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Abstract. The aim of this paper is to show that every Hausdorff continuous interval-valued
function on a completely regular topological space X corresponds to a Dedekind cut in C(X)

and conversely.

1. Introduction. The set R of real numbers can be constructed starting from the ra-
tional set Q by the method developed by R. Dedekind in 1858 and which today is called
“the order completion by Dedekind cuts” (see [9] or [16], pp. 17–21). In 1937, using the
model of Dedekind cuts, H. M. MacNeille showed how the order completion of any par-
tially ordered set can be obtained [15] (see also [14] or [19]). This completion is called
Dedekind–MacNeille completion, Dedekind order completion or Dedekind completion for
short. The monographs [14] and [19] contain not only the construction of the Dedekind
completion of a partially ordered set, but also the construction of the Dedekind comple-
tion of an Archimedean vector lattice.

It is well known that the set C(X) of all real-valued continuous functions on a topolog-
ical spaceX is an ordered set which is not Dedekind complete ([14], p. 125). R. P. Dilworth
was the first who tried to obtain the Dedekind completion of C(X) by using MacNeille’s
construction. In 1950 ([10], Theorem 4.1) he proved that the Dedekind completion of
Cb(X), the set of all real-valued bounded continuous functions on a completely regular
topological space X, is order isomorphic with the lattice of all normal upper semicontinu-
ous functions on X. (See Section 3 for the definition of normal semicontinuous functions.)
To obtain this result Dilworth showed first that every normal subset of Cb(X) corresponds
to a normal upper semicontinuous function and conversely. (See Section 2 for the defini-
tion of normal sets.)
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Not long after, in 1953, A. Horn, in a beautiful paper but unfortunately almost un-
known [12], proved that the Dedekind completion of C(X) is order isomorphic with the
lattice consisting of all normal lower semicontinuous functions which are bounded above
and below by continuous functions. The fact that the functions are normal lower semicon-
tinuous and not normal upper semicontinuous like in Dilworth’s result is not important
because the two lattices are order isomorphic. The proof of Horn does not use Dedekind
cuts or normal subsets of C(X). Horn’s idea was to describe directly the Dedekind com-
pletion of C(X) like a subset of the Dedekind complete lattice of all the functions defined
on X.

In 2004 R. Anguelov [1] constructed the Dedekind completion of C(X) and Cb(X)
using Hausdorff continuous interval-valued functions on X. (See Section 3 for the defi-
nition and some properties of these functions.) Note that the definition of a Hausdorff
continuous interval-valued function used in this paper is that which appears in the book
of Sendov [18] and in the paper of Anguelov [1] and differs from that used in set valued
analysis. This type of functions, that originally appeared in numerical analysis, are used
today to determine solutions of partial differential equations [4, 5, 21, 22].

The aim of this paper is to show that every Hausdorff continuous interval-valued
function on a completely regular topological space X corresponds to a Dedekind cut
in C(X) and conversely. So we show that the Dedekind completion of C(X) can be
constructed in the same manner in which we obtain R from Q.

2. Cuts in an ordered set. In this section we establish the notation used throughout
the paper and discuss the notion of cut in a partially ordered set. For the unexplained
terminology about ordered sets, and especially about Dedekind completion, see [11, 14, 17].

Let (P,≤) be a partially ordered set (called ordered set, for short) and let A be a
nonempty subset of it. If p ∈ P is an upper (lower) bound of A we write this symbolically
A ≤ p (p ≤ A). If A is bounded above, then Au denotes the set of all upper bounds
of A, and if A is bounded below, then Al denotes the set of all lower bounds of A. If
A = ∅ then every p ∈ P is a lower and at the same time an upper bound of A. Therefore,
∅u = P and ∅l = P . In this situation we have: (a) sup ∅ exists if and only if P has a
least element denoted by minP and hence sup ∅ = minP ; (b) inf ∅ exists if and only if
P has a greatest element denoted by maxP , and hence inf ∅ = maxP . We will say that
the ordered set (P,≤) has endpoints if P has a least element and a greatest element.

Let (P,≤) be an ordered set without endpoints. The sets Au have the properties:

(U1) Au 6= ∅⇔ A is bounded above.
(U2) Au = P ⇔ A = ∅ (here it is used that P has no least element).
(U3) Au is an upper-set (that is, if p ∈ Au and q ≥ p, then q ∈ Au).

Similarly, the sets Bl have the properties:

(L1) Bl 6= ∅ ⇔ B is bounded below.
(L2) Bl = P ⇔ B = ∅ (here it is used that P has no greatest element).
(L3) Bl is a down-set (that is, if p ∈ Bl and q ≤ p, then q ∈ Bl).
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A subset A of P is called proper if A 6= ∅ and A 6= P . If A is a proper subset of P
which is bounded above, then Au is a proper subset of P . The set Au is bounded below
by every element of A. Hence the set Aul is also a proper subset of P .

Proposition 2.1. The sets Au and Bl have the following properties:

(i) A ⊂ B ⇒ Bu ⊂ Au and Bl ⊂ Al.
(ii) A ⊂ Aul and A ⊂ Alu.
(iii) Au = Aulu and Al = Alul.
(iv) B ⊂ Au ⇔ A ⊂ Bl.

(v) Aul =
( ⋃
a∈A
{a}l

)ul
and Alu =

( ⋃
a∈A
{a}u

)lu
.

If A = Aul then A is called a lower normal subset of P . If A = Alu then A is called
an upper normal subset of P .

Definition 2.2. Let (P,≤) be an ordered set without endpoints. A pair (A,B) of two
nonempty subsets of P is called a cut of P if A = Bl and Au = B.

First we remark two simple properties of a cut (A,B): (a) A is bounded above and
B is bounded below; (b) A and B are normal subsets of P : A is lower normal, A = Aul,
and B is upper normal, B = Blu. (Because a normal set determines also a cut many
authors use the name of cut for a normal set.) Hence a cut has one of the form (Aul, Au)
or (Bl, Blu), where A is bounded above and B is bounded below, respectively.

In the next proposition we enumerate the properties of a cut (A,B).

Proposition 2.3. Any cut (A,B) has the following properties:

(i) A and B are proper subsets of P .
(ii) A is a down-set and B is an upper-set.
(iii) If p ∈ A and q ∈ B, then p ≤ q.
(iv) A ∩B has at most a common element.
(v) A ∩ B = {p} ⇔ p is the greatest element of A and the least element of B. In this

case A = {p}l and B = {p}u.
(vi) A ∩B = ∅ ⇔ A has no a greatest element or B has no a least element.

A cut (A,B) with A∩B = ∅ is called a gap. A cut (A,B) is called a Dedekind cut if
A does not have a greatest element. Therefore we have two types of Dedekind cuts: some
for which B has a least element and then B = {p}u for some p ∈ P , and others for which
B has no least element, that is, the gaps.

The cuts are used to construct the Dedekind–MacNeille completion of an ordered
set. Usually this construction is made using normal sets [11, 14, 17]. For the sake of
completeness we sketch here the construction with cuts following the ideas from [13].

Let (P,≤) be an ordered set without endpoints. We denote by P δ the collection of all
the cuts of P . On P δ we define the order relation

(A1, B1) � (A2, B2)⇔ A1 ⊆ A2.

Let us observe that A1 ⊆ A2 ⇔ B1 ⊇ B2.
The following theorem shows that P δ is the Dedekind completion of P .
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Theorem 2.4. Let (P,≤) be an ordered set without endpoints. Then

(i) (P δ,�) is a Dedekind complete lattice.
(ii) The mapping Φ : P −→ P δ, Φ(p) = ({p}l, {p}u), is an order embedding of P into

P δ which preserves all suprema and infima that exist in P .
(iii) For every cut (A,B) ∈ P δ we have the equalities

(A,B) =
∨
P δ

Φ(A) =
∧
P δ

Φ(B). (1)

For a proof of this theorem using normal sets see, for example, [17]. In the following
we put in evidence some useful formulas which are obtained in the proof, make some
comments and discuss some consequences.

If S = {(Aγ , Bγ)}γ∈Γ is a nonempty bounded subset of P δ, then there exist the
supremum and the infimum of S in P δ and they are given by the formulas∨

P δ

(Aγ , Bγ) =
((⋃

γ∈Γ

Aγ

)ul
,
⋂
γ∈Γ

Bγ

)
, (2)

∧
P δ

(Aγ , Bγ) =
(⋂
γ∈Γ

Aγ ,
(⋃
γ∈Γ

Bγ

)lu)
. (3)

The pair ({p}l, {p}u) is a cut of P since we have {p}lu = {p}u and {p}ul = {p}l.
The fact that Φ is an order embedding results from the obvious equivalences: p1 ≤ p2 ⇔
{p1}l ⊆ {p2}l ⇔ Φ(p1) � Φ(p2).

If (A,B) is a cut in P δ, by using Proposition 2.1 and formulas (2) and (3), we have

(A,B) = (Aul, Au) =
((⋃

a∈A
{a}l

)ul
,
⋂
a∈A
{a}u

)
=
∨
P δ

Φ(A),

(A,B) = (Bl, Blu) =
(⋂
b∈B

{b}l,
(⋃
b∈B

{b}u
)lu)

=
∧
P δ

Φ(B).

Based on the above theorem we can identify an element p ∈ P with the cut ({p}l, {p}u)
generated by it and hence identify P with its image Φ(P ) in P δ. With this identification
it is clear that the order relation � on P δ, when is restricted on P , coincides with ≤.

Let (A,B) be a cut of P and let a ∈ A and b ∈ B. Then a ≤ b and, since A is a down
set and B is an upper set, {a}l ⊆ A and B ⊆ {b}u. These inclusions show that we have
the inequalities

({a}l, {a}u) � (A,B) � ({b}l, {b}u).

Using the above identification between the elements of P and the cuts generated by them
we can write

a � (A,B) � b, (4)

for all a ∈ A and all b ∈ B. Let us observe that the following converse implication holds:
if a and b are two elements of P such that the inequalities (4) hold then a ∈ A and b ∈ B.

Using the identification between P and Φ(P ) the equalities (1) can be written in the
following form:

(A,B) =
∨
P δ

{a ∈ P | a � (A,B)} =
∧
P δ

{b ∈ P | b � (A,B)}.
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3. H-continuous interval-valued functions. In this section we present in brief the
notion of H-continuous interval-valued function. To keep the presentation as short as
possible we adopt like definition an equivalent characterization. The initial definition and
other properties of these functions can be found in [1, 3, 18].

Let X be a topological space. If f : X −→ R is a locally bounded function on X we
denote by I(f) the lower limit function of f and by S(f) the upper limit function of f ,
that is,

I(f) : X −→ R, I(f)(x) = sup
V ∈Vx

inf
y∈V

f(y), x ∈ X, (5)

S(f) : X −→ R, S(f)(x) = inf
V ∈Vx

sup
y∈V

f(y), x ∈ X. (6)

where Vx denotes the set of all neighborhoods of the point x in the space X. The real-
valued functions I(f) and S(f) are lower and upper semicontinuous, respectively, and
I(f) ≤ f ≤ S(f).

Let Bloc(X) be the set of all locally bounded real-valued functions on X. Bloc(X)
is a Dedekind complete lattice and C(X) ⊂ Bloc(X). If f ∈ Bloc(X) then I(f), S(f) ∈
Bloc(X). Thus we have two operators I, S : Bloc(X) −→ Bloc(X). I is called the lower
Baire operator and S is called the upper Baire operator in honor of R. Baire who used
these limit functions in his book [7].

Baire operators I, S : Bloc(X) −→ Bloc(X) have the following properties:

(a) I(f) ≤ f ≤ S(f), for all f ∈ Bloc(X);
(b) I and S are idempotent, that is, I ◦ I = I and S ◦ S = S;
(c) I and S are order preserving, that is, f ≤ g ⇒ I(f) ≤ I(g) and S(f) ≤ S(g), for

all f, g ∈ Bloc(X).

As a consequence of these properties the composed operators I ◦ S and S ◦ I are also
idempotent.

Let f ∈ Bloc(X). Then: (a) f is lower semicontinuous ⇔ I(f) = f ; (b) f is upper
semicontinuous⇔ S(f) = f . A lower (upper) semicontinuous function f is called normal
lower (upper) semicontinuous if I(S(f)) = f (S(I(f)) = f). The concept of normal
semicontinuous function was introduced by Dilworth [10].

Let IR = {[a, a] : a, a ∈ R, a ≤ a} be the set of all real closed intervals (intervals,
for short). An interval-valued function is a function f : X −→ IR. Since for a point
x ∈ X the value f(x) is an interval [f(x), f(x)], we denote an interval-valued function by
f = [f, f ]. So we have distinct notation between real-valued and interval-valued functions.
An interval-valued function f = [f, f ] is called locally bounded if its components are
locally bounded.

Definition 3.1. A locally bounded interval-valued function f = [f, f ] is said to be
Hausdorff continuous (in the sense of Sendov [18] and Anguelov [1]), or H-continuous
for short, if f = [f, f ] has the following properties:

(i) f is lower semicontinuous and f is upper semicontinuous.
(ii) I(f) = f and S(f) = f .
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The set of all H-continuous functions is denoted by Hft(X). (The index ft shows that
the functions have finite interval values.) Endowed with the order relation

f ≤ g ⇔ f ≤ g and f ≤ g, (7)

the set Hft(X) is a Dedekind order complete lattice [1].
H-continuous functions do not differ too much from the usual real-valued continuous

functions because they assume interval values only on a set of first Baire category. More
precisely, it is shown in [1] that for every f = [f, f ] ∈ Hft(X) the set Wf = {x ∈ X |
f(x) − f(x) > 0} is of first Baire category. The function f has point values on the set
Df = X \Wf = {x ∈ X | f(x) = f(x)}, that is, f(x) = f(x), for all x ∈ Df , and f = f

is a real-valued continuous function on Df . If X is a Baire space, Df is a dense subset
of X. Therefore a H-continuous function on a Baire space X has the form

f(x) =

f(x), if x ∈ Df ,

[f(x), f(x)], if x ∈Wf .

4. Dedekind cuts in C(X). Let X be a topological space. A function f : X −→ R
is called C-bounded on X, or simply C-bounded , if there exist two continuous functions
g1, g2 ∈ C(X) such that g1 ≤ f ≤ g2. Note that f is C-bounded if and only if I(f) and
S(f) are C-bounded. The set of all C-bounded functions is denoted by Bc(X). Bc(X) is
a Dedekind complete lattice and B(X) ⊂ Bc(X) ⊂ Bloc(X). (B(X) denotes the set of all
bounded functions on X.)

If f is a C-bounded function, we denote by Lf the set of all continuous functions
on X which are below f , that is, Lf = {g | g ∈ C(X), g ≤ f}, and by Uf the set of
all continuous functions on X which are above f , that is, Uf = {g | g ∈ C(X), g ≥ f}.
Obviously, these sets are nonempty since f is C-bounded. Then, for every C-bounded
function f , we can define two new real-valued functions by setting

L(f)(x) = sup{g(x) | g ∈ Lf}, x ∈ X,
U(f)(x) = inf{g(x) | g ∈ Uf}, x ∈ X.

L(f) is a lower semicontinuous function and U(f) is an upper semicontinuous function.
So we have two operatorsL,U : Bc(X) −→ Bc(X), and, obviously,

L(f) ≤ I(f) ≤ S(f) ≤ U(f), f ∈ Bc(X).

The next proposition was proved by Dilworth for real bounded functions ([10], Lemma
4.1) and by Horn for real extended valued functions ([12], Theorem 8). Our proof for
C-bounded functions follows the ideas of Dilworth’s proof.

Proposition 4.1. If X is a completely regular topological space, then for every
C-bounded function f we have the equalities

S(f) = U(f), I(f) = L(f). (8)

Proof. Let f be an arbitrary function in Bc(X) and let x be an arbitrary point of X. For
every ε > 0 there exists an open neighborhood Vx of x such that

Mx(f) < S(f)(x) + ε, (9)
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where Mx(f) = sup{f(y) | y ∈ Vx}. Due to the complete regularity of X there exists a
function h ∈ Cb(X) with the properties: h(x) = 1, h(z) = 0 for all z /∈ Vx, and 0 ≤ h ≤ 1.
Since f is C-bounded there exist two continuous functions on X, g1 and g2, such that
g1 ≤ f ≤ g2. Consider the function g : X −→ R defined by

g(z) = g2(z)− [g2(z)−Mx(f) ∧ g2(z)]h(z), z ∈ X.

Because g2, h ∈ C(X), the function g ∈ C(X). Since h(x) = 1 we have

g(x) = Mx(f) ∧ g2(x) ≤Mx(f). (10)

If z ∈ Vx, because 0 ≤ h(z) ≤ 1, we have

g(z) ≥Mx(f) ∧ g2(z) ≥ f(z) ∧ g2(z) = f(z).

If z /∈ Vx then h(z) = 0 and so g(z) = g2(z) ≥ f(z). Therefore g ≥ f . By using the
relations (9) and (10) and the definition of U(f)(x) we obtain

S(f)(x) > Mx(f)− ε ≥ g(x)− ε ≥ U(f)(x)− ε.

Since ε is arbitrary, S(f)(x) ≥ U(f)(x) for all x ∈ X. Hence S(f) ≥ U(f). Because the
inverse inequality is always true we have S(f) = U(f).

A similar proof can be given for the equality I(f) = L(f) by using the function
g(z) = g1(z) + [mx(f) ∨ g1(z)− g1(z)]h(z), z ∈ X, where mx(f) = inf{f(y) | y ∈ Vx}
and Vx is an open neighborhood of x such that I(f)(x)− ε < mx(f).

We define by NLcb
sc (X) the set of all C-bounded normal lower semicontinuous func-

tions on X and by NUcb
sc (X) the set of all C-bounded normal upper semicontinuous

functions on X.
The following proposition shows that if f is not only C-bounded but also a normal

semicontinuous function then the sets Uf and Lf are normal subsets of C(X). The case
when f is a bounded function was proved by Dilworth ([10], Lemma 4.2).

Proposition 4.2. Let X be a completely regular topological space.

(i) If f ∈ NUcb
sc (X) then Uf is an upper normal subset of C(X), that is,

(Uf )lu = Uf .

(ii) If f ∈ NLcb
sc (X) then Lf is a lower normal subset of C(X), that is,

(Lf )ul = Lf .

Proof. (i) The inclusion Uf ⊂ (Uf )lu is always true. We must prove that (Uf )lu ⊂ Uf .
Let h ∈ (Uf )lu. This means that h ∈ C(X) and h ≥ (Uf )l. We must show that h ∈ Uf ,
that is h ≥ f . Let x ∈ X and let ε > 0. Because h is continuous at x, there exists a
neighborhood V of x such that

|h(y)− h(x)| < ε/2, y ∈ V. (11)

Since f is normal upper semicontinuous, by Theorem 3.1 of [10], there exists a nonempty
open set A ⊂ V such that

mA(f) ≥ f(x)− ε/2, (12)

where mA(f) = inf{f(y) | y ∈ A}.
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Let y0 be a point of A. Since the spaceX is completely regular there exists a continuous
function φ such that φ(y0) = 1, φ(y) = 0 for all y /∈ A, and 0 ≤ φ ≤ 1. Since f is
C-bounded there exist g1, g2 ∈ C(X) such that g1 ≤ f ≤ g2. We define a function
g0 : X −→ R by setting

g0 = g1 + [mA(f) ∨ g1 − g1]φ.

Obviously, g0 ∈ C(X). We claim that g0 ≥ f . Indeed, if y ∈ A, by using that 0 ≤ φ(y) ≤ 1
we have

g0(y) ≤ mA(f) ∨ g1(y) ≤ f(y) ∨ g1(y) ≤ f(y).

If y /∈ A, then φ(y) = 0, and so we have g0(y) = g1(y) ≤ f(y). Hence g0 ≤ f which means
that g0 ∈ (Uf )l. Since h ≥ (Uf )l results that h ≥ g0. By using (11), (12) and φ(y0) = 1
we have

h(x) = h(y0) + (h(x)− h(y0)) ≥ g0(y0)− ε/2 =

= mA(f) ∨ g1(y0)− ε/2 ≥ mA(f)− ε/2 ≥ f(x)− ε.

Since ε is arbitrary, h(x) ≥ f(x) for all x ∈ X. This means that h ∈ Uf and the proof is
complete.

An useful observation is given by the following lemma. It shows that if f is a
C-bounded function, then f and I(f) have the same set of continuous lower bounds
and f and S(f) have the same set of continuous upper bounds.

Lemma 4.3. For a C-bounded function f we have the equalities:

(i) Lf = LI(f) and Uf = US(f).
(ii) (Uf )l = LS(f) and (Lf )u = UI(f).

Proof. (i) Let g ∈ Lf . Then g ∈ C(X) and g ≤ f . Since the operator I is order preserving,
g = I(g) ≤ I(f). Therefore, g ∈ LI(f). Conversely, if g ∈ LI(f) we have g ≤ I(f) ≤ f .
Hence g ∈ Lf .

(ii) By using Proposition 4.1 the following equivalences hold

g ∈ (Uf )l ⇔ g ≤ Uf ⇔ g ≤ inf Uf = U(f) = S(f)⇔ g ∈ LS(f),

which prove the first part of (ii).

Let X be a completely regular topological space and let (A,B) be a cut of C(X).
Since A is bounded above and B is bounded below there exist the functions f = supA
and f = inf B, where supA and inf B are computed point-wisely. Note that f is lower
semicontinuous, f is upper semicontinuous, f ≤ f , and they are C-bounded.

The next proposition gives a converse result of Proposition 4.2.

Proposition 4.4. Let X be a completely regular topological space, let (A,B) be a cut of
C(X) and f = supA and f = inf B. Then the following statements hold :

(i) Au = Uf , (Uf )l = LS(f), A = LS(f), and f is a normal lower semicontinuous
function.

(ii) Bl = Lf , (Lf )u = UI(f), B = UI(f), and f is a normal upper semicontinuous
function.
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Proof. (i) Au = Uf , by definitions. The equality (Uf )l = LS(f) results from the following
equivalences, in which Proposition 4.1 is used.

g ∈ (Uf )l ⇔ g ≤ Uf ⇔ g ≤ inf Uf = U(f) = S(f)⇔ g ∈ LS(f).

Since (A,B) is a cut the set A is lower normal, that is, A = Aul. Then we have

A = (Au)l = (Uf )l = LS(f).

Because f is C-bounded, S(f) is also C-bounded. By using Proposition 4.1 we have

f = supLS(f) = L(S(f)) = I(S(f)),

which means that f is a normal lower semicontinuous function.

Corollary 4.5. If X is a completely regular topological space, then every cut (A,B) of
C(X) has the form

(LS(f), UI(f)),

where f = supA and f = inf B.

The next theorem is the main result of the paper. It shows that every cut of C(X)
corresponds to a C-bounded H-continuous interval-valued function and conversely.

Theorem 4.6. Let X be a completely regular topological space. Then to each cut of C(X)
there corresponds a C-bounded H-continuous interval-valued function, and conversely, to
each C-bounded H-continuous interval-valued function there corresponds a cut of C(X).

More precisely, if (A,B) is a cut of C(X) then the interval-valued function f = [f, f ],
where f = supA and f = inf B, is C-bounded and H-continuous.

Conversely, if f = [f, f ] is a C-bounded and H-continuous interval-valued function
then (A,B), where A = Lf and B = Uf , is a cut of C(X).

Proof. Let (A,B) be a cut of C(X). Then A and B are nonempty subsets of C(X) such
that Au = B and Bl = A. Let f = supA and f = inf B. f is lower semicontinuous,
f is upper semicontinuous, f ≤ f , and they are C-bounded. To prove that f = [f, f ] is
a H-continuous interval-valued function we must show that I(f) = f and S(f) = f . By
using Proposition 4.1 and Proposition 4.4 we have

I(f) = L(f) = supLf = supBl = supA = f

S(f) = U(f) = inf Uf = inf Au = inf B = f.

Conversely, let f = [f, f ] be a C-bounded H-continuous interval-valued function.
Then f is lower semicontinuous, f is upper semicontinuous, I(f) = f , and S(f) = f .
Define A = Lf and B = Uf . These sets are nonempty since [f, f ] is C-bounded. To prove
that (A,B) is a cut of C(X) we must show that Au = B and Bl = A. By using Lemma
4.3 we have

Au = (Lf )u = UI(f) = Uf = B

Bl = (Uf )l = LS(f) = Lf = A.

The proof is complete.
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Let Hcb(X) be the set of all C-bounded H-continuous interval-valued functions on X.
By Theorem 2.4 and Theorem 4.6 we obtain another demonstration of Anguelov’s result
that the Dedekind completion of C(X) is the Dedekind complete lattice Hcb(X). The dif-
ference is that now it is known that a C-bounded H-continuous interval-valued functions
on X represents a cut in C(X).

Theorem 4.7. Let X be a completely regular topological space. Then the Dedekind com-
pletion of C(X) is Hcb(X), that is,

C(X)δ = Hcb(X).

For the introduction of a linear structure on Hcb(X) see [3, 6, 20]. The considera-
tion of a norm on Hcb(X) is discussed in [2]. For the relation between H-continuous
interval-valued functions and the real-valued quasicontinuous functions see [8]. If we do
not prefer to work with interval-valued functions, then we can use equivalence classes of
quasicontinuous functions.
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