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Abstract. Let G(k)
n be a family of random independent k-element subsets of [n] = {1, 2, . . . , n}

and let H(G(k)
n , `) = H(k)

n (`) denote a family of `-element subsets of [n] such that the event
that S belongs to H(k)

n (`) depends only on the edges of G(k)
n contained in S. Then, the edges of

H(k)
n (`) are ‘weakly dependent’, say, the events that two given subsets S and T are in H(k)

n (`)

are independent for vast majority of pairs S and T . In the paper we present some results on
the structure of weakly dependent families of subsets obtained in this way. We also list some
questions which, despite the progress which has been made for the last few years, remain to
puzzle researchers who work in the area of probabilistic combinatorics.

1. Introduction. On October 11th 1938 Józef Marcinkiewicz gave a talk at Poznań
University entitled The development of the probability theory for the last 25 years. Soon
after he was offered a position at the University starting September 1st, 1939. This date
could be an important date for the history of mathematics in Poznań as well as for Mar-
cinkiewicz’s academic career. Unfortunately, instead it is remembered as the beginning
of the Second World War which, let us remind, took also Marcinkiewicz’s life.

Nowadays in Poznań there are several research groups active in the areas of mathe-
matics which profit from Marcinkiewicz’s immense and diverse scientific legacy. In this
paper we report on some old and new developments concerning certain aspects of the
theory of random discrete structures, a relatively new part of probability theory which
has been extensively studied by probabilists, combinatorists, and computer scientists for
the last thirty years. As we can see, although Marcinkiewicz was not directly involved
in studies of such objects (the systematic studies of random graphs started only in the
sixties) we can still link some recent results to theorems which most likely he mentioned
in his lecture over seventy years ago.
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2. Random hypergraphs. A k-uniform hypergraph H, or briefly k-graph, is a pair
(V,E), where V is a set of vertices and E consists of k-element subsets of V , called
edges. The main mathematical object we shall be interested in is G(k)(n, p) defined as
the (random) k-graph with the vertex set [n] = {1, 2, . . . , n} such that each S, S ⊆ [n],
|S| = k, belongs to G(k)(n, p) with probability p, independently for each of

(
n
k

)
k-element

subsets of [n]. Note that each property of hypergraphs (such as, say, that it contains
at least n/2 subsets) holds for G(k)(n, p) with some probability, and each characteristic
of hypergraphs (such as the number of sets in a hypergraph) becomes in G(k)(n, p) a
random variable (e.g. the number of edges of G(k)(n, p) is binomially distributed with
parameters

(
n
k

)
and p). G(k)(n, p) is called the binomial model of random hypergraph.

Another, closely related model of a random hypergraph is G(k)(n,M), where we select a
family of k-element sets uniformly at random from all families of M k-element subsets
of [n].

Thus, G(k)(n, p) as well as G(k)(n,M) are probabilistic spaces whose elements are
k-graphs which are finite. However, we shall be interested only in its asymptotic behavior
when n→∞. In particular, we often allow p = p(n) or M = M(n) to be a function of n
and say that some property of G(k)(n, p) holds a.a.s. if the probability of this property
tends to 1 as n→∞. Then, in many cases properties of both G(k)(n, p) and G(k)(n,M)
are similar, i.e. these two models are equivalent in some well defined way (for a precise
statement of this fact see [11]).

Random k-graphs have been extensively studied for the last twenty years. They can be
used as an effective tool to show existence of k-graphs with some special properties (such
as expanders), or serve as models of some real-world networks (e.g. internet graphs). One
can also apply them to study the average case behavior of some algorithms, and to model
and investigate the phase transition phenomena. In this paper we consider yet another
application of random graphs of more probabilistic flavor – we shall treat them as models
of weakly dependent families of random variables.

Let us suppose that H is a family of some (usually small) k-graphs whose vertex set
is contained in [n]. Then, by H(n, p) [H(n,M)] we denote the family which consists of
k-graphs from H with all edges contained in G(k)(n, p) [G(k)(n,M)]. In this paper we
concentrate on two particular examples of H, although most of results remain true in
a more general setting. The first one is the family K(k)

` of all complete k-graphs on `

vertices contained in [n]; the second one of more algebraic flavor is the family AP` of
`-element arithmetic progressions contained in [n]. Note that now we can treat K(k)

` (n, p)
and AP`(n, p) as random `-graphs whose edges are not independent but, in a way, weakly
dependent. In order to get some feeling of the notion of weak dependence we shall freely
use in a non-rigorous manner, let us look at the family K(2)

3 (n, p) of all triangles contained
in G(2)(n, p). One can view K(2)

3 (n, p) as the family of the indicator variables Xijk, where

Xijk =

{
1 if {i, j}, {j, k}, {i, k} are edges of G(2)(n, p)

0 otherwise.

Since typically p = p(n) is small and tends to 0 as n → ∞, Xijk is positively correlated
with 3n other variables Xi′j′k′ such that |{i, j, k}∩{i′, j′, k′}| = 2, and independent of the
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values of
(
n
3

)
−3n variables Xi′′j′′k′′ for which |{i, j, k}∩{i′, j′, k′}| ≤ 1. In G(2)(n,M) the

situation is slightly more complex – the suitably defined random variable X̂ijk is strongly
positively correlated to 3n variables X̂i′j′k′ and weakly negatively correlated to all the
others. Nonetheless, in both cases we are dealing with families of random triangles whose
appearance in a given place is either independent or weakly correlated to the presence
of most of remaining triangles in the family. The main goal of this paper is to describe
and comment on some results on the structure of random hypergraphs H(n, p) of such a
type, in particular random `-graphs K(k)

` (n, p) and AP`(n, p).

3. Limit theorems. The most basic question on `-graphs K(k)
` (n, p) is the one about

the distribution number of its edges. Equivalently, we want to know the number X`(n, p)
of complete graphs on ` vertices contained in G(k)(n, p). This particular case is not very
hard and well understood. Clearly, since X`(n, p) is a sum of weakly dependent identi-
cally distributed random indicator variables one can expect that it has asymptotically
normal distribution and in most cases it is indeed so (provided both the expectation and
variance of X`(n, p) tend to infinity as n → ∞). One can prove for X`(n, p) the central
limit theorem as well as its local version, and get good bounds on the rate with which
the distribution tends to the normal one, using either the convergence of moments or
more advanced techniques such as the Stein–Chen method or the orthogonal projection
technique (see [11]). Here we describe yet another way of dealing with such problems
which is relatively less known but has been proved useful to get limit theorems for other
cases of a sum of weakly dependent random variables.

Let us first recall that for the random variable X with E|X|j <∞ the jth semiinvari-
ant (or the jth cumulant) κj(X) of X is defined as

κj(X) = (−i)j dj

(dt)j
log φX(0) ,

i.e. semiinvariants are coefficients of Maclaurin expansion of the characteristic function
of X.

In 1939 Marcinkiewicz proved ([18], Théorème 2bis) that if all high enough semiin-
variants vanish, then the random variable is normal or degenerate.

Theorem 3.1. If for some m and all j ≥ m we have κj(X) = 0, then κj(X) = 0 for all
j ≥ 2, i.e. X is either degenerate, or has the normal distribution.

Almost fifty years later Janson [9] showed the following asymptotic version of this
result.

Theorem 3.2. Let X1, X2, . . . be a sequence of random variables such that for some m

κ1(Xn) = EXn → µ,

κ2(Xn) = VXn → σ2 > 0,

κj(Xn)→ 0 for all j ≥ m.

Then, Xn
D→ N(µ, σ2) and for each j ≥ 1 the moments EXj

n converge to the jth moment
of N(µ, σ2).
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More importantly, Janson noticed that from the above theorem one can immediately
deduce the normal convergence for a sum of certain families of weakly dependent random
variables.

Theorem 3.3. For each n let {Zn,i}Nn
i=1 be a family of uniformly bounded random vari-

ables, say |Zn,i| ≤ 1. Let us also assume that each random variable Zn,i is independent
of all but at most Mn variables from the family {Zn,i}Nn

i=1.
Let Xn =

∑Nn

i=1 Zn,i and σ2(Xn)→ σ2. If for some m we have(Nn
Mn

)1/m Mn

σn
−→ 0 as n→∞,

then
Xn − EXn

σ2
n

D→ N(0, 1) as n→∞.

Thus, for instance, for the case of triangles in G(2)(n, p) where p < 1/2 and p3n ≥ nε
for some ε > 0, we have Nn =

(
n
3

)
,Mn = 3n and, since all indicator variables for triangles

are positively correlated, σ2
n ≥

(
n
3

)
p3(1− p3) ≥ 0.1n2+ε. Then, setting m = d6/εe, we get(Nn

Mn

)1/m Mn

σn
≤ 10n2/m−ε/2 ≤ 10n−ε/10 → 0,

so the number of triangles after standardization tends to the normal distribution. As we
have already mentioned for triangles this convergence can be shown more directly. How-
ever, in many other cases, where the structure of weakly dependent family of variables is
more complex so that the estimating of the third moment is already difficult, Theorem 3.3
based on the asymptotic version of Marcinkiewicz’s result proved to be extremely useful.

4. Large deviation theorems. Once we know that for the sum of weakly dependent
variables the central limit theorem holds, we can ask if it is possible to prove a large
deviation results similar to Chernoff’s bounds for the tails of Bernoulli distributions. In
many cases we can answer this question in the affirmative. Here we present only one such
result by Janson, Łuczak, Ruciński [10] which is proved using Laplace transforms, for
other ones we refer the reader to [11].

In order to do that in a general case of a sum of weakly dependent random variables
we need to introduce some notation. Suppose that {Ji : i ∈ I} is a finite family of
independent 0–1 random variables. Let A be the family of subsets of I and for each
α ∈ A let Xα =

∏
i∈α Ji. Finally, let XA =

∑
α∈AXα. Thus, for instance, if I is the

family of all 2-element subsets of [n], P (Ji = 1) = 1− P (Ji = 0) = p, for each i ∈ I, and
A is the family of triples which form a triangle, then XA counts the number of triangles
in G(2)(n, p).

Clearly, if all random variables XA were independent and P (Xα = 1) was small for
each α ∈ A we would have

P (XA = 0) =
∏
α∈A

(1− P (Xα = 1)) . exp
(
−
∑
α∈A

P (Xα = 1)
)

= exp(−EXA).

It turns out (see [10]) that a similar inequality holds for weakly dependent families of
random variables provided we supplement the power in the left hand side by an additional
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term ∑∑
α 6=β,α∩β 6=∅

EXαXβ

which clearly measures how dependent is the family {Xα}α∈A.

Theorem 4.1.

Pr(XA = 0) ≤ exp
(
− (EXA)2∑∑

α∩β 6=∅EXαXβ

)
≤ exp

(
−EXA +

∑∑
α6=β,α∩β 6=∅

EXαXβ

)
.

It turns out that the above upper estimate gives the correct value of log Pr(XA = 0)
up to a constant factor and similar estimates can be obtained also for the random vari-
ables counting edges of K(k)

` (n,M) (see [10] or [11]). In particular, the probability that
G(2)(n, p) contains no triangles is exp(−Θ(n3p3)) for np2 ≤ 1 and exp(−Θ(n2p)) when-
ever np2 ≥ 1. Similarly, the probability that there are no triangles in G(2)(n,M) is
exp(−Θ(M3/n3)) if M ≤ n3/2, and exp(−Θ(M)) if n3/2 ≤ M ≤ n/3. We also mention
that if, say, p = cn−1/2 for some constant c > 0, then we expect

lim
n→∞

logP (XA = 0)n3/2 = −a(c) ,

for some constant a(c) > 0, but at this moment we do not know the correct value of a(c).

5. Beyond large deviation results. So far we have just counted the number of edges
in K(k)

` (n,M); now we try to say something about the structure of these graphs. Thus, let
us ask the ‘extremal type’ question: what is the minimum number Y = Y (n,M) of edges
one should delete from G(2)(n,M), to get rid of all triangles contained in it? Clearly,
Y is bounded from below by the maximum number of edge-disjoint triangles contained
in G(2)(n,M), and bounded from above by the number of all triangles in G(2)(n,M).
If M = o(n2/3) a.a.s. these two random variables are not far from each other so we
can determine Y quite precisely. The question becomes much more interesting when
M � n2/3, i.e. when the expected number of triangles becomes much larger than the
number of edges. Then, a natural upper bound for Y is M/2, since one can destroy all
triangles in G(2)(n,M) by splitting its vertices into two equal parts and removing all the
edges inside each of the parts (note that in this way we delete roughly half of the edges).
Frankl and Rödl [3] and Haxell, Kohayakawa and Łuczak [8] showed that ifMn−2/3 →∞,
then this upper bound gives the asymptotically correct value of Y , i.e. for M � n3/2 we
have a.a.s. Y = (1 + o(1))M/2.

Theorem 5.1. If Mn−2/3 → ∞ as n → ∞, and η > 0, then a.a.s. each subgraph of
G(2)(n,M) with more than (1/2 + η)M edges contains a triangle.

The proof of the above result was based on the following idea which is an example of
the pseudorandom paradigm (see Łuczak [17] and Tao [26]). Basically we shall argue that
a.a.s. subgraph of G(2)(n,M) contains a large ‘pseudorandom’, ‘essentially non-bipartite’
subgraph (this part of the argument is mainly deterministic), and then use a probabilistic
result (Lemma 5.2 below) to infer that such a subgraph must contain a triangle.

In order to be slightly more precise let us assume that we count all subgraphs H of
G(2)(n,M) which are triangle-free and have at least (1/2+ε)M edges. The number of such
subgraphs is bounded from above by 2M and the probability that H contains no triangles
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is the same as the probability that G(2)(n, (1/2+ε))M contains no triangles. Hence, if we
could only show that the last probability is much smaller than 2−M we would be done.
However it is plainly wrong – the probability that each edge of G(2)(n, (1/2+ε))M has one
end in {1, 2, . . . , bn/2c} and the other in {bn/2c+1, . . . , n} is roughly 2−(1/2+ε)M � 2−M .

Now we use pseudorandomness for the first time. Although it is not true that the
probability that G(2)(n, (1/2 + ε))M contains no triangles is smaller that 2−M we may
still hope to get a much better bound if we condition on the event that G(2)(n, (1/2+ε))M
is ‘pseudorandom’. And, indeed, it turns out that there exist properties B(ε) and T (ε),
such that conditioned on B(ε)∩T (ε) the probability that G(2)(n,M) contains no triangles
significantly decreases, i.e. the following holds.

Lemma 5.2. For each ε > 0 there exists c > 0 such that for every M ≥ cn3/2 we have

Pr
(
G(2)(n,M) contains no triangles | B(ε) ∩ T (ε)

)
≤ εM . (1)

Precise definitions of B(ε) and T (ε) are somewhat technical but roughly T (ε) states
that one cannot remove from a graph an ε fraction of edges and make it bipartite (i.e.
it states that a graph is ‘essentially non-bipartite’), while B(ε) means that the edges
of graphs are uniformly distributed, where this uniformity is measured by a parameter
ε > 0 (i.e. a graph is ‘pseudorandom’). In order to use Lemma 5.2 one should match it
with so called Regularity Lemma, one of the most efficient tools of modern random graph
theory. The Regularity Lemma was first proved in Szemerédi’s celebrated paper on the
Density Theorem [25] and was adapted for sparse graphs independently by Kohayakawa
and Rödl. In this setting it states that each dense subgraph H of a graph G whose edges
are, in some way, uniformly distributed (as is the case, for instance, in G(2)(n, k)) contains
a relatively large and dense subgraph F which fulfils the uniformity condition B(ε), i.e.
each dense subgraph contains a large ‘pseudorandom subgraph’. Now Theorem 5.1 can be
proved as follows. We choose ε > 0 much smaller than η. From Lemma 5.2 we deduce that
a.a.s. each large subgraph F of G(2)(n,M) for which both T (ε) and B(ε) hold contains
a triangle. Now we take a subgraph H of G(2)(n, p) with more than (1/2 + η)M edges.
We apply to it Regularity Lemma and deduce that it contains a large subgraph F ′ ⊆ H
which has property B(ε). Furthermore, since H contains more than half of all edges one
can argue that there is a large subgraph F ⊆ F ′ which has both properties T (ε) and
B(ε) and, as we have already mentioned, a.a.s. each such F (and thus H) must contain
a triangle.

Can one repeat this argument to prove a result analogous to Theorem 5.1 for
K(k)
` (n,M), i.e. for `-cliques in random k-graphs? It should be possible but at this mo-

ment we do not know how to do that. For graphs the main obstacle is that we do not know
if the statement analogous to Lemma 5.2 holds not only for triangles but for all graphs.
This so called KŁR Conjecture (for its rigorous statement see Kohayakawa, Łuczak and
Rödl [13]) has been verified only for special cases of graphs such as cycles, cliques of size
four and five, and certain classes of bipartite graphs (see Gerke, Schickinger, Steger [5]
and the references therein). For k-graphs with k ≥ 3 the problem is much more difficult
– the statement of Regularity Lemma for hypergraphs is so complicated it is not even
clear what should be a rigorous statement of ‘uniformity’ condition Bk(ε).
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6. Arithmetic progressions in random subsets. In the previous section we dis-
cussed the structure of K(k)

` (n,M), now we look at the random hypergraph AP`(n,M).
Let us first state the problem analogous to that we considered in the previous section for
k-graphs. We say that a subset A ⊆ [n] has property P(η, `) if every B, B ⊆ A, such
that |B| ≥ η|A|, contains a nontrivial arithmetic progression of length `. We want to
find the threshold function Mη,`(n) such that if M/Mη,` → 0, then a.a.s. the random set
G(1)(n,M) has no property P(η, `), while for M/Mη,` → ∞ the property P(η, `) a.a.s.
holds for G(1)(n,M). It is easy to check that if Mn−(`−2)/(`−1) → 0, then the number of
non-trivial arithmetic progressions of length ` is much smaller than M , i.e. P(η, `) does
not hold. Thus, it is natural to conjecture that Mη,` = n(`−2)/(`−1) is the threshold for
P(η, `), i.e. if Mn−(`−2)/(`−1) →∞, then a.a.s. P(η, `) holds for G(1)(n,M).

This problem is hard even in the simplest possible ‘deterministic’ case when M = n,
i.e. when we ask if the set [n] has property P(η, `). For ` = 3 it was proved by Roth [22]
in 1953, while for general ` ≥ 3 it was settled by Szemerédi [25] in 1975. Soon after an
entirely different argument, based on ergodic theory, was given by Furstenberg [4]. The
subject was revived by Gowers, who provided another proof of this fact using so called
Gowers’ norms [6]. Yet another proof, this time based on a version of Regularity Lemma
for hypergraphs, was given by Nagle, Rödl, Skokan and Schacht [19], [21] (see also [20]),
and independently by Gowers [7]. In the above results the constant ε > 0 can be replaced
by a function r`(n) which tends slowly to 0 as n → ∞; the question of the correct rate
of convergence of this function is not known even for r3(n) (the best estimate for r3(n)
are given by Bourgain [1]) and remains a major open question in combinatorial number
theory.

It should be pointed out that although nowadays we know at least four different proofs
of Szemerédi’s Density Theorem each of them is either hard or invokes deep results from
graphs theory or ergodic theory. Thus, it seems hopeless to expect that we can prove
similar theorems for much harder ‘random set’ case. However, somewhat surprisingly, it
can be done. First such attempt has been made by Kohayakawa, Łuczak and Rödl [12],
who used an idea of Ruzsa and Szemerédi [21] and successfully treated the case ` = 3.
For a solution of the case ` ≥ 4 we waited much longer; the breakthrough has come only
recently with the papers of Conlon and Gowers [2] and Schacht [24] who described a fairly
general method to deal with this and similar cases. In particular their techniques provide
solutions for most of the problems which can be solved using KŁR conjecture described
in the previous section, although they do not solve the conjecture itself.

The main idea behind the method of Conlon and Gowers [2] and Schacht [24] is to
rigorously justify the paradigm which has been known for a long time to experts in random
graph theory: if M = M(n) is large enough then the random graph G(k)(n,M) can be
treated as a sparse version of the complete graph G(k)(n,

(
n
k

)
). Thus, for instance, suppose

that B is a subset of some ‘random enough’ set A, |A| = pn, such that |B| ≥ |A|/100.
From that and the fact that each subset B̂ of [n] of n/100 elements contains at Ω(|B̂|2)
arithmetic progressions of length 3 we want to deduce that B contains Ω(p|B|2) arithmetic
progressions of length 3. The idea of Conlon and Gowers can be roughly described as
follows. They view the statement of subsets of [n] as the statement about the indicator
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function of B̂ and show that the analogous fact remains true not only for indicator
functions of the sets but also for any function which is close to an indicator function in
some special norm (designed especially for the arithmetic progressions of length three).
It turns out that the rescaled indicator function of B ⊆ A, provided A is random enough,
is close enough to true indicator function of dense subset in [n] so the assertion follows.
The argument of Schacht is purely combinatorial. Suppose that we select vertices from
B ⊆ A and B̂ ⊆ [n] one by one so that we would like to minimize the final number
of arithmetic progressions of length 3. It turns out that for random enough A selecting
kp elements from B would create roughly the same number of potential candidates for
arithmetic progressions in [n] as we would expect if we were to select k elements of some B̂;
furthermore, one can argue that, since A is random-like, roughly p-fraction of all these
candidates are in A. Hence, if it is impossible to avoid Ω(|B̂|2) arithmetic progressions of
length in B̂, it is also impossible to have fewer than Ω(p|B|2) arithmetic progressions in B.
The proofs of the above arguments are technically very involved but the main theorems in
both papers are stated in such a general way that one can use these results as in a variety
of situations by verifying a few technical conditions. The importance and significance of
these two papers for random structures theory can hardly be overestimated.

7. Future directions. At first sight it seems that nowadays we have got a fair under-
standing of property P(η, `) and extremal properties of k-graphs, and after the papers
of Conlon and Gowers [2] and Schecht [24] we also know how to study the structure of
AP`(n,M). We conclude this note with a few remarks suggesting this is not quite the
case.

The most intriguing (and annoying) issue which bothers experts working in this area
is of somewhat ‘philosophical’ nature (but, as we shall see shortly, solving it can have
some well defined mathematical consequences). In order to explain the problem let us
look once again at the Density Theorem. Besides Szemerédi’s original argument there
are at least three other proofs of this result: Furstenberg’s ergodic argument, the proof
based on Gowers’ norm, and one which deduces the Density Theorem from extremal
properties of k-graphs (such as the Regularity Lemma or one of its consequences, the
Removal Lemma). All these methods are based on a ‘pseudorandom paradigm’ which
states, in a most general form, that each dense structure contains a large pseudorandom
substructure. Are these methods essentially different, or do they use just different settings
to present the same argument? We do not know. They certainly give different estimates,
say, for r3(n): the ergodic argument gives o(n), using a ‘naive’ hypergraph approach of
Ruzsa and Szemerédi [21] one gets r3(n) = O(n/ log∗ n), and Roth’s original argument
gives r3(n) = n/ log log n. Two last estimates can be improved but one cannot hope to do
much better that Roth’s estimate by purely combinatorial means. However, it is not at all
clear if the reason for that lies in the additional symmetries of the problem (for the proof
of the Density Theorem it is enough to know properties of very symmetric k-graphs) or,
perhaps, these methods are intrinsically different. The same question can be asked about
the techniques developed to deal with random structures. Is there any direct connection
between analytic approach of Conlon and Gowers and combinatorial argument of Schacht?



WEAKLY DEPENDENT FAMILIES 131

It is not clear. This is quite unfortunate since understanding this relation could possibly
shed some new light on many related questions. For instance, analysts may want to have a
combinatorial version of Gowers’ norm. On the other hand combinatorists are struggling
with finding better measures for pseudorandomness of sparse k-graphs. Analytic tools
have already been known to be very useful in this case (e.g. for investigating graphons,
cf. Lovász and Szegedy [15]) but it seems that we see just the tip of the iceberg.

As we have mentioned in the previous section the general approach of Conlon and
Gowers and Schacht can be used to show many consequences of KŁR conjecture. However,
some of them cannot be deduced in this way. For instance, suppose that we choose a graph
from the family of all triangle-free graphs with n vertices and M edges and ask for which
M = M(n) it is a.a.s. bipartite, i.e. we want to find M = M(n) such that

P
(
G(2)(n,M) is bipartite | G(2)(n,M) is triangle-free

)
= 1− o(1).

From KŁR conjecture (which holds for triangles) it follows that the threshold functionM
is Θ(n3/2), and if the conjecture holds it would give thresholds for analogous properties
of this type (for details see Łuczak [16]).

We conclude with one of several problems in this area which are natural, important,
and easy to state but which seem to be out of our reach at this moment. Let us call a
k-graph linear if each pair of its edges shares at most one vertex. Note that since every
pair of vertices of a linear k-graph on n edges is contained in at most one edge, a k-graph
has got at most

(
n
2

)
edges.

Conjecture. For each α > 0 and k ≥ 3 there exists n0 such that each linear k-graph
with n ≥ n0 vertices and αn2 edges contains k edges of type {a0, a

1
1, a

1
2, . . . , a

1
k−1},

{a0, a
2
1, a

2
2, . . . , a

2
k−1}, . . . , {a0, a

k−1
1 , ak−1

2 , . . . , ak−1
k−1}, and {a′0, a1

1, a
2
2, . . . , a

k−1
k−1}.

The above conjecture holds for k = 3. Moreover, it is easy to see that for a given
k it implies the Density Theorem for arithmetic progressions of length k, so its proof is
probably hard. On the other hand, there is a general believe that we can show it using
pseudorandom paradigm; unfortunately, we do not have a slightest idea how the definition
of pseudorandom linear k-graph should look like!
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