ALGEBRAIC TOPOLOGY—OLD AND NEW BANACH CENTER PUBLICATIONS, VOLUME 85 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2009

CATEGORICAL LENGTH, RELATIVE L-S CATEGORY AND HIGHER HOPF INVARIANTS

NORIO IWASE

Faculty of Mathematics, Kyushu University Fukuoka 810-8560, Japan E-mail: iwase@math.kyushu-u.ac.jp

Abstract. In this paper we introduce the categorical length, a homotopy version of Fox categorical sequence, and an extended version of relative L-S category which contains the classical notions of Berstein-Ganea and Fadell-Husseini. We then show that, for a space or a pair, the categorical length for categorical sequences is precisely the L-S category or the relative L-S category in the sense of Fadell-Husseini respectively. Higher Hopf invariants, cup length, module weights, and recent computations by Kono and the author are also studied within this unified L-S theory based on the categorical length of categorical sequences.

1. Introduction. Throughout this paper, we work in \mathcal{T} the category of topological spaces and maps, or the category of pairs \mathcal{T}^A in which an object is a pair (X:A) with an inclusion $i^X : A \hookrightarrow X$ and a morphism is a map of pairs $f : (X:A) \to (Y:A)$ with $i^Y = f \circ i^X$. A closed subset is always assumed to be a neighbourhood deformation retract, and a pair is assumed to be an NDR-pair in the sense of G. Whitehead [29]. The one-point-space is denoted by *. The (normalised) Lusternik-Schnirelmann category cat(X), L-S category for short, is introduced in [22] as the least number m such that there is a covering of X by m+1 closed subsets U_j , $0 \leq j \leq m$, where each U_j is contractible in X. By modifying the idea due to R. Fox [8], T. Ganea [9] gives the following definition of a strong version of L-S category for a space X: the strong L-S category Cat(X) is the least number m such that there is a space $Y \simeq X$ with a covering of Y by m+1 closed subsets U_j , $0 \leq j \leq m$ where each U_j is contractible in itself. By Ganea [9], it is shown that

$$\operatorname{cat}(X) \le \operatorname{Cat}(X) \le \operatorname{cat}(X) + 1.$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 55M30; Secondary 55Q25.

 $Key \ words \ and \ phrases:$ Lusternik-Schnirelmann category, categorical sequence, Hopf invariant, cone decomposition.

The paper is in final form and no version of it will be published elsewhere.

REMARK 1.1. Fadell and Husseini [7] introduced a notion of relative L-S category as follows: for a pair (K:A), $\operatorname{cat}^{\operatorname{FH}}(K,A)$ is given as the least number m such that there is a covering of K by m+1 closed subsets $V \supset A$ and U_j , $1 \leq j \leq m$ where V is compressible relative A into A in K and each U_j is contractible in K. It is also clear by definition that $\operatorname{cat}^{\operatorname{FH}}(K,*) = \operatorname{cat}(K)$.

By G. Whitehead [29], the definition of L-S category is interpreted in terms of deformation of a diagonal map as the following definition for a space X.

DEFINITION 1.2. The L-S category $\operatorname{cat}(X)$ of X is the least number m such that the m+1 fold diagonal map $\Delta^{m+1}: X \to \prod^{m+1} X$ is compressible into the fat wedge $\operatorname{T}^{m+1} X = \{(x_0, x_1, ..., x_m) \in \prod^{m+1} X \mid \exists i \, x_i = *\} \subseteq \prod^{m+1} X.$

Similarly to the above, one can give an alternative definition of a relative L-S category in the sense of Fadell and Husseini [7] for a pair (K:A) to fit in with Whitehead's definition of L-S category.

DEFINITION 1.3. Let $A \subseteq K$. Then the L-S category cat^{FH}(K, A) is the least number $m \geq 0$ such that the m+1 fold diagonal map $\Delta_K^{m+1} : K \to \prod^{m+1} K$ is compressible relative A into the fat wedge $T^{m+1}(K:A) = A \times \prod^m K \cup K \times T^m K \subseteq \prod^{m+1} K$ of a pair (K:A).

REMARK 1.4. For any map $f : A \to K$, we may assume that f is an inclusion up to homotopy, and hence the definition of relative L-S category implies a definition of $\operatorname{cat}^{\operatorname{FH}}(f)$ the L-S category of f in the sense of Fadell and Husseini.

In the present paper, we alter the Fox's definition of a categorical sequence to fit in with Whitehead's definition of L-S category:

DEFINITION 1.5. A categorical sequence for a space X is a sequence of closed subspaces $F_0 \subset \cdots \subset F_i \subset \cdots \subset F_m$ such that $F_m \simeq X$, $F_0 \simeq *$ in X and $\Delta_i : F_i \xrightarrow{\Delta} F_i \times F_i \subset F_m \times F_m$ is compressible into $F_{i-1} \times F_m \cup F_m \times *$ relative F_{i-1} for any i > 0, where we identify F_{i-1} with its diagonal image in $F_{i-1} \times F_{i-1} \subset F_{i-1} \times F_m \cup F_m \times *$. Let us call the least such $m \ge 0$ the 'categorical length' of X and denote it by catlen(X).

Inspired by the definition of a relative L-S category due to Fadell and Husseini, we introduce a relative version of categorical sequence:

DEFINITION 1.6. A categorical sequence for a pair (X:A) is a sequence of pairs $(F_0:A) \subset \cdots \subset (F_i:A) \subset \cdots \subset (F_m:A)$ such that $(F_m:A) \simeq (X:A)$ relative $A, F_0 \simeq A$ relative A in X and $\Delta_i : F_i \xrightarrow{\Delta} F_i \times F_i \subset F_m \times F_m$ is compressible into $F_{i-1} \times F_m \cup F_m \times A$ relative $F_{i-1}, i > 0$. Let us call the least such $m \ge 0$ the 'categorical length' of a space X relative to A and denote it by catlen(X:A).

To describe the categorical sequence in terms of a relative L-S category, we give a definition of a new extended version of relative L-S category: from now on, we work in the category \mathcal{T}^A . We remark that, if A = * the one point space, then \mathcal{T}^A is the usual category of based connected spaces and based maps. We say that (X, K:A) is a pair in \mathcal{T}^A when (X:A) and (K:A) are objects in \mathcal{T}^A and (X, K) is a pair in \mathcal{T} , that (X, K, L:A) is a triple in \mathcal{T}^A when (X:A), (K:A), (K:A), (L:A) are objects in \mathcal{T}^A and (X, K, L) is a triple

in \mathcal{T} , and that (X; K, L:A) is a triad in \mathcal{T}^A when (X:A), (K:A), (L:A) are objects in \mathcal{T}^A and (X; K, L) is a triad in \mathcal{T} .

We remark, for any pair (X, K:A) in \mathcal{T}^A , that the diagonal image of A in $\prod^{m+1} X$ is in the subspace $\mathbb{T}^{m+1}(X, L)$. Thus for any $(X:A) \supset (L:A) \in \mathcal{T}^A$, we regard $(\prod^{m+1} X:A) \supset (\mathbb{T}^{m+1}(X, L):A) \in \mathcal{T}^A$.

DEFINITION 1.7. Let (X; K, L; A) be a triad in \mathcal{T}^A . Then $\operatorname{cat}(X; K, L; A)$ is the least number *m* such that the restriction of the *m*+1 fold diagonal map of *X* to *K*, $\Delta^{m+1}|_K : K \to \prod^{m+1} X$, is compressible relative *A* into $\operatorname{T}^{m+1}(X, L)$.

Using Harper's arguments on the homotopy of maps to the total space of a fibration in [12], Cornea [4] has given a proof of the following:

PROPOSITION 1.8. Let (X:A) be an object in \mathcal{T}^A , (Y, K:A) be a pair in \mathcal{T}^A with the inclusion $j: (K:A) \hookrightarrow (Y:A)$ and $f: (X:A) \to (Y:A)$ be a map in \mathcal{T}^A . If $f|_X : X \to Y$ has a compression $\sigma: X \to K$ such that $j \circ \sigma \sim f$ and $\sigma \circ i^X \sim i^K$ in \mathcal{T} , then there is a map $\sigma': (X:A) \to (K:A)$ a compression relative A of f such that $\sigma \sim \sigma'|_X : X \to K$.

One of its direct consequences is:

COROLLARY 1.9. Let (X; K.L:A) be a triple in \mathcal{T}^A . Then $\operatorname{cat}(X; K, L:A)$ is the same as the least number m such that $\Delta^{m+1}|_K : K \to \prod^{m+1} X$ is compressible to a map $s : K \to T^{m+1}(X, L)$ such that $s|_A$ is homotopic to the diagonal map $\Delta_A : A \to \prod^{m+1} A \subset T^{m+1}(X, L)$.

REMARK 1.10. (1) $\operatorname{cat}(X; X, *:*) = \operatorname{cat}(X)$ and $\operatorname{cat}(X; *, *:*) = 0$.

- (2) We denote (X; X, L:A) by (X, L:A), (X; K, A:A) by (X; K:A), (X; X:A) by (X:A), (X; K, L:*) by (X; K, L), (X; K, *) by (X; K) and (X:*) = (X; X, *:*) = (X; X) by X.
- (3) We may replace inclusions $(L:A) \hookrightarrow (X:A)$ and $(K:A) \hookrightarrow (X:A)$ by maps $f : (L:A) \to (X:A)$ and $g : (K:A) \to (X:A)$ in \mathcal{T}^A , since every such map is an inclusion map up to homotopy relative A by taking the mapping cylinder of $K \cup_A L \xrightarrow{g \cup_A f} X$. Then we often denote $\operatorname{cat}(X; K, L:A)$ by $\operatorname{cat}(g, f)$. By applying (1), we have $\operatorname{cat}(g, *) = \operatorname{cat}(g)$.

There is another classical notion of relative L-S category due to Berstein and Ganea [2].

DEFINITION 1.11. Let $K \subset X$. Then the L-S category $\operatorname{cat}^{\operatorname{BG}}(X, K)$ is the least number $m \geq 0$ such that restriction to K of the m+1 fold diagonal map $\Delta_X^{m+1} : X \to \prod^{m+1} X$ is compressible into the fat wedge $\operatorname{T}^{m+1} X$.

REMARK 1.12. For any map $f : K \to X$, we may assume that f is an inclusion up to homotopy, and hence the above definition of the L-S category implies a definition of $\operatorname{cat}^{\operatorname{BG}}(f)$ the L-S category of f in the sense of Berstein and Ganea.

Arkowitz and Lupton [1] have also defined their relative L-S category for a map $h: X \to Y$. Since a map is up to homotopy a fibration, we may assume that h is a fibration with fibre $L = h^{-1}(*) \subset X$. Then the relative L-S category of h in the sense of Arkowitz and Lupton depends only on the pair (X, L) by its definition.

DEFINITION 1.13. Let $L \subset X$. Then the L-S category $\operatorname{cat}^{\operatorname{AL}}(X, L)$ is the least number $m \geq 0$ such that the m+1 fold diagonal map $\Delta_X^{m+1} : X \to \prod^{m+1} X$ is compressible into the fat wedge $\operatorname{T}^{m+1}(X, L)$.

Then we prove:

THEOREM 1.14. The known three relative L-S categories are special cases of our new relative L-S category:

- (1) Let $X = K \supset L = A \supset *$. Then $\operatorname{cat}(X:A) = \operatorname{cat}(X;X,A:A) = \operatorname{cat}^{\operatorname{FH}}(X,A)$.
- (2) Let $X \supset K \supset L = A = *$. Then $\operatorname{cat}(X; K) = \operatorname{cat}(X; K, *:*) = \operatorname{cat}^{\operatorname{BG}}(X, K)$. More generally for a map $g: K \to X$ in \mathcal{T}_* , we have $\operatorname{cat}(g, *) = \operatorname{cat}^{\operatorname{BG}}(g)$.
- (3) Let $K = X \supset L \supset A = *$. Then $\operatorname{cat}(X, L) = \operatorname{cat}(X; X, L; *) = \operatorname{cat}^{\operatorname{AL}}(X, L)$.

We also introduce a new higher Hopf invariant: let (X; K, L:A) be a triad in \mathcal{T}^A , let V be a co-loop co-H-space, i.e., a one-point-union of a 1-connected co-H-space with finitely-many circles, and let $\alpha: V \to K$ be a map in \mathcal{T} such that $X \supset \hat{K} = K \cup_{\alpha} CV \supset K$. If $\operatorname{cat}(X; K, L:A) \leq m$, then a relative higher Hopf invariant $H_m^{(X;K,L:A)}(\alpha)$ is defined as a subset of $[V, \Omega(X, L) * \Omega(X) * \overset{m}{\cdots} * \Omega(X)]$. If $K \supset L$ and $\operatorname{cat}(K; K, L:A) \leq m$, then an absolute higher Hopf invariant $H_m^{(K,L:A)}(\alpha)$ is defined as a subset of $[V, \Omega(K, L) * \Omega(K) * \overset{m}{\cdots} * \Omega(K)]$ (see §4 for more details). The following result clarifies how a higher Hopf invariant determines whether a cone decomposition reduces to a categorical sequence or not.

THEOREM 1.15. Let (X; K, L:A) be a triad in \mathcal{T}^A , let V be a co-loop co-H-space and let $\alpha : V \to K$ be a map in \mathcal{T} such that $X \supset \hat{K} = K \cup_{\alpha} CV \supset K$. If $\operatorname{cat}(X; K, L:A) \leq m$ and $H_m^{(X;K,L:A)}(\alpha) = 0$, then $\operatorname{cat}(X; \hat{K}, L:A) \leq m$.

From now on, we abbreviate $H_m^{(X;K,A:A)}(\alpha)$ by $H_m^{(X;K:A)}(\alpha)$, $H_m^{(X;K,*)}(\alpha)$ by $H_m^{(X;K)}(\alpha)$, $H_m^{(K,A:A)}(\alpha)$ by $H_m^{(K:A)}(\alpha)$ and $H_m^{(K,*)}(\alpha)$ by $H_m^K(\alpha)$. Note that the definition of the absolute higher Hopf invariant $H_m^K(\alpha)$ coincides with the ordinary definition of the higher Hopf invariant $H_m(\alpha)$ in the sense of [14].

The main goal of this paper is to proof:

THEOREM 1.16. For any X in \mathcal{T} , we have $\operatorname{cat}(X) = \operatorname{catlen}(X)$. More generally, for any object $(X:A) \in \mathcal{T}^A$, we have $\operatorname{catlen}(X:A) = \operatorname{cat}(X:A) = \operatorname{cat}^{\operatorname{FH}}(X,A)$.

COROLLARY 1.17. Let (X:A) be an object in \mathcal{T}^A . If $\operatorname{cat}^{\operatorname{FH}}(X,A) = m > 0$, then there exists a sequence of pairs $\{(F_i:A); 0 \le i \le m\}$ such that $(F_0:A) \simeq (A:A)$ in $(F_m:A), (F_m:A) \simeq (X:A)$ relative A and $\operatorname{cat}(X;F_i:A) \le i$, i > 0. Moreover, $\operatorname{cat}(F_m/F_{i-1};F_i/F_{i-1}) \le 1$ with a partial co-action $F_i \to F_m/F_{i-1} \lor F_m$ along the collapsing map $F_i \to F_i/F_{i-1} \subseteq F_m/F_{i-1}$, i > 0. In particular, F_m/F_{m-1} is a co-H-space co-acting on F_m along the collapsing map $F_m \to F_m/F_{m-1}$.

2. A_{∞} -decomposition of a map. In [9], Ganea introduced a so-called 'fibre-cofibre' construction for a map, which can be interpreted as the pullback construction from the view-point of Definition 1.3. We may regard this construction as an A_{∞} -decomposition of a map using the pushout-pullback diagram (see [13, Lemma 2.1] and also Sakai [24] for the detailed proof in a general context):

$$\begin{array}{c|c} \Omega(X,L) \times E^{m}(\Omega(X)) & \stackrel{\mathrm{pr}_{2}}{\longrightarrow} E^{m}(\Omega(X)) \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

Let us recall that, in \mathcal{T} , the homotopy fibre of $\operatorname{T}_{i=0}^{m}(X, A_{i}) \hookrightarrow \prod^{m+1} X$ has the homotopy type of the join $\Omega(X, A_{0}) \ast \overset{m+1}{\cdots} \ast \Omega(X, A_{m})$. Let (X; K, L:A) be a triad in \mathcal{T}^{A} and write $E^{m}(\Omega(X)) = \Omega(X) \ast \overset{m}{\cdots} \ast \Omega(X)$ which has the homotopy type of the homotopy fibre of $\operatorname{T}^{m}(X, \ast) \hookrightarrow \prod^{m} X$. The homotopy fibre of the inclusion $\operatorname{T}^{m+1}(X, L)$ $\hookrightarrow \prod^{m+1} X$ has the homotopy type of $E^{m+1}(\Omega(X, L)) = \Omega(X, L) \ast \Omega(X) \ast \overset{m}{\cdots} \ast \Omega(X)$: consider the homotopy pushout-pullback diagram in \mathcal{T} , which is given by [13, Lemma 2.1] with $(Y, B) = (\prod^{m} X, \operatorname{T}^{m} X), Z = \ast$ and $f = g = \ast$. Thus we see that the homotopy fibre of the inclusion $\operatorname{T}^{m+1}(X, L) \hookrightarrow \prod^{m+1} X$ has the homotopy type of $\Omega(X, L) \ast E^{m}(\Omega(X)) = E^{m+1}(\Omega(X, L))$ by induction.

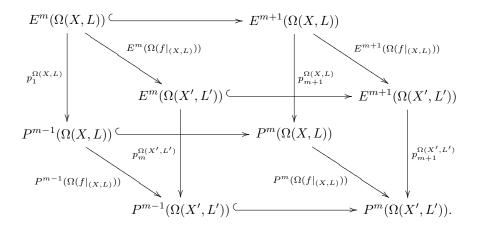
Similarly, we define $P^m(\Omega(X, L))$ inductively from $P^0(\Omega(X, L)) = L$ as the homotopy pushout in the following homotopy pushout-pullback diagram which is given by [13, Lemma 2.1] with $(Y, B) = (\prod^m X, T^m X), Z = X$ and $(f, g) = (1_X, \Delta_X^m)$:

where $q_m^{(X,L)}$ covers the diagonal map $\Delta^{m+1} : X \to \prod^{m+1} X$. Then we define $p_{m+1}^{\Omega(X,L)} : E^{m+1}(\Omega(X,L)) \to P^m(\Omega(X,L))$ as the homotopy fibre of $e_m^{(X,L)} : P^m(\Omega(X,L)) \to X$ given in the diagram, where $e_0^{(X,L)} : L \hookrightarrow X$ is just the canonical inclusion. These constructions due to Ganea [9] yield the following ladder of fibrations which have the same fibre $\Omega(X)$, giving a generalisation of an A_∞ -structure (see Stasheff [25]):

together with $e_{\infty}^{(X,L)}: P^{\infty}(\Omega(X,L)) = \bigcup_{m} P^{m}(\Omega(X,L)) \to X$ given by $e_{\infty}^{(X,L)}|_{P^{m}(\Omega(X,L))} = e_{m}^{(X,L)}$ with fibre $E^{\infty}(\Omega(X,L))$, where the upper horizontal arrows are null-homotopic. Since $E^{\infty}(\Omega(X,L)) = \bigcup_{m} E^{m}(\Omega(X,L))$ is weakly contractible, $e_{\infty}^{(X,L)}: P^{\infty}(\Omega(X,L)) = \bigcup_{m} P^{m}(\Omega(X,L)) \to X$ is a week equivalence. If further X is a CW complex, then there is a right homotopy inverse $h^{(X,L)}: X \to P^{\infty}(\Omega(X,L))$ of $e_{\infty}^{(X,L)}$, where $h^{(X,L)}$ is also a weak equivalence.

The ladder (2.3) is natural with respect to a map of triads in \mathcal{T}^A :

LEMMA 2.1. For any map $f : (X; K, L:A) \to (X'; K', L':A)$ of triads in \mathcal{T}^A , there is the following commutative diagram with $f|_{(X,L)} : (X,L) \to (X',L')$ and $f|_L : L \to L'$ the restrictions of f.



We give here another kind of naturality of the ladder (2.3) in \mathcal{T}^A induced from the structure map $\sigma: K \to P^m(\Omega(X, L))$ of $\operatorname{cat}(X; K, L; A) \leq m$.

LEMMA 2.2. For any triad (X; K, L:A) in \mathcal{T}^A with a compression $\sigma : K \to P^m(\Omega(X, L))$ relative A of the inclusion $K \hookrightarrow X$, there is a sequence of maps $\sigma_n : P^n(\Omega(X, K)) \to P^{m+n}(\Omega(X, L))$ $(n \ge 0)$ with $\sigma_0 = \sigma$, which makes the following diagram commutative up to homotopy relative A.

$$P^{n-1}(\Omega(X,K)) \xrightarrow{} P^{n}(\Omega(X,K)) \xrightarrow{e_{n}^{(X,K)}} X$$

$$\downarrow^{\sigma_{n-1}} \qquad \downarrow^{\sigma_{n}} \qquad \qquad \text{id}_{X} \qquad (2.4)$$

$$P^{m+n-1}(\Omega(X,L)) \xrightarrow{} P^{m+n}(\Omega(X,L)) \xrightarrow{e_{m+n}^{(X,L)}} X.$$

Proof. We construct σ_n inductively on $n \geq 1$: the homotopy commutativity relative A of (2.5) without the dotted arrow induces a map of fibres in \mathcal{T} , $\hat{\sigma}_n : E^n(\Omega(X, K)) \to E^{m+n}(\Omega(X, L))$.

A standard argument shows that the homotopy commutativity of the left square implies the existence of $\sigma_n : P^n(\Omega(X, L)) \to P^{m+n}(\Omega(X, L))$ which makes (2.4) commutative up to homotopy relative A.

3. Properties of a new relative L-S category. Here we prove Theorem 1.14 and some consequences. For that we need

LEMMA 3.1. $\operatorname{cat}(X; K, L; A) \leq m$ if and only if the inclusion $g: K \hookrightarrow X$ is compressible into $P^m(\Omega(X, L)) \subset P^\infty(\Omega(X, L)) \simeq X$ relative A as $\sigma: K \to P^m(\Omega(X, L))$ the structure map for $\operatorname{cat}(X; K, L; A) \leq m$.

Proof. Let us assume that $\operatorname{cat}(X; K, L:A) \leq m$. Then by the definition of the relative category, the diagonal map $\Delta^{m+1}|_K : K \hookrightarrow X \to \prod^{m+1} X$ is compressible relative A into $\operatorname{T}^{m+1}(X, L)$. This implies that there exists a map σ from K to $P^m(\Omega(X, L))$, which is a compression relative A of the inclusion $g : K \hookrightarrow X$. Conversely, we assume that there is a compression relative A of the inclusion $g : K \hookrightarrow X$ into $P^m(\Omega(X, L))$. Composing with $q_m : P^m(\Omega(X, L)) \to \operatorname{T}^{m+1}(X, L)$, we obtain a compression relative A of the diagonal map $\Delta^{m+1}|_K : K \hookrightarrow X \to \prod^{m+1} X$ into $\operatorname{T}^{m+1}(X, L)$. The following propositions complete the proof of Theorem 1.14.

PROPOSITION 3.2. Assume $X = K \supset L = A \supset *$. Then $\operatorname{cat}(X:A) = \operatorname{cat}(X;X,A:A) = \operatorname{cat}^{\operatorname{FH}}(X,A)$.

Proof. By Lemma 3.1 with X = K and L = A, $\operatorname{cat}(X; X, A:A) \leq m$ if and only if there is a right homotopy inverse of $e_m^{(X;X:A)} : P^m(\Omega(X:A)) \to X$ relative A, which is equivalent to $\operatorname{cat}^{\operatorname{FH}}(X, K) \leq m$.

PROPOSITION 3.3. Assume $X \supset K \supset L = A = *$. Then $\operatorname{cat}(X; K) = \operatorname{cat}(X; K, *:*) = \operatorname{cat}^{\operatorname{BG}}(X, K)$.

Proof. By Lemma 3.1 with A = *, $\operatorname{cat}(X; K) \leq m$ if and only if the inclusion $K \hookrightarrow X$ is compressible into $P^m(\Omega(X))$, which is equivalent to $\operatorname{cat}^{\operatorname{BG}}(X, K) \leq m$.

PROPOSITION 3.4. Assume $X = K \supset L \supset A = *$. Then $cat(X, L) = cat(X; X, L:*) = cat^{AL}(X, L)$.

Proof. By Lemma 3.1 with X = K and $A = *, \operatorname{cat}(X, L) = \operatorname{cat}(X; X, L; *) \leq m$ if and only if there is a right homotopy inverse of $e_m^{(X;X,L)} : P^m(\Omega(X,L)) \to X$, which is equivalent to $\operatorname{cat}^{\operatorname{AL}}(X,L) \leq m$.

For relative L-S categories, one has:

THEOREM 3.5. (1) Let (X; K, L:A) be a triad in \mathcal{T}^A . Then

$$\operatorname{cat}(X; K, L:A) \le \operatorname{cat}(X; K:A) \le \operatorname{cat}(X; L:A) + \operatorname{cat}(X; K, L:A),$$
$$\operatorname{cat}(X; K, L:A) \le \operatorname{cat}(X, L:A) \le \operatorname{cat}(X, K:A) + \operatorname{cat}(X; K, L:A).$$

More generally, for any maps $f : (L:A) \to (X:A)$ and $g : (K:A) \to (X:A)$,

$$\operatorname{cat}(g, f) \le \operatorname{cat}(g, *_A) \le \operatorname{cat}(f, *_A) + \operatorname{cat}(g, f),$$
$$\operatorname{cat}(g, f) \le \operatorname{cat}(1_{(X:A)}, f) \le \operatorname{cat}(1_X, g) + \operatorname{cat}(g, f),$$

where $1_X : (X:A) = (X:A)$ denotes the identity and $*_A : (A:A) \hookrightarrow (X:A)$ denotes the trivial inclusion.

(2) If
$$(X', L':A) \supset (X, L:A)$$
 and $(K':A') \subset (K:A)$, then

$$\begin{aligned} \operatorname{cat}(X';K',L':A') &\leq \operatorname{Min}\{\operatorname{cat}(X';K,L':A),\operatorname{cat}(X;K',L:A')\} \\ &\leq \operatorname{Max}\{\operatorname{cat}(X';K,L':A),\operatorname{cat}(X;K',L:A')\} \leq \operatorname{cat}(X;K,L:A) \end{aligned}$$

More generally, for any maps $f': (L':A) \to (X':A)$, $f: (L:A) \to (X:A)$, $g: (K:A) \to (X:A)$, $h: (X:A) \to (X':A)$, $k: (K':A') \to (K:A)$ and $\ell: (L:A) \to (L':A)$ which satisfy the relation $f' \circ \ell = h \circ f$, we have

$$\begin{aligned} \operatorname{cat}(h \circ g \circ k, f') &\leq \operatorname{Min}\{\operatorname{cat}(h \circ g, f'), \operatorname{cat}(g \circ k, f)\} \\ &\leq \operatorname{Max}\{\operatorname{cat}(h \circ g, f'), \operatorname{cat}(g \circ k, f)\} \leq \operatorname{cat}(g, f). \end{aligned}$$

The following corollaries are immediate consequences of Theorem 3.5:

COROLLARY 3.6. (1) For a triad (X; K, L; *) in \mathcal{T}_* , we have

$$\operatorname{cat}(X; K, L) \leq \operatorname{cat}(X; K) = \operatorname{cat}^{\operatorname{BG}}(X, K)$$
$$\leq \operatorname{cat}(X; L) + \operatorname{cat}(X; K, L) = \operatorname{cat}^{\operatorname{BG}}(X, L) + \operatorname{cat}(X; K, L),$$
$$\operatorname{cat}(X; K, L) \leq \operatorname{cat}(X, L) = \operatorname{cat}^{\operatorname{AL}}(X, L)$$
$$\leq \operatorname{cat}(X, K) + \operatorname{cat}(X; K, L) = \operatorname{cat}^{\operatorname{AL}}(X, K) + \operatorname{cat}(X; K, L).$$

(2) For a pair (X, L:A) in \mathcal{T}^A , we have

$$\begin{aligned} \operatorname{cat}(X,L:A) &\leq \operatorname{cat}(X:A) = \operatorname{cat}^{\operatorname{FH}}(X,A) \\ &\leq \operatorname{cat}(X;L:A) + \operatorname{cat}(X,L:A) \leq \operatorname{cat}(X;L:A) + \operatorname{cat}^{\operatorname{FH}}(X,L). \end{aligned}$$

If we further assume that A = *, then

$$\operatorname{cat}(X,L) \le \operatorname{cat}(X) \le \operatorname{cat}(X;L) + \operatorname{cat}(X,L).$$

(3) For maps $f : L \subset X$, $f' : * \subset Y$, $g = 1_X : X \to X$, $h : X \to Y$, $k = 1_X : X \to X$ and $\ell : L \to *$ in \mathcal{T}_* with $h|_L = \ell$, we have

$$\operatorname{cat}^{\operatorname{BG}}(h) = \operatorname{cat}(h, *) = \operatorname{cat}(h \circ g, f') \le \operatorname{cat}(g, f) = \operatorname{cat}^{\operatorname{AL}}(X, L)$$

In Definition 1.6, we have $cat(X; F_i, F_{i-1}:A) \leq 1$ for the filtration $\{F_i\}$. Hence we have:

COROLLARY 3.7. $cat(X; F_i, A:A) \leq i$ for every *i*.

Proof of Theorem 3.5. The case of maps is left to the reader, and we concentrate on the case of spaces.

Firstly, we show (1) for a triad (X; K, L:A) in \mathcal{T}^A :

To show $\operatorname{cat}(X; K, L:A) \leq \operatorname{cat}(X; K:A)$, we assume that $\operatorname{cat}(X; K:A) = m$. By Lemma 3.1 for the triad (X; K, A:A), $\operatorname{cat}(X; K:A) = \operatorname{cat}(X; K, A:A) \leq m$ if and only if there is a compression $\sigma : K \to P^m(\Omega(X:A))$ relative A of the inclusion $K \hookrightarrow X$. By Lemma 2.1 for the inclusion $(X; K, A:A) \hookrightarrow (X; K, L:A)$, the composition $P^m(\Omega(f|_{X:A})) \circ \sigma : K \to P^m(\Omega(X, L))$ gives a compression of the inclusion $K \hookrightarrow X$, which implies $\operatorname{cat}(X; K, L:A)$ $\leq m = \operatorname{cat}(X; K:A)$.

To show $\operatorname{cat}(X; K, L:A) \leq \operatorname{cat}(X, L:A)$, we assume that $\operatorname{cat}(X, L:A) = m$. By Lemma 3.1 for the triad (X; X, L:A), $\operatorname{cat}(X, L:A) \leq m$ if and only if there is a compression $\sigma: X \to P^m(\Omega(X, L))$ relative A of the identity 1_X . By restricting σ to K, we obtain a compression $\sigma|_K: K \to P^m(\Omega(X, L))$ relative A of the inclusion $K \hookrightarrow X$, which implies $\operatorname{cat}(X; K, L:A) \leq m = \operatorname{cat}(X.L:A)$.

To show the inequality $\operatorname{cat}(X; K:A) \leq \operatorname{cat}(X; L:A) + \operatorname{cat}(X; K, L:A)$, we assume that $\operatorname{cat}(X; L:A) = m$ and $\operatorname{cat}(X; K, L:A) = n$. By Lemma 3.1 for the triad (X; L, A:A), $\operatorname{cat}(X; L:A) \leq m$ if and only if there is a compression $\sigma : L \to P^m(\Omega(X:A))$ relative A of the inclusion $L \hookrightarrow X$. Then by Lemma 2.2 for the triad (X; L, A:A), we have the following commutative ladder with $\sigma_0 = \sigma$ up to homotopy relative A:

$$P^{n-1}(\Omega(X,L)) \xrightarrow{} P^{n}(\Omega(X,L)) \xrightarrow{e_{n}^{(X,L)}} X$$

$$\downarrow^{\sigma_{n-1}} \qquad \qquad \downarrow^{\sigma_{n}} \qquad \qquad \downarrow^{\mathrm{id}_{X}}$$

$$P^{m+n-1}(\Omega(X:A)) \xrightarrow{} P^{m+n}(\Omega(X:A)) \xrightarrow{e_{m+n}^{(X:A)}} X.$$

Again by Lemma 3.1 for the triad (X; K, L:L), $\operatorname{cat}(X; K, L:A) \leq n$ if and only if there is a compression $\tau : K \to P^n(\Omega(X, L))$ relative A of the inclusion $K \hookrightarrow X$. Then the composition $\sigma_n \circ \tau : K \to P^{m+n}(\Omega(X:A))$ gives a compression relative A of the inclusion $K \hookrightarrow X$, which implies that $\operatorname{cat}(X; K:A) \leq m + n = \operatorname{cat}(X; L:A) + \operatorname{cat}(X; K, L:A)$.

To show the inequality $\operatorname{cat}(X, L:A) \leq \operatorname{cat}(X, K:A) + \operatorname{cat}(X; K, L:A)$, we assume that $\operatorname{cat}(X; K, L:A) = m$ and $\operatorname{cat}(X, K:A) = n$. By Lemma 3.1 for the triad (X; K, L:A), $\operatorname{cat}(X; K, L:A) \leq m$ if and only if there is a compression $\tau : K \to P^m(\Omega(X, L))$ relative A of the inclusion $K \hookrightarrow X$. Then by Lemma 2.2 for the triad (X; K, L:A), we have the following commutative ladder with $\tau_0 = \tau$ up to homotopy relative A:

$$\begin{array}{c|c} P^{n-1}(\Omega(X,K)) & \longrightarrow & P^n(\Omega(X,K)) & \xrightarrow{e_n^{(X,K)}} & X \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ P^{m+n-1}(\Omega(X,L)) & \searrow & P^{m+n}(\Omega(X,L)) & \xrightarrow{e_{m+n}^{(X,L)}} & X. \end{array}$$

Again by Lemma 3.1 for the triad (X; X, K:A), $\operatorname{cat}(X, K:A) \leq n$ if and only if there is a compression $\rho: X \to P^n(\Omega(X, K))$ relative A of the identity $1_X: X \to X$. Then the composition $\tau_n \circ \rho: X \to P^{m+n}(\Omega(X, L))$ gives a compression relative A of the identity $1_X: X \to X$, which implies that $\operatorname{cat}(X, L:A) \leq m + n = \operatorname{cat}(X, K:A) + \operatorname{cat}(X; K, L:A)$. Secondly, we show (2) for a triad (X; K, L:A) with spaces $X' \supset X$, $(K':A') \subset (K:A)$ and $(L':A') \subset (L:A)$, which is sufficient to show that $\operatorname{cat}(X'; K, L':A) \leq \operatorname{cat}(X; K, L:A)$ and $\operatorname{cat}(X; K', L:A') \leq \operatorname{cat}(X; K, L:A)$:

To show $\operatorname{cat}(X'; K, L':A) \leq \operatorname{cat}(X; K, L:A)$, we assume that $\operatorname{cat}(X; K, L:A) = m$. By Lemma 3.1 for the triad (X; K, L:A), $\operatorname{cat}(X; K, L:A) \leq m$ if and only if there is a compression $\sigma : K \to P^m(\Omega(X, L))$ relative A of the inclusion $K \hookrightarrow X$. Since $X' \supset X$, we have the inclusion of triads : $(X; K, L:A) \hookrightarrow (X'; K, L':A)$. Then by Lemma 2.1 for the map of triads $j : (X; K, L:A) \hookrightarrow (X'; K, L':A)$, we have the following commutative ladder up to homotopy relative A:

with $j_0 = \mathrm{id}_L$ and $j_k = P^k(\Omega(j|_{(X,L)})), 1 \leq k \leq m$. Thus the map $j_m \circ \sigma$ gives a compression relative A of the inclusion $K \hookrightarrow X \subset X'$, and hence $\mathrm{cat}(X'; K, L':A) \leq m = \mathrm{cat}(X; K, L:A)$.

To show $\operatorname{cat}(X; K', L:A') \leq \operatorname{cat}(X; K, L:A)$, we may assume that A = A', since it is clear by definition that $\operatorname{cat}(X; K, L:A') \leq \operatorname{cat}(X; K, L:A)$ if $A' \subset A$: let us assume that $\operatorname{cat}(X; K, L:A) = m$. By Lemma 3.1 for the triad (X; K, L:A), $\operatorname{cat}(X; K, L:A) \leq m$ if and only if there is a compression $\sigma : K \to P^m(\Omega(X, L))$ relative A of the inclusion $K \hookrightarrow X$. Hence the restriction $\sigma|_{K'}$ of the map σ to K' gives a compression relative Aof the inclusion $K' \hookrightarrow X$, and hence $\operatorname{cat}(X; K', L:A) \leq m = \operatorname{cat}(X; K, L:A)$.

4. A higher Hopf invariant for a triad. Let us consider the following exact sequences of abelian groups and algebraic loops:

$$0 \to \left[\Sigma V, E^{m+1}(\Omega(X,L))\right] \stackrel{p_{m+1}^{(X,L)}}{\longrightarrow} \left[\Sigma V, P^m(\Omega(X,L))\right] \stackrel{e_{m*}^{(X,L)}}{\longrightarrow} \left[\Sigma V, X\right] \to 0, \tag{4.1}$$

$$1 \to [V, E^{m+1}(\Omega(X, L))] \xrightarrow{p_{m+1*}^{(X,L)}} [V, P^m(\Omega(X, L))] \xrightarrow{e_{m*}^{(X,L)}} [V, X].$$

$$(4.2)$$

Since the fibre $\Omega(X)$ of a fibration $p_{m+1}^{(X,L)}$ is contractible in the total space $E^{m+1}(\Omega(X,L))$ of $p_{m+1}^{(X,L)}$, we know $e_{m*}^{(X,L)} : [\Sigma V, P^m(\Omega(X,L))] \to [\Sigma V, X]$ is an epimorphism of abelian groups and $p_{m+1*}^{(X,L)} : [\Sigma V, E^{m+1}(\Omega(X,L))] \to [\Sigma V, P^m(\Omega(X,L))]$ is a monomorphism of abelian groups. Similarly, $p_{m+1*}^{(X,L)} : [V, E^{m+1}(\Omega(X,L))] \to [V, P^m(\Omega(X,L))]$ is a monomorphism of algebraic loops. Thus we obtain the following proposition:

PROPOSITION 4.1. (1) $e_{m*}^{(X,L)}$: $[\Sigma V, P^m(\Omega(X,L))] \to [\Sigma V, X]$ is an epimorphism of abelian groups.

- (2) $p_{m+1*}^{(X,L)}: [\Sigma V, E^{m+1}(\Omega(X,L))] \to [\Sigma V, P^m(\Omega(X,L))]$ is a monomorphism of abelian groups.
- $\begin{array}{l} groups.\\ (3) \hspace{0.1cm} p_{m+1*}^{(X,L)}: \left[V, E^{m+1}(\Omega(X,L))\right] \rightarrow \left[V, P^m(\Omega(X,L))\right] \hspace{0.1cm} is \hspace{0.1cm} a \hspace{0.1cm} monomorphism \hspace{0.1cm} of \hspace{0.1cm} algebraic \hspace{0.1cm} loops. \end{array}$

We give here a definition of higher Hopf invariants in a slightly different form: let (X; K, L:A) be a triad in \mathcal{T}^A , let V be a co-loop co-H-space, and let $\alpha : V \to K$ be a map in \mathcal{T} such that $X \supset \hat{K} = K \cup_{\alpha} CV \supset K$. We assume that $\operatorname{cat}(X; K, L:A) \leq m$. Then by Lemma 3.1 for the triad (X; K, L:A), $\operatorname{cat}(X; K, L:A) \leq m$ implies that the inclusion $i : K \hookrightarrow X$ is compressible into $P^m(\Omega(X, L))$ relative A as a map $\sigma : K \to P^m(\Omega(X, L))$. Since $e_m^{(X,L)} \circ \sigma \circ \alpha \sim i \circ \alpha$ is trivial in $\hat{K} \subset X$, we obtain a unique lift $H^{\sigma}_m(\alpha) : V \to E^{m+1}(\Omega(X, L)) \simeq \Omega(X, L) * \Omega(X) * \cdots * \Omega(X)$ of $\sigma \circ \alpha$.

DEFINITION 4.2. We define $H_m^{(X;K,L:A)}(\alpha)$ as follows:

$$H_m^{(X;K,L:A)}(\alpha) = \left\{ \begin{bmatrix} H_m^{\sigma}(\alpha) \end{bmatrix} \middle| \begin{array}{l} \sigma : K \to P^m(\Omega(X,L)) \text{ is a compression rela-} \\ \text{tive } A \text{ of the inclusion } K \hookrightarrow X \\ \subset [V,\Omega(X,L) * \Omega(X) * \overset{m}{\cdots} * \Omega(X)]. \end{array} \right\}$$

Now let (K, L:A) be a pair in \mathcal{T}^A and let $\alpha : V \to K$ a map in \mathcal{T} . We assume that $\operatorname{cat}(K, L:A) \leq m$. By Lemma 3.1 for the triad (K; K, L:A), $\operatorname{cat}(K, L:A) \leq m$ implies that the identity $1_K : K \to K$ is compressible into $P^m(\Omega(K, L))$ relative A as a map $\sigma : K \to P^m(\Omega(K, L))$. By Lemma 2.1 for the inclusion $j : (K; K, *:*) \hookrightarrow (K; K, L:*)$, the following ladder is commutative up to homotopy:

where $e_1^K = e_m^K|_{\Sigma\Omega(K)} : \Sigma\Omega(K) \to K$ is given by the evaluation map (see Ganea [9] or [14]). Since V is a co-loop co-H-space, the evaluation map $e_1^V : \Sigma\Omega(V) \to V$ admits a right homotopy inverse, say the co-H-structure map $\rho^V : V \to \Sigma\Omega(V)$ for V, by Ganea [10]. Then we have $e_1^K \circ \Sigma\Omega(\alpha) \circ \rho^V \sim \alpha \circ e_1^V \circ \rho^V \sim \alpha$, and hence $e_1^{(K,L)} \circ j_1 \circ \Sigma\Omega(\alpha) \circ \rho^V \simeq id_{K\circ} e_1^K \circ \Sigma\Omega(\alpha) \circ \rho^V \sim \alpha$. Since both maps $e_1^{(K,L)} \circ \sigma \circ \alpha$ and $e_1^{(K,L)} \circ j_1 \circ \Sigma\Omega(\alpha) \circ \rho^V$ are homotopic to α , the difference $d(\alpha) = \sigma \circ \alpha - j_1 \circ \Sigma\Omega(\alpha) \circ \rho^V$ is trivial in K. Thus we obtain a unique lift $H_m^{\sigma}(\alpha) : V \to E^{m+1}(\Omega(K,L)) \simeq \Omega(X,L) * \Omega(X) * \overset{m}{\cdots} * \Omega(X)$ of $d(\alpha)$.

DEFINITION 4.3. We define $H_m^{(K,L:A)}(\alpha)$ as follows:

$$H_m^{(K,L:A)}(\alpha) = \{ [H_m^{\sigma}(\alpha)] \mid \sigma \text{ is a compression relative } A \text{ of } 1_K \} \\ \subset [V, \Omega(K,L) * \Omega(K) * \stackrel{m}{\cdots} * \Omega(K)].$$

Proof of Theorem 1.15. Let (X; K, L:A) be a triad in \mathcal{T}^A , V be a co-loop co-H-space and $\alpha : V \to K$ be a map in \mathcal{T} such that $X \supset \hat{K} = K \cup_{\alpha} CV \supset K$. Assuming $\operatorname{cat}(X; K, L:A) \leq m$ and $H_m^{(X; K, L:A)}(\alpha) = 0$, we show $\operatorname{cat}(X; \hat{K}, L:A) \leq m$: by the assumption, there is a compression $\sigma : K \to P^m(\Omega(X, L))$ relative A of the inclusion $K \hookrightarrow$ X such that $\sigma \circ \alpha \sim p_{m+1}^{(X,L)} \circ H_m^{\sigma}(\alpha) \sim *$, and hence there is a map $\hat{\sigma} : \hat{K} \to P^m(\Omega(X, L))$ whose restriction to K is σ . Since $e_m^{(X,L)} \circ \sigma$ and the inclusion $K \hookrightarrow X$ are homotopic relative A, the difference between $e_m^{(X,L)} \circ \hat{\sigma}$ and the inclusion $\hat{K} \hookrightarrow X$ is given by an element $[\delta] \in [\Sigma V, X]$. By Proposition 4.1 (1), we have a map $\hat{\delta} : \Sigma V \to P^m(\Omega(X, L))$ such that $e_m^{(X,L)} \circ \hat{\delta} \sim \delta$. By subtracting $\hat{\delta}$ from $\hat{\sigma}$, we obtain a genuine compression $\sigma' = \hat{\sigma} - \hat{\delta} : \Sigma V \to P^m(\Omega(X, L))$ of the inclusion $\hat{K} \to P^m(\Omega(X, L))$ relative A, where the subtraction is given by the co-action of ΣV under $K \cup_{\alpha} C^2 V = \hat{K}$ the mapping cone of α . This implies that $\operatorname{cat}(X; \hat{K}, L; A) \leq m$.

We describe here the relationship among higher Hopf invariants. The following definition is essentially due to Berstein and Hilton [3]:

DEFINITION 4.4. Let (X; K, L:A) and (X'; K', L':A) be triads in \mathcal{T}^A , V be a co-loop co-H-space, and $s : K \to T^{m+1}(X, L)$ and $s' : K' \to T^{m+1}(X', L')$ be compressions of $\Delta^{m+1} \circ i : K \hookrightarrow \prod^{m+1} X$ and $\Delta^{m+1} \circ i' : K' \hookrightarrow \prod^{m+1} X'$ relative A, respectively, so that $\operatorname{cat}(X; K, L:A) \leq m$ and $\operatorname{cat}(X'; K', L':A) \leq m$. A map $f : (X; K, L:A) \to (X'; K', L':A)$ of triads in \mathcal{T}^A is called m-primitive (with respect to s and s'), if $s' \circ f|_K \sim T^{m+1}(f|_{(X',L')}) \circ s$.

Let (X; K, L:A) and (X'; K', L':A) be triads in \mathcal{T}^A , and let $\operatorname{cat}(X; K, L:A) \leq m$ and $\operatorname{cat}(X'; K', L':A) \leq m$ with compressions $s : K \to \operatorname{T}^{m+1}(X, L)$ and $s' : K' \to \operatorname{T}^{m+1}(X', L')$ of $\Delta^{m+1} \circ i : K \hookrightarrow \prod^{m+1} X$ and $\Delta^{m+1} \circ i' : K' \hookrightarrow \prod^{m+1} X'$ relative A, respectively. By using the lower right square of the diagram (2.2), we obtain structure maps σ, σ' for $\operatorname{cat}(X; K, L:A) \leq m$ and $\operatorname{cat}(X'; K', L':A) \leq m$ corresponding to s and s', respectively by $s \sim q_m^{(X,L)} \circ \sigma$ and $s' \sim q_m^{(X',L')} \circ \sigma'$ relative A.

LEMMA 4.5. Let $f: (X; K, L:A) \to (X'; K', L':A)$ be a map of triads in \mathcal{T}^A . Then f is *m*-primitive with respect to s and s', if and only if $\sigma' \circ f|_K \sim P^m(\Omega(f|_{(X,L)})) \circ \sigma$ relative A for the corresponding structure maps σ and σ' .

Proof. Assume that f satisfies that $\sigma' \circ f|_K \sim P^m(\Omega(f|_{(X,L)})) \circ \sigma$. By composing $q_m^{(X',L')}$: $P^m(\Omega(X',L')) \to T^{m+1}(X',L')$ with both sides, we obtain

$$s' \circ f|_{K} \sim q_{m}^{(X',L')} \circ \sigma' \circ f|_{K} \sim q_{m}^{(X',L')} \circ P^{m}(\Omega(f|_{(X,L)})) \circ \sigma$$
$$\sim \mathbf{T}^{m+1}(f|_{(X,L)}) \circ q_{m}^{(X,L)} \circ \sigma \sim \mathbf{T}^{m+1}(f|_{(X,L)}) \circ s$$

relative A, and hence f is m-primitive with respect to s and s'. Conversely assume that f is m-primitive with respect to s and s'. Then the naturality of the lower right square of the diagram (2.2) immediately induces the homotopy $\sigma' \circ f|_K \sim P^m(\Omega(f|_{(X,L)})) \circ \sigma$ relative A.

THEOREM 4.6. Let (X; K, L:A) and (X'; K', L':A) be triads in \mathcal{T}^A , V be a co-loop co-H-space, and $s: K \to T^{m+1}(X, L)$ and $s': K' \to T^{m+1}(X', L')$ be compressions of the inclusions $i: K \hookrightarrow X$ and $i': K' \hookrightarrow X'$ relative A, respectively, so that $\operatorname{cat}(X; K, L:A) \leq m$ and $\operatorname{cat}(X'; K', L':A) \leq m$, respectively. Let $f: (X; K, L:A) \to (X'; K', L':A)$ be a map of triads in \mathcal{T}^A and let $\alpha: V \to K$ be a map in \mathcal{T} such that $X \supset \hat{K} = K \cup_{\alpha} CV \supset K$ and $X' \supset \hat{K'} = K' \cup_{f|_{K} \circ \alpha} CV \supset K$. If f is m-primitive with respect to s and s', then

$$E^{m+1}(\Omega(f|_{(X,L)}))_{\#} \circ H_m^{(X;K,L:A)}(\alpha) \subset H_m^{(X';K',L':A)}(f|_K \circ \alpha).$$

Proof. By Lemma 2.1 for $f : (X; K, L:A) \to (X'; K', L':A)$ a map of triads in \mathcal{T}^A , the following diagram is commutative up to homotopy relative A:

Since f is m-primitive with respect to s and s', we have the homotopy relation relative $A P^m(\Omega(f|_{(X,L)})) \circ \sigma \sim \sigma' \circ f|_K$ for the corresponding compressions σ and σ' relative A of the inclusions $i: K \hookrightarrow X$ and $i': K' \hookrightarrow X'$, resp. Thus we have the following homotopy relation:

$$\begin{split} p_m^{\Omega(X',L')} \circ E^{m+1}(\Omega(f|_{(X,L)})) \circ H_m^{\sigma}(\alpha) \\ &\sim P^m(\Omega(f|_{(X,L)})) \circ p_m^{\Omega(X,L)} \circ H_m^{(X;K,L:A)}(\alpha) \\ &\sim P^m(\Omega(f|_{(X,L)})) \circ \sigma \circ \alpha \sim \sigma' \circ f|_K \circ \alpha \sim p_m^{\Omega(X',L')} \circ H_m^{\sigma'}(f|_K \circ \alpha) \end{split}$$

Hence we obtain $E^{m+1}(\Omega(f|_{(X,L)})) \circ H_m^{\sigma}(\alpha) \sim H_m^{\sigma'}(f|_K \circ \alpha)$, since $p_{m*}^{\Omega(X',L')}$ is monic by Proposition 4.1 (3). Thus we have

$$E^{m+1}(\Omega(f|_{(X,L)}))_{\#}H_m^{(X;K,L:A)}(\alpha) \subset H_m^{(X';K',L':A)}(f|_K \circ \alpha)$$

This completes the proof of Theorem 4.6.

THEOREM 4.7. Let (X, K, L:A) be a triple in \mathcal{T}^A , V be a co-loop co-H-space, and α : $V \to K$ be a map in \mathcal{T} such that $X \supset \hat{K} = K \cup_{\alpha} CV \supset K$. If $\operatorname{cat}(K, L:A) \leq m$, then

$$E^{m+1}(\Omega(j|_{(K,L)}))_{\#} \circ H_m^{(K,L:A)}(\alpha) \subset H_m^{(X;K,L:A)}(\alpha),$$

where $j: (K; K, L:A) \rightarrow (X; K, L:A)$ is the inclusion.

COROLLARY 4.8. For the filtration $\{F_i\}$ in Definition 1.6, we have

$$E^{m+1}(\Omega(j_i|_{(F_i,F_{i-1})}))_{\#} \circ H_i^{(F_i,F_{i-1}:A)}(\alpha) \subset H_i^{(X;F_i,F_{i-1}:A)}(\alpha)$$

for every *i*, where $j_i : (F_i, F_i, F_{i-1}:A) \hookrightarrow (X; F_i, F_{i-1}:A)$ denote the inclusion.

Proof. Proof of Theorem 4.7 Let (X, K, L:A) be a triple in \mathcal{T}^A , V be a co-loop co-Hspace and $\alpha: V \to K$ be a map in \mathcal{T} such that $X \supset \hat{K} = K \cup_{\alpha} CV \supset K$. Assuming $\operatorname{cat}(K, L:A) \leq m$, we show $E^{m+1}(\Omega(j|_{(K,L)}))_{\#}H_m^{(K,L:A)}(\alpha) \subset H_m^{(X;K,L:A)}(\alpha)$, where j: $(K; K, L:A) \to (X; K, L:A)$ denotes the inclusion: By Lemma 2.1 for $j: (K; K, L:A) \to$ (X; K, L:A) an inclusion map of triads in \mathcal{T}^A , the following diagram is commutative up to homotopy relative A:

From the definition of a higher Hopf invariant, we obtain $p_m^{\Omega(K,L)} \circ H_m^{\sigma}(\alpha) \sim \sigma \circ \alpha$ –

 $j_1 \circ \Sigma \Omega(\alpha) \circ \rho^V$, and hence we have the homotopy relation

$$\begin{split} p_m^{\Omega(X,L)} \circ E^{m+1}(\Omega(j|_{(K,L)})) \circ H_m^{\sigma}(\alpha) &\sim P^m(\Omega(j|_{(K,L)})) \circ p_m^{\Omega(K,L)} \circ H_m^{\sigma}(\alpha) \\ &\sim P^m(\Omega(j|_{(K,L)})) \circ \sigma \circ \alpha - P^m(\Omega(j|_{(K,L)})) \circ j_1 \circ \Sigma \Omega(\alpha) \circ \rho^V \\ &\sim P^m(\Omega(j|_{(K,L)})) \circ \sigma \circ \alpha - j_1 \circ \Sigma \Omega(j|_{(K,L)}) \Sigma \Omega(\alpha) \circ \rho^V \\ &\sim P^m(\Omega(j|_{(K,L)})) \circ \sigma \circ \alpha - j_1 \circ \Sigma \Omega(j|_{(K,L)}) \circ \alpha) \circ \rho^V \\ &\sim P^m(\Omega(j|_{(K,L)})) \circ \sigma \circ \alpha, \end{split}$$

since $j|_{(K,L)} \circ \alpha \sim *$ in X. This implies that $E^{m+1}(\Omega(j|_{(K,L)})) \circ H_m^{\sigma}(\alpha)$ is homotopic to $H_m^{P^m(\Omega(j|_{(K,L)})) \circ \sigma}(\alpha)$, and hence $E^{m+1}(\Omega(j|_{(K,L)}))_{\#} \circ H_m^{(K,L:A)}(\alpha) \subset H_m^{(X;K,L:A)}(\alpha)$.

5. Categorical length. Let F_i^X , $0 \le i \le m$, and F_j^Y , $0 \le j \le n$, be categorical sequences for $(X:A) \in \mathcal{T}^A$ and $(Y:A) \in \mathcal{T}^A$, respectively. Then for a map $f: (X:A) \to (Y:A)$, we say that f preserves categorical sequences, if $f(F_i^X) \subset F_i^Y$ for all $i \ge 0$. We first show the following:

LEMMA 5.1. Let $(X:A) \in \mathcal{T}^A$ be dominated by $(Y:A) \in \mathcal{T}^A$ with a categorical sequence of length m. Then there is a categorical sequence for (X:A) of length m compatible with the given categorical sequence for (Y:A), i.e., the inclusion $i : (X:A) \hookrightarrow (Y:A)$ and the retraction $r : (Y:A) \to (X:A)$ preserve categorical sequences.

The above lemma implies the relationship between the L-S category and the categorical length.

Proof of Theorem 1.16. Assume $\operatorname{catlen}(X:A) = m$ with a categorical sequence $(F_i^X:A)$, $0 \leq i \leq m$ for (X:A). Then by Corollary 3.7, we have $\operatorname{cat}(X:A) = \operatorname{cat}(X;X:A) = \operatorname{cat}(X;F_m^X:A) \leq m = \operatorname{catlen}(X:A)$. Hence we have $\operatorname{cat}(X:A) \leq \operatorname{catlen}(X:A)$. Conversely assume $\operatorname{cat}(X:A) = m$. Then the pair (X:A) is dominated by $(P^m(\Omega(X:A)):A)$ which has the cone decomposition $(P^i(\Omega(X:A)):A), 0 \leq i \leq m$ as the canonical categorical sequence. Thus by Lemma 5.1, we have that (X:A) has also a categorical sequence of length m, and hence that $\operatorname{catlen}(X:A) \leq m = \operatorname{cat}(X:A)$. This completes the proof of Theorem 1.16.

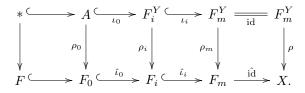
Proof of Lemma 5.1 Let $(F_i^Y:A)$, $0 \le i \le m$, be a categorical sequence for $(Y:A) \in \mathcal{T}^A$ and $\sigma: X \to Y$ and $\rho: Y \to X$ be maps such that $\rho \circ \sigma \sim 1_X$. Then we define F_i as the homotopy pullback of σ and the inclusion $\iota_i: F_i^Y \hookrightarrow F_m^Y$. Since the image of $\sigma|_A$ is the same as the inclusion $A \subseteq F_0^Y \hookrightarrow F_m^Y$, the space A is canonically embedded in F_0 and hence in $F_i \supset F_0$ for any $i \ge 0$.

$$F \xrightarrow{id} F_{0} \xrightarrow{i_{0}} F_{i} \xrightarrow{i_{i}} F_{m} \xrightarrow{id} X$$

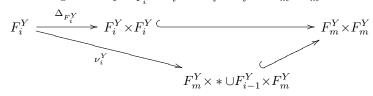
$$\downarrow PB \sigma_{0} \downarrow PB \sigma_{i} \downarrow PB \sigma_{m} \downarrow HPB \downarrow \sigma$$

$$\ast \xrightarrow{id} A \xrightarrow{i_{0}} F_{i}^{Y} \xrightarrow{i_{i}} F_{m}^{Y} \xrightarrow{id} F_{m}^{Y},$$

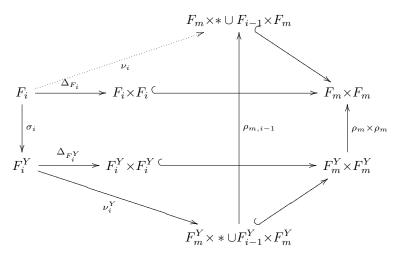
where F denotes the homotopy fibre of σ and F_m is the homotopy pullback of σ and the identity of F_m^Y . Since $\rho \circ \sigma \sim 1_X$, $\rho|_{F_i^Y}$ can be compressed into F_i and we have the following commutative diagram:



Then by the definition of categorical sequence, there is a compression $\nu_i^Y : F_i^Y \to F_m^Y \times * \cup F_{i-1}^Y \times F_m^Y$ of the diagonal map $\Delta_{F_i^Y} : F_i^Y \to F_i^Y \times F_i^Y \subseteq F_m^Y \times F_m^Y$ relative to F_{i-1}^Y :



By composing ρ_i and σ_i , we obtain a compression of the diagonal map $\Delta_{F_i} : F_i \to F_i \times F_i \subseteq F_m \times F_m$ as follows:

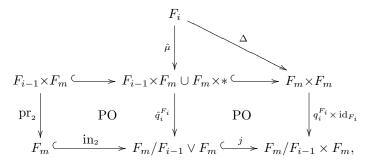


This implies $\operatorname{cat}(X'; X', F_{m-1}^X; A) \leq 1$, and hence $X' = F_m^X \supset F_{m-1} \supset \cdots \supset F_0 = A$ gives a categorical sequence for X.

The following lemma is our version of the result of Arkowitz and Lupton [1]:

LEMMA 5.2. Let X be a space in \mathcal{T} with $\operatorname{cat}(X) = m$ and $\{F_i; 0 \le i \le m\}$ be a categorical sequence for X. Then there is a map $\mu : F_i \to F_m/F_{i-1} \lor F_m$ in \mathcal{T} with axes $F_i \to F_m/F_{i-1}$ and the inclusion $F_i \hookrightarrow F_m$.

Proof. By the definition of a categorical sequence, the diagonal map $\Delta : F_i \to F_i \times F_i \subseteq F_m \times F_m$ is compressible into $F_{i-1} \times F_m \cup F_m \times *$ as $F_i \xrightarrow{\hat{\mu}} F_{i-1} \times F_m \cup F_m \times * \subseteq F_m \times F_m$. Since $F_m/F_{i-1} \vee F_m$ can be regarded as the pushout of the second projection pr₂: $F_{i-1} \times F_m \to F_m$ and the canonical inclusion $\iota : F_{i-1} \times F_m \hookrightarrow F_{i-1} \times F_m \cup F_m \times *$, we have the following diagram:



where $q_i^{F_i}: F_i \to F_i/F_{i-1} \subseteq F_m/F_{i-1}$ denotes the canonical collapsing map in \mathcal{T} . Let μ be the composition $\hat{q}_i^{F_i} \circ \hat{\mu}: F_i \to F_i/F_{i-1} \lor F_m$ so that $j \circ \mu$ is homotopic to $(q_i^{F_i} \times \mathrm{id}_{F_i}) \circ \Delta$. Thus μ has axes $q_i^{F_i}: F_i \to F_i/F_{i-1} \subseteq F_m/F_{i-1}$ and the inclusion $F_i \hookrightarrow F_m$.

From this one immediately deduces corollary 1.17 of the introduction.

6. Cup length and module weight for the relative L-S category. A computable lower estimate in L-S category theory is given by the classical cup-length. Here we give the definition for our new relative L-S category.

DEFINITION 6.1. For any two maps $f : (L:A) \subset (X:A)$ and $g : (K:A) \to (X:A)$ in \mathcal{T}^A , we define cup length for (g, f) = (X; K, L:A):

(1) Let h be a multiplicative generalized cohomology theory.

$$\exp(g, f; h) = \operatorname{Min} \left\{ m \ge 0 \left| \begin{array}{l} \forall \{v_0 \in h^*(X, L); v_1, \cdots, v_m \in h^*(X, A)\} \\ g^*(v_0 \cdot v_1 \cdots v_m) = 0 \text{ in } h^*(K, A) \end{array} \right\} \right\}.$$

$$(2) \ \exp(g, f) = \operatorname{Max} \left\{ \exp(g, f; h) \left| \begin{array}{l} h \text{ is a multiplicative generalized} \\ \operatorname{cohomology theory} \end{array} \right\}.$$

Then we have $\operatorname{cup}(g, f; h) \leq \operatorname{cup}(g, f) \leq \operatorname{cat}(g, f)$ for any multiplicative generalized cohomology h. When h is the ordinary cohomology with a coefficient ring R, we denote $\operatorname{cup}(g, f; h)$ by $\operatorname{cup}(g, f; R)$. This definition immediately implies the following.

REMARK 6.2. For (g, f) = (X; K, L:A), using the arguments in [16], we have $\operatorname{cup}(g, f) = \operatorname{Min}\{m \ge 0 \mid \tilde{\Delta}_K^{m+1} : K/A \to X/L \land \bigwedge^m X/A \text{ is stably trivial}\}.$

Let us recall that Rudyak [23] and Strom [26] introduced a homotopy theoretical version of Fadell-Husseini's category weight (see [6]). But unfortunately, we have not been able to give a version of category weight for our new relative L-S category. In this paper, we give instead a version of module weight which is a better computable lower estimate for our relative L-S category than cup length: let $f : (L:A) \subset (X:A)$ and $g : (K:A) \to (X:A)$ be maps in \mathcal{T}^A and let h be a generalized cohomology theory.

DEFINITION 6.3 ([16]). A homomorphism $\phi : h^*(Y, L) \to h^*(K, A)$ of h_* -modules is called an (unstable) *h*-morphism if it preserves the action of any (unstable) cohomology operation on h^* .

DEFINITION 6.4. An (unstable) module weight Mwgt(g, f; h) of (g, f) with respect to h is defined as follows.

$$\operatorname{Mwgt}(g, f; h) = \operatorname{Min} \left\{ m \ge 0 \middle| \begin{array}{l} \operatorname{There is a (unstable)} h\operatorname{-morphism} \phi : \\ h^*(P^m(\Omega(X, L)), L) \to h^*(K, A) \text{ such that} \\ \phi \circ (e_m^X)^* = g^* : h^*(X, L) \to h^*(K, A). \end{array} \right\}.$$

When h is the ordinary cohomology theory with coefficients in a ring R, we denote Mwgt(g, f; h) by Mwgt(g, f; R).

REMARK 6.5. The invariants introduced in this paper satisfy the following inequality for any generalised cohomology theory h^* :

$$\operatorname{cup}(g, f; h) \le \operatorname{Mwgt}(g, f; h) \le \operatorname{cat}(g, f) = \operatorname{catlen}(g, f),$$

and hence for any ring R, we have

$$\operatorname{cup}(g, f; R) \le \operatorname{Mwgt}(g, f; R) \le \operatorname{cat}(g, f) = \operatorname{catlen}(g, f).$$

Similar to the above definition of cup(g, f), we define the following invariants.

DEFINITION 6.6. For any (g, f) = (X; K, L:A), we define

$$\operatorname{Mwgt}(g, f) = \operatorname{Max} \left\{ m \ge 0 \middle| \begin{array}{c} \operatorname{Mwgt}(g, f; h) = m \text{ for some generalized} \\ \operatorname{cohomology theory } h \end{array} \right\}.$$

REMARK 6.7. $\operatorname{cup}(g, f) \leq \operatorname{Mwgt}(g, f) \leq \operatorname{cat}(g, f) = \operatorname{catlen}(g, f).$

7. Examples of categorical sequences. In [3], Berstein and Hilton showed that the L-S category of the cell complex $Q(\alpha) = S^r \cup_{\alpha} e^{q+1}$, $\alpha \in \pi_q(S^r)$, is determined by the Hopf invariant $H_1(\alpha) \in \pi_{q+1}(S^r \times S^r, S^r \vee S^r) \ (\cong \pi_q(\Omega(S^r) * \Omega(S^r)))$ by Ganea). We can easily observe that $F_0 = *$, $F_1 = S^r$ and $F_2 = Q(\alpha)$ give a cone decomposition of $Q(\alpha)$ of length 2. If $H_1(\alpha) = 0$, then by Theorem 1.15, we obtain that $F'_0 = F_0 = *$, $F'_1 = F_1 \cup_{\alpha} e^{q+1} = F_2 = Q(\alpha)$ give a categorical sequence of length 1.

In [15], the author showed that the L-S category of total space $E(\beta) = Q(\beta) \cup_{\psi(\beta)} e^{q+r+1}$, $\beta \in \pi_q(S^r)$, $\psi(\beta) \in \pi_{q+r}(Q(\beta))$ is determined by $\Sigma^r H_1(\beta) \in \pi_{q+r}(\Omega(S^r) * \Omega(Q(\beta))) * \Omega(Q(\beta)))$, if $H_1(\beta) \neq 0$. We can easily observe that $F_0 = *, F_1 = S^r, F_2 = Q(\beta)$ and $F_3 = E(\beta)$ give a cone decomposition of $E(\beta)$ of length 3. If $\Sigma^r H_1(\alpha) = 0$, then by Theorem 1.15, we obtain that $F'_0 = F_0 = *, F'_1 = F_1 = S^r, F'_2 = F_2 \cup_{\psi(\beta)} e^{q+r+1} = F_3 = E(\beta)$ give a categorical sequence of length 2.

Let us denote by $Z^{(k)}$ the k-skeleton of a CW complex Z. To give an upper-bound for L-S category of the total space of a fibre bundle $F \hookrightarrow E \to B$, we need a refinement of results of Varadarajan [28] and Hardie [11], and the corresponding result for strong category of Ganea [9]:

THEOREM 7.1 ([28, 11, 9]). (1) $\operatorname{cat}(E)+1 \leq (\operatorname{cat}(F)+1) \cdot (\operatorname{cat}(B)+1)$. (2) $\operatorname{Cat}(E)+1 \leq (\operatorname{Cat}(F)+1) \cdot (\operatorname{Cat}(B)+1)$.

In [18], Iwase-Mimura-Nishimoto gave a refinement in the case when the base space B is non-simply connected. On the other hand in the case when B is simply connected, Iwase-Kono [17] gave another refinement if the higher Hopf invariant of the characteristic map is 0.

By assuming the fibre F is of categorical length m, we obtain a further refinement using categorical sequence in place of cone decomposition:

THEOREM 7.2. Let B be a (d-1)-connected finite dimensional CW complex $(d \ge 1)$, whose cells are concentrated in dimensions $0, 1, \ldots, s \mod d$ for some $s, 0 \le s \le d-1$. Let $F \hookrightarrow X \to B$ be a fibre bundle with fibre F whose structure group is a compact Lie group G. Then we have $\operatorname{cat}(X) \le m + \lfloor \frac{\dim B}{d} \rfloor$, if F has a categorical sequence of length m with the following compatibility assumption for some $d \ge 1$:

(1) $\psi|_{G^{(d \cdot (i+1)+s-1)} \times F_j} : G^{(d \cdot (i+1)+s-1)} \times F_j \to F$ is compressible into $F_{i+j}, 0 \le i, j \le i+j \le m$.

In [17], Kono and the author showed that there is a cone decomposition E_i , $0 \le i \le 8$ and E'_8 of Spin(9) of length 9, while the L-S category of Spin(9) is 8 by a combination of a higher Hopf invariant and the cone decomposition: we can easily see that the construction in §1 in [17] gives the following proposition:

PROPOSITION 7.3. Let $G \hookrightarrow E \to \Sigma^2 V$ be a principal bundle with a characteristic map $\alpha : \Sigma V \to Q$ a subspace of G. Then $\operatorname{catlen}(E) \leq m+n+1$ if G has a categorical sequence $* = F_0 \subset \cdots \subset F_m \simeq G$ with the following compatibility assumption for a positive integer n:

(1) the restriction of the multiplication $\mu : G \times G \to G$ to the subspace $F_j \times Q \subseteq F_m \times F_m \simeq G \times G$ is compressible into $F_{j+n} \subseteq F_m \simeq G$, $j \ge 0$ as $\mu_j : F_j \times Q \to F_{j+n}$ such that $\mu_j|_{F_{j-1} \times Q} = \mu_{j-1}$.

REMARK 7.4. If we choose n = m, then the assumption (1) above is automatically satisfied and we always have $\operatorname{cat}(E) \leq 2 \operatorname{cat}(G) + 1$ which is a special case of a theorem of Hardie and Varadarajan [11, 28] (see Theorem 7.1 (1)).

Moreover, Lemma 1.1 in [17] implies that the higher Hopf invariant of the attaching map of the top cell of Spin(9) must vanish, since the structure map of $\operatorname{cat}(E'_8) = 8$ can be chosen to be compatible to the structure map of $\operatorname{cat}(E_8) = 8$ by the argument given in the proof of Lemma 1.1 in [17]. Hence by Theorem 1.15, we obtain that E_i , $0 \le i \le 7$ and E'_8 give the categorical sequence of length 8: we can easily see that the proof of Lemma 1.1 in [17] gives the following theorem:

PROPOSITION 7.5. Let $G \hookrightarrow E \to \Sigma^2 V$ be a principal bundle with a characteristic map $\alpha : \Sigma V \to Q$ a subspace of G. Then $\operatorname{cat}(E) \leq \operatorname{Max}\{m+n, m+2\}$ if G has a categorical sequence $* = F_0 \subset \cdots \subset F_m \simeq G$ with the following compatibility assumptions for a positive integer n:

(1) the restriction of the multiplication μ : G×G → G to the subspace F_j×Q ⊆ F_m×F_m ≃ G×G is compressible into F_{j+n} ⊆ F_m ≃ G, j≥0 as μ_j : F_j×Q → F_{j+n} such that μ_j|_{F_{j-1}×Q} = μ_{j-1} and
(2) H_n^(E;Q∪_αCΣV,Q;*)(α) = 0.

These propositions imply the following result.

THEOREM 7.6. Let $G \hookrightarrow E \to \Sigma^2 V$ be a principal bundle with a characteristic map $\alpha : \Sigma V \to Q$, a subspace of G. Then $\operatorname{cat}(E) \leq \operatorname{Max}\{m+n+\operatorname{cat}(E; Q \cup_{\alpha} C\Sigma V, Q; *), m+2\}$

if G has a categorical sequence $* = F_0 \subset \cdots \subset F_m \simeq G$ with the following compatibility assumption for a positive integer $n \geq 1$:

(1) the restriction of the multiplication $\mu : G \times G \to G$ to the subspace $F_j \times Q \subseteq F_m \times F_m$ $\simeq G \times G$ is compressible into $F_{j+n} \subseteq F_m \simeq G$, $j \ge 0$ as $\mu_j : F_j \times Q \to F_{j+n}$ such that $\mu_j|_{F_{j-1} \times Q} = \mu_{j-1}$.

Acknowledgments. Research of the author is supported by the Grant-in-Aid for Scientific Research #15340025 from Japan Society for the Promotion of Science.

References

- M. Arkowitz and G. Lupton, *Homotopy actions, cyclic and their duals*, Homology, Homotopy and Applications 7 (2005), 169–184.
- I. Berstein and T. Ganea, The category of a map and of a cohomology class, Fund. Math. 50 (1961/62), 265–279.
- [3] I. Berstein and P. J. Hilton, Category and generalised Hopf invariants, Illinois J. Math. 12 (1968), 421–432.
- [4] O. Cornea, Some properties of the relative Lusternik-Schnirelmann category, in: Stable and Unstable Homotopy (Toronto, 1996), Fields Inst. Commun. 19, 1998, 67–72.
- [5] L. Fernández-Suárez, A. Gómez-Tato, J. Strom and D. Tanré, *The Lusternik-Schnirel-mann category of Sp*(3), Proc. Amer. Math. Soc. 132 (2004), 587–595.
- [6] E. Fadell and S. Husseini, Category weight and Steenrod operations, Papers in honor of José Adem, Bol. Soc. Mat. Mexicana 37 (1992), 151–161.
- [7] E. Fadell and S. Husseini, *Relative category, products and coproducts*, Rend. Sem. Mat. Fis. Milano 64 (1994), 99–115 (1996).
- [8] R. H. Fox, On the Lusternik-Schnirelmann category, Ann. of Math. (2) 42 (1941), 333–370.
- [9] T. Ganea, Lusternik-Schnirelmann category and strong category, Illinois J. Math. 11 (1967), 417–427.
- [10] T. Ganea, Cogroups and suspensions, Invent. Math. 9 (1970), 185–197.
- [11] K. A. Hardie, A note on fibrations and category, Michigan Math. J. 17 (1970), 351–352.
- [12] J. Harper, A proof of Gray's conjecture, in: Algebraic Topology (Evanston, 1988), Contemp. Math, 96, Amer. Math. Soc., Providence, 1989, 189–195.
- [13] N. Iwase, Ganea's conjecture on Lusternik-Schnirelmann category, Bull. London Math. Soc. 30 (1998), 623–634.
- [14] N. Iwase, A_{∞} -method in Lusternik-Schnirelmann category, Topology 41 (2002), 695–723.
- [15] N. Iwase, Lusternik-Schnirelmann category of a sphere-bundle over a sphere, Topology 42 (2003), 701–713.
- [16] N. Iwase, The Ganea conjecture and recent developments on the Lusternik-Schnirelmann category, Sūgaku 56 (2004), 281–296 (in Japanese).
- [17] N. Iwase and A. Kono, Lusternik-Schnirelmann category of Spin(9), Trans. Amer. Math. Soc. 359 (2007), 1517–1526.
- [18] N. Iwase, M. Mimura, T. Nishimoto, L-S categories of non-simply-connected compact simple Lie groups, Topology Appl. 150 (2005), 111–123.
- [19] I. M. James, *The Topology of Stiefel Manifolds*, London Math. Soc. Lec. Notes 24, Cambridge University Press, Cambridge, 1976.

- [20] I. M. James, On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978), 331–348.
- [21] I. M. James, *Lusternik-Schnirelmann category*, in: Handbook of Algebraic Topology, North Holland, Amsterdam, 1995, 1293–1310.
- [22] L. Lusternik and L. Schnirelmann, Méthodes Topologiques dans les Problèmes Variationnels, Hermann, Paris, 1934.
- [23] Y. B. Rudyak, On category weight and its applications, Topology 38 (1999), 37–55.
- [24] M. Sakai, A proof of the homotopy push-out and pull-back lemma, Proc. Amer. Math. Soc. 129 (2001), 2461–2466.
- [25] J. D. Stasheff, *Homotopy associativity of H-spaces*, *I*, *II*, Trans. Amer. Math. Soc. 108 (1963), 275–292, 293–312.
- [26] J. Strom, Essential category weight and phantom maps, in: Cohomological Methods in Homotopy Theory (Bellaterra, 1998), Progr. Math. 196, Birkhäuser, Basel, 2001, 409–415.
- [27] J. Strom, Decomposition of the diagonal map, Topology 42 (2003), 349–364.
- [28] K. Varadarajan, On fibrations and category, Math. Z. 88 (1965), 267–273.
- [29] G. W. Whitehead, *Elements of Homotopy Theory*, Graduate Texts in Mathematics 61, Springer, Berlin, 1978.