 because
of the positivity of intersection of pseudo-holomorphic curves. But this contradicts the
adjunction formula. Therefore E is contained in D. On the other hand, we have the
following result:

Lemma 4.5. D ⊂ X.

With Lemma 4.5 in place, we see that E ⊂ X, which contradicts the minimality of X.
This proves that Z is minimal. Therefore, it is enough to prove Lemma 4.5 to prove Propo-
sition 4.4. We assume that D ∩ V (2, 3, 7)out 6= ∅. Since D is a symplectic curve, we have∫

D∩V (2,3,7)out
ωZ > 0.

Note that KZ |V (2,3,7)out = KW |V (2,3,7)out is trivial, because W is a K3 surface. Hence
D ∩ V (2, 3, 7)out is homologous to zero in V (2, 3, 7)out relative to ∂V (2, 3, 7)out. Thus
D ∩ V (2, 3, 7)out is homologous to a relative 2-cycle D′ in ∂V (2, 3, 7)out with boundary
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∂(D ∩ V (2, 3, 7)out). By Stokes’ theorem, we have∫
D∩V (2,3,7)out

ωZ =
∫
D′
dλ =

∫
∂(D∩V (2,3,7)out)

λ.

Recall that ωZ |Σ(2,3,7) = dλ and λ is a contact form of ξ so that kerλ = ξ. Since
V (2, 3, 7)out is a concave filling and we choose J compatible with λ, the right hand
side of the above equality is negative. This argument is used in the proof of Lemma 3.2
in [OO1]. This leads to a contradiction. We have finished the proof of Lemma 4.5 and
also the proof of Proposition 4.4.

Using Taubes’s theorem [T2], we get c21(KZ) ≥ 0. The equality c21(KZ) = 3Sign(Z) +
2e(Z) together with the Novikov additivity and the equality e(Z) = e(X)+e(V (2, 3, 7)out)
leads to

3sign(X) + 2e(X) ≥ −(3sign(V (2, 3, 7)out) + 2e(V (2, 3, 7)out))

= 3sign(V (2, 3, 7)) + 2e(V (2, 3, 7)) = 2,

which proves Theorem 4.2.

5. Hypersurface K3 singularities. Theorem 4.2 can be proved for a more general
class of singularities. The above proof is based on the following two observations :

(5.1) The Milnor fiber (or smoothing) can be compactified (by a compactifying divisor)
into a K3 surface (or more generally, a projective surface with K = 0).

(5.2) The intersection form of a regular neighborhood of the compactifying divisor
has at least one positive eigenvalue.

The singularity of type (2, 3, 7) which we dealt with in the previous section is one
of Arnold’s 14 exceptional unimodular singularities [A]. Pinkham [P] actually showed
that the these singularities have the properties (5.1) and (5.2). Moreover, K. Saito [Sa1]
obtained a complete list of singularities defined by a weighted homogeneous polynomial
in three variables whose Milnor fiber compactifies into a K3 surface; there are 49 such
singularities. See the part of Table 2 in [Sa1] with ε < 0. In this note we call them
hypersurface K3 singularities. They are Gorenstein singularities of general type in the
sense of Section 3. All singularities on Saito’s list have the properties (5.1) and (5.2). In
fact, we find that b+2 = 1 for the regular neighborhood of the compactifying divisor. This
follows from the result of M. Saito [MoS] that b+2 of the corresponding Milnor fiber of
the singularity equals twice the number of negative exponents in Table 1 in [Sa1]. (As a
result, we find that b+2 of the Milnor fiber is 2 for any hypersurface K3 singularity. See
also the formula (5.7.4) in [Sa1].) Therefore, for the class of hypersurface K3 singularities,
we obtain the following.

Theorem 5.3. Let X be any minimal symplectic filling of the link of a hypersurface K3
singularity. Assume that b+2 (X) 6= 0. Then

3sign(X) + 2e(X) ≥ 3sign(V ) + 2e(V ).

Here V is the Milnor fiber of the singularity.
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Remark 5.4. (1) We assume b1(X) = 0. Then the inequality is equivalent to sign(X) ≥
− 2

3b2(X) + 1
3 (12 − µ), where µ = b2(V ) is the Milnor number of the singularity. We

consider the case of sign(X) < 0. Then the inequality is equivalent to

b2(X) ≥ 12
8
|signX|+ 1

2
(12− µ).

Here 10 ≤ µ ≤ 21 for hypersurface K3 singularities, see [Sa1]. This inequality can
be regarded as a relative analog (in symplectic/contact geometry) of the famous 11/8-
conjecture which says that

b2(X) ≥ 11
8
|signX|

for any closed smooth spin 4-manifold X. As for the 11/8-conjecture, Furuta [F] proved
that

b2(X) ≥ 10
8
|signX|+ 2.

(2) Here we consider a class of hypersurface singularities. However, it is not necessary
to assume that the singularity is hypersurface or Gorenstein for the proof to go through.
In fact, we can generalize the above theorem to singularities having properties (5.1) and
(5.2). On the right hand side of the resulting inequality, V will stand for any smoothing
of the singularity.
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Added in proof. The terminology “hypersurface simple K3 singularity” has appeared in

T. Yonemura, On hypersurface simple K3 singularities, Tohoku Math. J. 42 (1990), 351–380.

They are isolated singularities in dimension 3. Hypersurface K3-singularities in this paper are

isolated singularities in dimension 2.
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