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Abstract. One-term and multi-term fractional differential equations with a basic derivative
of order α ∈ (0, 1) are solved. The existence and uniqueness of the solution is proved by using
the fixed point theorem and the equivalent norms designed for a given value of parameters and
function space. The explicit form of the solution obeying the set of initial conditions is given.

1. Introduction. Fractional differential equations are an important tool in the mathe-
matical modelling of many systems and processes in mechanics, physics, chemistry, bio-
chemistry, control theory, economics, engineering and bioengineering. Investigations on
fractional differential equations include solving methods, the existence and uniqueness of
solutions and studies of the properties of solutions as well as their applications. During
last decades they yielded many essential results and the theory of fractional differential
equations became an important part of pure and applied mathematics (compare mono-
graphs and review papers [5, 6, 7, 9, 10, 13, 15, 16, 17, 18, 25] and the references therein).
As mentioned in the monographs [7] and [17], fractional differential equations of higher
order include a class of sequential fractional differential equations. Such equations are ap-
plied for instance in hydrodynamics [4, 21, 22] and in theory of viscoelasticity [23]. Our
aim is to study a variation of sequential fractional differential equations with composed
differential operator including derivatives of a given order and a variable coefficient.

In the paper we consider nonlinear multi-term fractional differential equations depen-
dent on the basic fractional derivative of arbitrary real noninteger order α ∈ (0, 1). The
other types of sequential fractional differential equations were also studied in [7, 8, 19, 24].
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To prove the existence and uniqueness of the solutions in an arbitrary finite interval
we follow the fixed point method and apply the Banach theorem. Our aim is to pro-
pose an efficient method of proof. A crucial point in the proof is the application of a
newly-introduced one-parameter equivalent norms (and respective metrics) in the space
of continuous or continuous weighted functions.

The paper is organized as follows. In the next section we recall all the necessary
definitions and properties of fractional operators. We also construct one-parameter fam-
ilies of equivalent norms and respective metrics in the space of continuous and weighted
continuous functions in a finite interval. Then we prove that certain fractional integral
operators are bounded in these spaces endowed with a corresponding norm from the
proposed class. The basic integral operator is generalized to a mapping, which appears
to be a contraction under the respective assumptions on a parameter defining the norm
and metric on the function space. Section 3 contains the main results — theorems on the
existence and uniqueness of the solution to a certain nonlinear one-term and multi-term
fractional differential equations. The paper is closed with a short discussion of the results
and their prospective extension to further types of fractional differential equations.

2. Preliminaries. In the paper we shall consider solutions of a certain class of fractional
differential equations in the space of functions continuous in a finite interval [0, b]. The
supremum norm on the space C[0, b] and the respective induced metric are given by

‖f‖ := sup
t∈[0,b]

|f(t)|, d(f, g) := ‖f − g‖. (1)

The norm ‖ · ‖γ and the generated metric are active in the space of weighted continuous
functions, when Re(γ) ∈ (0, 1):

‖f‖γ := sup
t∈[0,b]

|tγf(t)|, d′(f, g) := ‖f − g‖γ . (2)

The space Cγ [0, b] is then given as

Cγ [0, b] := {f ∈ C(0, b] : ‖f‖γ ≤ ∞}. (3)

Remark. Both metric function spaces 〈C[0, b], d〉 and 〈Cγ [0, b], d′〉 are complete.

Now, we recall definitions of left-sided fractional operators. In our paper we shall
study fractional differential equations containing Riemann–Liouville or Caputo deriva-
tives. Both, the integral and derivatives, are defined as follows [7, 20].

Definition 2.1. If Re(α) > 0, then the left-sided Riemann–Liouville integral of order α
is given by the formula

(Iα0+f)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s) ds, t > 0, (4)

where Γ denotes the Euler gamma function.
If Re(α) ∈ (n− 1, n), then the left-sided Riemann–Liouville derivative is defined as

(Dα
0+f)(t) =

( d
dt

)n
(In−α0+ f)(t), t > 0, (5)
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and the left-sided Caputo derivative is defined as

(cDα
0+f)(t) = Dα

0+

[
f(t)−

n−1∑
k=0

f (k)(0)tk

k!

]
, t > 0. (6)

Remark. In the paper we shall solve equations dependent on fractional derivatives of
real order α ∈ (0, 1). In this case fractional derivatives are defined by the formulas below:

(Dα
0+f)(t) =

d

dt
(I1−α

0+ f)(t) (7)

(cDα
0+f)(t) = Dα

0+[f(t)− f(0)]. (8)

An important and characteristic feature of the above fractional operators is their com-
position rule [7, 20]. It will be applied in the transformation of the investigated equations
into their equivalent integral form as well as in the derivation of the corresponding initial
conditions.

Property 2.2. Let Re(δ) > Re(α) > 0. Then the equalities

Dα
0+I

δ
0+f(t) = Iδ−α0+ f(t) (9)

cDα
0+I

δ
0+f(t) = Iδ−α0+ f(t) (10)

hold at any point t ∈ [0, b] if f ∈ C[0, b]. If f ∈ Cγ [0, b], then the above composition rules
hold at any point t ∈ (0, b].

When the orders of the fractional derivative and integral coincide, we obtain the
composition rules analogous to the second main theorem of integral calculus.

Property 2.3. Let Re(α) > 0. Then the equalities

Dα
0+I

α
0+f(t) = f(t) (11)

cDα
0+I

α
0+f(t) = f(t) (12)

hold at any point t ∈ [0, b] if f ∈ C[0, b]. If f ∈ Cγ [0, b], then the above composition rules
hold at any point t ∈ (0, b].

In the procedure of transforming the fractional differential equation under consid-
eration into an equivalent integral equation we shall apply the stationary functions of
Riemann–Liouville or Caputo derivative. They are analogues of polynomial functions
from classical calculus and differential equations theory. For α ∈ (0, 1) the continuous
stationary function of the Caputo derivative is an arbitrary constant:

cDα
0+φ0(t) = 0 ∀t ∈ [0, b] ⇐⇒ φ0(t) = c.

Respectively, the only continuous weighted stationary functions of the Riemann–Liouville
derivative are proportional to the power function:

Dα
0+φ0(t) = 0 ∀t ∈ (0, b] ⇐⇒ φ0(t) = ctα−1

and belong to the space C1−α[0, b].
In what follows we shall modify norms (1), (2) to the equivalent ones on the spaces

C[0, b] and C1−α[0, b] respectively. To this aim we apply functions constructed using the
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Mittag–Leffler function [7]. We define auxiliary functions dependent on parameters α, β
and on free parameter κ, assuming α ∈ (0, 1), α− β > 0, κ ∈ R+ and t ∈ (0, b]:

eα,β,κ(t) := Γ(α− β)Eα,α−β(κtα) (13)

Eα,β,κ(t) := Eα−β,α−β(κtα−β) (14)

Eα,β,κ(t) := Γ(1− β)Eα,1−β(κtα) (15)

Eα,β,κ(t) := Eα−β,1−β(κtα−β). (16)

In the above formulas EA,B is the two-parameter Mittag–Leffler function (Re(A) > 0):

EA,B(z) :=
∞∑
k=0

zk

Γ(Ak +B)

determined (in general) on the complex plane C for Re(A) > 0.
The following proposition describes integration properties of the introduced functions.

Proposition 2.4. If α ∈ (0, 1), α−β > 0 and κ ∈ R+, then the following formulas hold
in any interval (0, b]

Iα0+t
α−β−1eα,β,κ(t) =

tα−β−1

κ
[eα,β,κ(t)− 1] (17)

Iα0+t
α−β−1Eα,β,κ(t) =

tα−1

κ

[
Eα−β,α(κtα−β)− 1

Γ(α)

]
(18)

Iα0+t
−βEα,β,κ(t) =

t−β

κ
[Eα,β,κ(t)− 1] (19)

Iα0+t
−βEα,β,κ(t) =

1
κ

[Eα−β,1(κtα−β)− 1]. (20)

Solving the fractional differential equations we shall follow the methods from differ-
ential equations theory. We start by transforming the fractional differential equation into
its equivalent integral form and then into a fixed point condition for a mapping deter-
mined on the respective function space. To prove that this mapping is contractive we
extend the Bielecki method of equivalent norms [2]. A similar modification of norms was
also developed in the theory of fractional differential equations [1, 3]. Lakshmikantham
et al. [13, 14] used in the scaling procedure a one-parameter Mittag–Leffler function and
proved the existence-uniqueness result for one-term fractional differential equation with
Caputo derivative. We propose to apply in modification of norms the auxiliary functions
(13)–(16). Mappings which are not contractive with respect to standard norms (1), (2) be-
come contractions after changing the norm and metric to the equivalent ones, dependent
on the free parameter κ ∈ R+, provided κ is large enough.

Definition 2.5. In the space C1−α[0, b] we define a new norm and metric, provided
κ ∈ R+ and α− β > 0:

‖f‖1−α,κ := sup
t∈[0,b]

|t1−αf(t)|
eα,β,κ(t)

, d′κ(f, g) := ‖f − g‖1−α,κ (21)

‖f‖′1−α,κ := sup
t∈[0,b]

|t1−αf(t)|
Eα,β,κ(t)

, d′′κ(f, g) := ‖f − g‖′1−α,κ. (22)
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In the space C[0, b] we define a new norm and metric assuming κ ∈ R+ and α − β > 0
(see also [13, 14] for β = 0)

‖f‖κ := sup
t∈[0,b]

|f(t)|
Eα,β,κ(t)

, dκ(f, g) := ‖f − g‖κ (23)

‖f‖′κ := sup
t∈[0,b]

|f(t)|
Eα,β,κ(t)

, d1
κ(f, g) := ‖f − g‖′κ. (24)

Proposition 2.6. The metrics d′κ and d′′κ are equivalent to the metric d′ in the space
C1−α[0, b]. The metrics dκ and d1

κ are equivalent to the metric d in the space C[0, b].

Proof. The equivalence is implied by the set of inequalities fulfilled by the respective
norms for arbitrary function f ∈ C1−α[0, b]

‖f‖1−α
eα,β,κ(b)

≤ ‖f‖1−α,κ ≤ ‖f‖1−α

‖f‖1−α
Eα,β,κ(b)

≤ ‖f‖′1−α,κ ≤ Γ(α− β)‖f‖1−α

and for arbitrary f ∈ C[0, b]

‖f‖
Eα,β,κ(b)

≤ ‖f‖κ ≤ ‖f‖

‖f‖
Eα,β,κ(b)

≤ ‖f‖′κ ≤ Γ(1− β)‖f‖.

Having defined the new norms, we shall study the properties of the integral operator
Iα0+t

−β on the spaces of continuous and weighted continuous functions with norms (23),
(24) or (21), (22), respectively. Analyzing the formulas enclosed in the proposition below
we note that this operator is bounded in all the cases considered and that the constant
on the right-hand side is inversely proportional to the parameter κ.

Proposition 2.7. Let α ∈ (0, 1).

(1) If β ≤ 0, then for any function f ∈ C1−α[0, b]∥∥(Iα0+t
−β)jf

∥∥
1−α,κ ≤

(b−β
κ

)j
‖f‖1−α,κ (j ∈ N). (25)

(2) If β > 0 and α−β > 0, then there exists a sequence (κm) such that limm→∞ κm =∞
and for any function f ∈ C1−α[0, b]∥∥(Iα0+t

−β)jf
∥∥′

1−α,κm
≤
(AL
κm

)j
‖f‖′1−α,κm (j ∈ N), (26)

where the constant L is determined by the condition

(α− β)L < γmin ≤ (α− β)(L+ 1)

and

AL =
L−1∑
k=1

Γ(α− β)
Γ(k(α− β) + α)

+ 1.
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(3) If β ≤ 0, then for any function f ∈ C[0, b]∥∥(Iα0+t
−β)jf

∥∥
κ
≤
(b−β
κ

)j
‖f‖κ (j ∈ N). (27)

(4) If β > 0 and α−β > 0, then there exists a sequence (κm) such that limm→∞ κm =∞
and for any function f ∈ C[0, b]∥∥(Iα0+t

−β)jf
∥∥′
κm
≤
(BL
κm

)j
‖f‖′κm (j ∈ N), (28)

where the constant L is determined by the condition

(α− β)(L− 1) < γmin + β − 1 ≤ (α− β)L

and

BL =
L−1∑
k=1

Γ(1− β)
Γ(k(α− β) + 1)

+ 1.

Proof. We begin with part (1) and observe that the fractional integral Iα0+ is bounded in
the space C1−α[0, b]. Thus, it is enough to prove the case j = 1 as j > 1 follows from the
mathematical induction principle. Applying integration property (17) from Proposition
2.4 we obtain for an arbitrary function f ∈ C1−α[0, b]:∥∥(Iα0+t

−β)f
∥∥

1−α,κ = sup
t∈[0,b]

∣∣t1−αIα0+t−βf(t)
∣∣

eα,β,κ(t)

= sup
t∈[0,b]

∣∣t1−αIα0+t−βtα−1eα,β,κ(t) t
1−αf(t)
eα,β,κ(t)

∣∣
eα,β,κ(t)

≤ ‖f‖1−α,κ sup
t∈[0,b]

∣∣t1−αIα0+t−βtα−1eα,β,κ(t)
∣∣

eα,β,κ(t)

= ‖f‖1−α,κ sup
t∈[0,b]

t−β

κ

[
1− 1

eα,β,κ(t)

]
≤ b−β

κ
· ‖f‖1−α,κ.

In the proof of part (2) we use formula (18) from Proposition 2.4 and the monotonicity
property of the Euler gamma function, namely for a real argument greater than γmin

∼=
1.46163 this function is strictly increasing. We again prove the case j = 1 as formulas for
j > 1 are a straightforward corollary. Let us observe that for any given α and β fulfilling
condition α− β > 0, there exists an integer number L ∈ N such that

(α− β)L < γmin ≤ (α− β)(L+ 1). (29)

Let

PL(t) =
L−1∑
k=1

(κtα−β)k

Γ((α− β)k + α)
, RL(t) =

∞∑
k=L

(κtα−β)k

Γ((α− β)k + α)
,

and

PL(t) =
L−1∑
k=1

(κtα−β)k

Γ((α− β)k + α− β)
, RL(t) =

∞∑
k=L

(κtα−β)k

Γ((α− β)k + α− β)
.
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It is easy to check that

Eα,β,κ(t) =
1

Γ(α− β)
+ PL(t) + RL(t).

We obtain the following inequalities for the norm ‖ · ‖′1−α,κ of the integral Iα0+t−βf :∥∥(Iα0+t
−β)f

∥∥′
1−α,κ = sup

t∈[0,b]

∣∣t1−αIα0+t−βf(t)
∣∣

Eα,β,κ(t)

= sup
t∈[0,b]

∣∣t1−αIα0+t−βtα−1Eα,β,κ(t) t
1−αf(t)
Eα,β,κ(t)

∣∣
Eα,β,κ(t)

≤ ‖f‖′1−α,κ sup
t∈[0,b]

∣∣t1−αIα0+t−βtα−1Eα,β,κ(t)
∣∣

Eα,β,κ(t)

= ‖f‖′1−α,κ sup
t∈[0,b]

t1−αtα−1
[
Eα−β,α(κtα−β)− 1/Γ(α)

]
κ · Eα,β,κ(t)

=
1
κ
· ‖f‖′1−α,κ sup

t∈[0,b]

PL(t) +RL(t)
1/Γ(α− β) + PL(t) + RL(t)

.

Thanks to the assumption (α− β)(L+ 1) ≥ γmin we can rewrite the above inequality as
follows: ∥∥(Iα0+t

−β)f
∥∥′

1−α,κ ≤
1
κ
· ‖f‖′1−α,κ sup

t∈[0,b]

( PL(t)
1/Γ(α− β) + PL(t)

+ 1
)
.

In the above formula the norm ‖(Iα0+t−β)f‖′1−α,κ is estimated with a coefficient given as
the supremum over interval [0, b] of a certain rational function with positive denominator.
As all these functions are continuous in [0, b], the supremum is in fact a maximum value
of the function at a certain tκ ∈ [0, b]:∥∥(Iα0+t

−β)f
∥∥′

1−α,κ ≤
1
κ
· ‖f‖′1−α,κ

( PL(tκ)
1/Γ(α− β) + PL(tκ)

+ 1
)
.

Let us choose a sequence (κm) such that

lim
m→∞

κm =∞

and the limit limm→∞ κmt
α−β
κm (finite or infinite) exists. For this sequence of parameters

we obtain the following sequence of inequalities:∥∥(Iα0+t
−β)f

∥∥′
1−α,κm

≤ 1
κm
· ‖f‖′1−α,κm

( PL(tκm)
1/Γ(α− β) + PL(tκm)

+ 1
)

≤ 1
κm
· ‖f‖′1−α,κm

(∑L−1
k=1 1/Γ(k(α− β) + α)

1/Γ(α− β)
+ 1
)

=
AL
κm
· ‖f‖′1−α,κm .

In the above calculations we used the property of the Euler gamma function: the inequal-
ities

Γ(k(α− β) + α) ≥ Γ(k(α− β) + α− β)

are valid for k ≥ L, k ∈ N when (α− β)(L+ 1) ≥ γmin.
We omit the proof of parts (3) and (4) as it is analogous to the calculations presented

above in detail.
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3. Main results. In this section we shall apply the norms and metrics constructed in
Definition 2.5 to prove the existence and uniqueness of the solution for certain fractional
differential equations. We begin by studying two one-term equations in the form of

tβDα
0+f(t) = Ψ(t, f(t)) (30)

tβ · cDα
0+f(t) = Ψ(t, f(t)) (31)

and we shall show that there exists a unique solution for each of the above equations
in the respective function space and for arbitrarily long interval [0, b]. Thanks to the
composition rules from Property 2.3 we can rewrite (30), (31) as the equivalent fractional
integral equations (c ∈ R arbitrary)

f(t) = Iα0+t
−βΨ(t, f(t)) + ctα−1 (32)

f(t) = Iα0+t
−βΨ(t, f(t)) + c. (33)

Finally, denoting the mapping on the right-hand-side by Tφ0 in both cases and assuming
Tφ0φ0 6= φ0, we obtain equations (30), (31) reformulated as the fixed point conditions
on C1−α[0, b] and C[0, b], respectively. Thus, we can solve equations (30), (31) applying
the Banach fixed point theorem, provided the constructed mapping is a contraction on
the corresponding function space. The following propositions and corollaries describe the
solution for the considered equations.

Proposition 3.1. Let α ∈ (0, 1) and α− β > 0. If the function Ψ ∈ C([0, b]× R) fulfils
the Lipschitz condition

|Ψ(t, x)−Ψ(t, y)| ≤M · |x− y| ∀t ∈ [0, b] ∀x, y ∈ R, (34)

then each stationary function φ0 of the operator Dα
0+ generates a unique solution

f ∈ C1−α[0, b] of the equation

tβDα
0+f(t) = Ψ(t, f(t)).

The solution f is the limit of iterations of the mapping Tφ0 :

f(t) = lim
k→∞

(Tφ0)kψ(t),

where the function ψ ∈ C1−α[0, b] is arbitrary.

Proof. Let functions g, h ∈ C1−α[0, b] be arbitrary and β ≤ 0. Their images Tφ0g and
Tφ0h look as follows

Tφ0g(t) = Iα0+t
−βΨ(t, g(t)) + φ0(t)

Tφ0h(t) = Iα0+t
−βΨ(t, h(t)) + φ0(t).

We estimate the distance d′κ of the above images

d′κ(Tφ0g, Tφ0h) =
∥∥Iα0+t−β [Ψ(t, g(t))−Ψ(t, h(t))]

∥∥
1−α,κ

≤
∥∥Iα0+t−βM |g(t)− h(t)|

∥∥
1−α,κ

≤ Mb−β

κ
· ‖g − h‖1−α,κ =

Mb−β

κ
d′κ(g, h).
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Thus Tφ0 is a contraction in 〈C1−α[0, b], d′κ〉, provided κ is large enough. Then, it follows
from the Banach theorem that there exists a unique fixed point f ∈ C1−α[0, b]

f(t) = Tφ0f(t).

The function f is the solution of equation (30) and can be explicitly calculated as a limit
of iterations of the mapping Tφ0 acting on an arbitrary start function ψ.

Next, we consider the case β > 0, α− β > 0 and a mapping Tφ0 acting on the space
C1−α[0, b] endowed with the metric d′′κm . Let us note that for any function g ∈ C1−α[0, b]
its image Tφ0g ∈ C1−α[0, b]. To prove this fact we apply the norm (22) equivalent to the
standard norm (2):

‖Tφ0g‖′1−α,κm ≤ ‖ I
α
0+t
−βΨ(t, g(t))‖′1−α,κm + ‖φ0‖′1−α,κm

≤ AL
κm
‖Ψ(t, g(t))‖′1−α,κm + ‖φ0‖′1−α,κm <∞.

In the calculations we applied the fact (yielded by the Lipschitz condition) that the
composed function Ψ(t, g(t)) ∈ C1−α[0, b].

Now, on C1−α[0, b], the distance d′′κm of images Tφ0g and Tφ0h looks as follows

d′′κm(Tφ0g, Tφ0h) =
∥∥Iα0+t−β [Ψ(t, g(t))−Ψ(t, h(t))]

∥∥′
1−α,κm

≤
∥∥Iα0+t−βM |g(t)− h(t)| ‖′1−α,κm

≤ M ·AL
κm

· ‖g − h‖′1−α,κm =
M ·AL
κm

d′′κm(g, h).

Similar to the previous case, we conclude that for κm large enough Tφ0 is a contraction on
the space 〈C1−α[0, b], d′′κm〉. Hence the fixed point f exists thanks to the Banach theorem
and can be constructed in a way described in the above proposition.

Corollary 3.2. If the assumptions of Proposition 3.1 are fulfilled, then the equation

tβDα
0+f(t) = Ψ(t, f(t))

has a unique solution f ∈ C1−α[0, b] fulfilling the initial condition

I1−α
0+ f(0) = d.

The solution f is the limit of iterations of the mapping Tφ0 generated by the stationary
function φ0 = dtα−1/Γ(α).

Proof. Due to the one-to-one correspondence between the stationary function and the
unique generated solution of equation (30), it is enough to show that the function
φ0 = dtα−1/Γ(α) generates a solution f obeying the initial condition I1−α

0+ f(0) = d.
The solution f fulfils equation (30) and the equivalent integral equation

f(t) = Iα0+t
−βΨ(t, f(t)) +

dtα−1

Γ(α)
.

Integrating the above equation we arrive at the relation

I1−α
0+ f(t) = I1−α

0+ Iα0+t
−βΨ(t, f(t)) + I1−α

0+

dtα−1

Γ(α)

= I1
0+t

(−β+1)−1Ψ(t, f(t)) + d,
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where we applied the integration formula [7]: Iγ0+t
δ−1 = tδ+γ−1Γ(δ)/Γ(γ + δ) valid for

Re(δ) > 0 and the inequality −β + 1 > 1− α > 0 in case β > 0.
Now for t = 0 we obtain

I1−α
0+ f(0) = d

what ends the proof.

Similar results are valid for one-term equation with Caputo derivative (31). We quote
Proposition 3.3 and Corollary 3.4 without proof. They both are straightforward corollaries
of Property 2.3 and Proposition 2.6 as well as of Proposition 2.7 (part (3) and (4)).

Proposition 3.3. Let α ∈ (0, 1) and α− β > 0. If Ψ ∈ C([0, b]×R) fulfils the Lipschitz
condition (34), then each stationary function φ0 of the operator cDα

0+ generates a unique
solution f ∈ C[0, b] of equation

tβ · cDα
0+f(t) = Ψ(t, f(t)).

The solution f is the limit of iterations of the mapping Tφ0 :

f(t) = lim
k→∞

(Tφ0)kψ(t),

where ψ ∈ C[0, b] is arbitrary.

Corollary 3.4. If the assumptions of Proposition 3.3 are fulfilled, then the equation

tβ · cDα
0+f(t) = Ψ(t, f(t))

has a unique solution f ∈ C[0, b] fulfilling the initial condition

f(0) = d.

The solution f is the limit of iterations of the mapping Tφ0 generated by the stationary
function φ0 = d.

The results given in the above propositions and corollaries, valid for one-term frac-
tional differential equations, can be extended to multi-term equations. In the present
paper we shall discuss such equations with basic Riemann–Liouville derivative of order
α ∈ (0, 1). A similar procedure can be applied to the analogous equations with Caputo
derivative and will be described in a subsequent paper.

We assume that the nonlinear part of the fractional differential equation does not
depend on the derivative and consider in finite interval a class of equations in the form[

(tβDα
0+)m −

m−1∑
j=1

cj(tβDα
0+)j

]
f(t) = Ψ(t, f(t)), (35)

where α ∈ (0, 1), cj ∈ R, j = 1, . . . ,m− 1, Ψ ∈ C([0, b]× R) and α− β > 0.
Using the composition rules from Property 2.3 we reformulate the above equation as

follows

(tβDα
0+)m

[(
1−

m−1∑
j=1

cj(Iα0+t
−β)m−j

)
f(t)− (Iα0+t

−β)mΨ(t, f(t))
]

= 0. (36)
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Thus, we note that on the space C1−α[0, b] equation (35) is equivalent to the fractional
integral equation(

1−
m−1∑
j=1

cj(Iα0+t
−β)m−j

)
f(t)− (Iα0+t

−β)mΨ(t, f(t)) = φ0(t), (37)

where the function φ0 ∈ C1−α[0, b] belongs to the kernel of the fractional operator
(tβDα

0+)m:
(tβDα

0+)mφ0(t) = 0

and is given as (d̄j ∈ R for j = 0, . . . ,m− 1)

φ0(t) =
m−1∑
j=0

d̄j
Γ((α− β)j + α)

t(α−β)j+α−1.

Now, we are able to rewrite equations (35), (37) as the fixed point condition:

f(t) = Tφ0f(t), (38)

where we used the notation

Tφ0g(t) := Tmg(t) + φ0(t), (39)

assuming Tφ0φ0 6= φ0. The lemma below describes the properties of the integral part of
the above mapping on the space of continuous weighted functions.

Lemma 3.5. Let α ∈ (0, 1) and α − β > 0. The mapping Tm defined for g ∈ C1−α[0, b]
by

Tmg(t) :=
m−1∑
j=1

cj(Iα0+t
−β)m−jg(t) + (Iα0+t

−β)mΨ(t, g(t)) (40)

is a contraction in the space C1−α[0, b] endowed with the metric d′κ for the case β ≤ 0
or d′′κm for β > 0, respectively, provided parameters κ, κm are large enough and Ψ ∈
C([0, b]× R) fulfils the Lipschitz condition (34).

The proof of the above lemma is a straightforward result of application of parts (1)
or (2) from Proposition 2.7, similar to the proof of Proposition 3.1 presented in detail.
Now, we are ready to describe the unique solution of equation (35) in C1−α[0, b].

Theorem 3.6. Let α ∈ (0, 1), α − β > 0 and Ψ ∈ C([0, b] × R) fulfil the Lipschitz
condition (34). Then the fractional differential equation[

(tβDα
0+)m −

m−1∑
j=1

cj(tβDα
0+)j

]
f(t) = Ψ(t, f(t)) (41)

has the unique solution f in C1−α[0, b] fulfilling the initial conditions

I1−α
0+ (tβDα

0+)jf(t)|t=0 = dj , (42)

where j = 0, . . . ,m − 1. This solution is a limit of the iterations of mapping Tφ0 (39),
(40) generated by the stationary function in the form

φ0(t) =
m−1∑
j=0

d̄j
Γ((α− β)j + α)

t(α−β)j+α−1 (43)
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with

d̄0 = d0, d̄j =
(
dj −

j−1∑
l=0

cl+m−jdl

) j∏
k=1

Γ((α− β)k)
Γ((α− β)(k − 1) + α)

. (44)

Proof. Each stationary function φ0 ∈ C1−α[0, b] of the operator (tβDα
0+)m generates a

unique solution of equation (35). This follows from Lemma 3.5 which implies that the
mapping Tφ0 is a contraction on the space C1−α[0, b] endowed with the corresponding
metric equivalent to (2). To end the proof we shall explicitly show the connection between
initial conditions (42) and the stationary function (43). The function f solves simultane-
ously equation (35) and its integral version

f(t) =
m−1∑
j=1

cj(Iα0+t
−β)m−jf(t)+(Iα0+t

−β)mΨ(t, f(t))+
m−1∑
j=0

d̄j
Γ((α− β)j + α)

t(α−β)j+α−1.

Integrating both sides of the above equality we obtain for l = 0, . . . ,m− 1

I1−α
0+ (tβDα

0+)lf(t)

=
m−1∑
j=1

cjI
1−α
0+ (tβDα

0+)l(Iα0+t
−β)m−jf(t) + I1−α

0+ (tβDα
0+)l(Iα0+t

−β)mΨ(t, f(t))

+
m−1∑
j=0

d̄j
Γ((α− β)j + α)

I1−α
0+ (tβDα

0+)lt(α−β)j+α−1.

Applying the composition rule from Property 2.3 and taking t = 0 we arrive at the
following relations

dl =
l−1∑
j=0

cj+m−ldj + d̄l

l∏
k=1

Γ((α− β)(k − 1) + α)
Γ((α− β)k)

which yield the explicit form of coefficients d̄l (where l = 0, . . . ,m− 1) from formula (44)

d̄0 = d0, d̄j =
(
dj −

j−1∑
l=0

cl+m−jdl

) j∏
k=1

Γ((α− β)k)
Γ((α− β)(k − 1) + α)

.

The above solution for coefficients d̄j is unique and this ends the proof.

4. Final remarks. In the paper we proved existence-uniqueness results for the one-term
and multi-term nonlinear fractional differential equations dependent on the left-sided
derivative of given order α ∈ (0, 1). To this aim we extended the Bielecki method of
equivalent norms [2] known from differential equations theory to fractional differential
equations by application of the two-parameter Mittag–Leffler functions in construction
of new norms (21)–(24). The developed method of proving the existence of the solutions
yields in arbitrarily long interval [0, b] the unique solution, fulfilling the corresponding set
of initial conditions. Let us observe that the standard scaling (using a composed expo-
nential function) is not effective in the considered case as intermediate fractional integral
equations (32), (33), (37)) have singular kernels. The new method of construction of the
equivalent norms appears to be useful in solving linear multi-term fractional differential
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equations with basic order α ∈ (n− 1, n) and nonlinear multi-term fractional differential
equations with Hadamard derivative [11, 12]. The discussed results can easily be extended
to the equations given on space of vector functions. Another interesting field where such
method of proof should be effective are sequential fractional differential equations in a
sense given in [17, 18], where no basic order of derivatives is assumed.
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