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Abstract. We show the general and precise conditions on the functions and modulus of conti-
nuity as well as on the entries of matrices generated the summability means and give the rates
of approximation of functions from the generalized integral Lipschitz classes by double matrix
means of their Fourier series. Consequently, we give some results on norm approximation. Thus
we essentially extend and improve our earlier results [Acta Comment. Univ. Tartu. Math. 13
(2009), 11–24] and the result of S. Lal [Appl. Math. Comput. 209 (2009), 346–350].

1. Introduction. Let Lp (1 ≤ p <∞) [p =∞] be the class of all 2π-periodic real-valued
functions (integrable in the Lebesgue sense with p-th power) [essentially bounded] over
Q = [−π, π] with the norm

‖f‖ := ‖f(·)‖Lp =

{(∫
Q
|f(t)|p dt

)1/p when 1 ≤ p <∞,
ess supt∈Q |f(t)| when p =∞

(1.1)

and consider the trigonometric Fourier series

Sf(x) :=
a0(f)

2
+
∞∑
ν=1

(aν(f) cos νx+ bν(f) sin νx) (1.2)

with the partial sums Skf .
Let A := (an,k) and B := (bn,k) be infinite lower triangular matrices of real numbers

such that
an,k ≥ 0 and bn,k ≥ 0 when k = 0, 1, 2, . . . n,

an,k = 0 and bn,k = 0 when k > n,
(1.3)
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n∑
k=0

an,k = 1 and
n∑
k=0

bn,k = 1, where n = 0, 1, 2, . . . , (1.4)

and let, for m = 0, 1, 2, . . . , n,

An,m =
m∑
k=0

an,k and An,m =
n∑

k=m

an,k (1.5)

Bn,m =
m∑
k=0

bn,k and Bn,m =
n∑

k=m

bn,k.

Let the AB-transformation of (Skf) be given by

Tn,A,Bf(x) :=
n∑
r=0

r∑
k=0

bn,rar,kSkf(x) (n = 0, 1, 2, . . . ). (1.6)

As a measure of approximation by the above quantity we use the generalized modulus
of continuity of f in the space Lp defined for β ≥ 0 by the formula

ωβf(δ)Lp := sup
0≤|t|≤δ

{∣∣∣sin t

2

∣∣∣β‖ϕ·(t)‖Lp}, (1.7)

where
ϕx(t) := f(x+ t) + f(x− t)− 2f(x).

It is clear that for β > α ≥ 0

ωβf(δ)Lp ≤ ωαf(δ)Lp ,

and it is easily seen that ω0f(·)Lp = ωf(·)Lp is the classical modulus of smoothness.
The deviation Tn,A,Bf − f with the lower triangular infinite matrix B, defined by

bn,r = 1
n+1 for r = 0, 1, 2, . . . , n and bn,r = 0 for r > n, and with the lower triangular

infinite matrix A, defined by ar,k = pr−k/
∑r
ν=0 pν for k = 0, 1, 2, . . . , r and ar,k = 0 for

k > r, was estimated by S. Lal [1, Theorem 2] as follows:

Theorem A. If f belongs to

Lpβ(ω) =
{
f ∈ Lp : ωf(δ)Lpβ := sup

0≤|t|≤δ

{∫ π

0

|ϕx(t)|p
∣∣∣sin x

2

∣∣∣βp dx}1/p

� ω(δ)
}
,

where ω is such that
ω(t)
t

is a decreasing function of t,{∫ π/(n+1)

0

( t|ϕx(t)|
ω(t)

)p
sinβp t dt

}1/p

= O
(
(n+ 1)−1

)
, (1.8)

and {∫ π

π/(n+1)

( t−γ |ϕx(t)|
ω(t)

)p
sinβp t dt

}1/p

= O
(
(n+ 1)γ

)
(0 < γ < 1

p ), (1.9)

uniformly in x, then∥∥∥ 1
n+ 1

n∑
ν=0

1
Pν

ν∑
k=0

pν−kSkf − f
∥∥∥
Lp

= O
(
(n+ 1)β+1/pω

( 1
n+ 1

))
, (1.10)

where Pn =
∑n
ν=0 pν with nonnegative and nonincreasing sequence (pν).
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Since condition (1.8) used in the estimate of
∫ π/(n+1)

0
(from the proof of Theorem 2 [1]

of S. Lal) leads us to the divergent integral of the form
∫ π/(n+1)

0
t−(1+β)/(1−1/p) dt under

the assumption β ≥ 0, therefore, instead of this condition, we shall take the following
one: {∫ π/(n+1)

0

( |ϕx(t)|
ω(t)

)p
sinβp t dt

}1/p

= Ox
(
(n+ 1)−1/p

)
. (1.11)

In the proof of Theorem 2 in [1] sin t
2 should be used instead of sin t.

In our theorems we will consider the pointwise deviation

Tn,A,Bf(x)− f(x)

with the mean Tn,A,Bf introduced at the beginning. We will formulate general and precise
conditions on the functions and the modulus of continuity as well as on the entries of the
matrices A and B and give the rates of approximation of functions from the generalized
integral Lipschitz classes by our double matrix means of their Fourier series. Consequently,
we give some results on norm approximation. Thus we essentially extend and improve
our earlier results (see [2]) and the result of S. Lal [1].

We shall write I1 � I2 if there exists a positive constant K, sometimes depending on
some parameters, such that I1 ≤ KI2.

2. Statement of the results. Let us consider a function ω of modulus of continuity
type on the interval [0, 2π], i.e. a nondecreasing continuous function having the following
properties: ω(0) = 0, ω(δ1 + δ2) ≤ ω(δ1) + ω(δ2) for any 0 ≤ δ1 ≤ δ2 ≤ δ1 + δ2 ≤ 2π. It
is easy to conclude that the function δ−1ω(δ) is a quasi-nonincreasing function of δ. Let,
for such an ω,

Lp(ω)β = {f ∈ Lp : ωβf(δ)Lp � ω(δ)}.

It is clear that, for β ≥ α ≥ 0,
Lp(ω)α ⊂ Lp(ω)β .

Now, we can formulate our main results on the degrees of pointwise summability.

Theorem 1. Let f ∈ Lp(ω)β with 0 ≤ β < 1− 1
p , and let ω satisfy{∫ π/n

π/(n+1)

( |ϕx(t)|
ω(t)

)p
sinβp

t

2
dt

}1/p

= Ox
(
(n+ 1)−2/p

)
, when 1 < p <∞,

ess sup
t∈[π/(n+1),π/n]

∣∣∣∣ |ϕx(t)|ω(t)
sinβ

t

2

∣∣∣∣ = Ox(1), when p =∞
(2.1)

and{∫ π/(n+1)

0

( |ϕx(t)|
ω(t)

)p
sinβp

t

2
dt

}1/p

= Ox
(
(n+ 1)−1/p

)
, when 1 < p <∞,

ess sup
t∈[0,π/(n+1)]

∣∣∣∣ |ϕx(t)|ω(t)
sinβ

t

2

∣∣∣∣ = Ox(1), when p =∞.
(2.2)

If the entries of our matrices satisfy the conditions

bn,n �
1

n+ 1
(2.3)
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and ∣∣bn,rar,r−l − bn,r+1ar+1,r+1−l
∣∣� bn,r

(r + 1)2
for 0 ≤ l ≤ r ≤ n− 1, (2.4)

then

|Tn,A,Bf(x)− f(x)| = Ox

( n∑
r=0

bn,r
1

r + 1

r∑
s=0

(s+ 1)βω
( π

s+ 1

)
+

1
n+ 1

n∑
s=0

(s+ 1)βω
( π

s+ 1

))
,

and, in the case 0 < β < 1− 1
p ,

|Tn,A,Bf(x)− f(x)| = Ox

(
(n+ 1)βω

( π

n+ 1

)[
(n+ 1)1−β

n∑
s=0

bn,s(s+ 1)β−1
])
,

for x under consideration.

Theorem 2. Let f ∈ Lp(ω)β with 0 ≤ β < 1− 1
p , and let ω satisfy (2.2) and{∫ π

π/(n+1)

( |ϕx(t)|
tγω(t)

)p
sinβp

t

2
dt

}1/p

= Ox
(
(n+ 1)γ

)
, when 1 < p <∞,

ess sup
t∈[π/(n+1),π]

∣∣∣∣ |ϕx(t)|tγω(t)
sinβ

t

2

∣∣∣∣ = Ox
(
(n+ 1)γ

)
, when p =∞,

(2.5)

with a nonnegative γ such that β − γ < 1 − 1
p . If the entries of our matrices satisfy the

conditions (2.3) and (2.4), then

|Tn,A,Bf(x)− f(x)|

= Ox

({
(n+ 1)γq

n∑
r=0

bn,r
1

r + 1

r∑
s=0

(
ω
( π

s+ 1

)
(s+ 1)β−γ+1/p

)q}1/q

+
{

(n+ 1)γq−1
n∑
s=0

(
ω
( π

s+ 1

)
(s+ 1)β−γ+1/p

)q}1/q)
and, in the case 0 < β − γ < 1− 1

p ,

|Tn,A,Bf(x)− f(x)|

= Ox

(
(n+ 1)β+1/pω

( π

n+ 1

){
(n+ 1)1−(β−γ)q

n∑
r=0

bn,r(r + 1)(β−γ)q−1
}1/q

)
,

for x under consideration, where q = p
p−1 .

If the entries of the matrix B are as in Theorem A then we can formulate the above
theorem in the following simpler form.

Theorem 3. Let f ∈ Lp(ω)β with 0 ≤ β < 1 − 1
p , and let ω satisfy (2.1) and (2.2). If

the entries of the matrix A satisfy the condition

|ar,r−l − ar+1,r+1−l| �
1

(r + 1)2
for 0 ≤ l ≤ r, (2.6)
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then ∣∣Tn,A,(1/(n+1))f(x)− f(x)
∣∣ = Ox

(
1

n+ 1

n∑
r=0

1
r + 1

r∑
s=0

(s+ 1)βω
( π

s+ 1

))
and, for 0 < β < 1− 1

p ,∣∣Tn,A,(1/(n+1))f(x)− f(x)
∣∣ = Ox

(
(n+ 1)βω

( π

n+ 1

))
,

for x under consideration.

Theorem 4. Let f ∈ Lp(ω)β with 0 ≤ β < 1− 1
p , and let ω satisfy (2.2) and (2.5) with

a nonnegative γ such that β − γ < 1− 1
p . If the entries of the matrix A satisfy condition

(2.6), then

|Tn,A,(1/(n+1))f(x)− f(x)|

= Ox

({
(n+ 1)γq−1

n∑
r=0

1
r + 1

r∑
s=0

(
ω
( π

s+ 1

)
(s+ 1)β−γ+1/p

)q}1/q)
,

where q = p
p−1 and, in the case 0 < β − γ < 1− 1

p ,∣∣Tn,A,(1/(n+1))f(x)− f(x)
∣∣ = Ox

(
(n+ 1)β+1/pω

( π

n+ 1

))
,

for x under consideration.

Corollary 1. Under the assumptions of Theorem 4 on a function f , if (pν) is a non-
increasing sequence such that

Pτ

n∑
ν=τ

P−1
ν = O(τ) for any τ ≥ 0, (2.7)

then from Theorem 4 we obtain the corrected form of the result of S. Lal.

Remark 1. We note that in the proof of the mentioned theorem of S. Lal [1] the condition

Pτ

n∑
ν=τ

P−1
ν = O(n+ 1) for any τ ≥ 0,

is used, which holds for every nonnegative sequences (pk). Instead (2.7) should be used.

Consequently, we reformulate the results on the Lp estimate of the norm of the devi-
ation considered above.

Theorem 5. Let f ∈ Lp(ω)β with 0 ≤ β < 1 − 1
p . If the entries of our matrices satisfy

conditions (2.3) and (2.4), then

‖Tn,A,Bf(·)− f(·)‖Lp = Ox

( n∑
r=0

bn,r
1

r + 1

r∑
s=0

(s+ 1)βω
( π

s+ 1

)
+

1
n+ 1

n∑
s=0

(s+ 1)βω
( π

s+ 1

))
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and, for 0 < β < 1− 1
p ,

‖Tn,A,Bf(·)− f(·)‖Lp = Ox

(
(n+ 1)βω

( π

n+ 1

)[
(n+ 1)1−β

n∑
s=0

bn,s(s+ 1)β−1
])
.

Theorem 6. Let f ∈ Lp(ω)β with 0 ≤ β < 1− 1
p . If the entries of the matrix A satisfy

condition (2.6), then∥∥Tn,A,(1/(n+1))f(·)− f(·)
∥∥
Lp

= Ox

(
1

n+ 1

n∑
r=0

1
r + 1

r∑
s=0

(s+ 1)βω
( π

s+ 1

))
and, in the case 0 < β < 1− 1

p ,∥∥Tn,A,(1/(n+1))f(·)− f(·)
∥∥
Lp

= O
(
(n+ 1)βω

( π

n+ 1

))
.

Remark 2. In the case if p ≥ 1 (specially if p = 1) we can suppose that the expression
t−βω(t) is nondecreasing in t instead of the assumption β < 1− 1

p .

Remark 3. Under the additional assumptions β = 0 and ω(t) = O(tα) (0 < α < 1), the
degree of approximation is O(n−α) in Theorem 3, and O(n1/p−α) in Theorem 4.

Remark 4. If we consider the modulus of continuity ωf(δ)Lpβ , then our theorems are
true under the assumption that f ∈ Lpβ(ω) and with the following norm

‖f‖Lpβ := ‖f(·)‖Lpβ =

{(∫
Q
|f(t)|p

∣∣sin t
2

∣∣βp dt)1/p when 1 ≤ p <∞,
ess supt∈Q

{
|f(t)|

∣∣sin t
2

∣∣β} when p =∞.

3. Proofs of the results. We begin this section with some notation following A. Zyg-
mund [3]. It is clear that

Skf(x) =
1
π

∫ π

−π
f(x+ t)Dk(t) dt

and

Tn,A,Bf(x) =
1
π

∫ π

−π
f(x+ t)

n∑
r=0

r∑
k=0

bn,rar,kDk(t) dt,

where

Dk(t) =
1
2

+
k∑
ν=1

cos νt =

{
sin((k+ 1

2 )t)

2 sin(t/2) for k 6= 2πr, r = 0, 1, 2, . . .

k + 1
2 otherwise

and

|Dk(t)| ≤

{
π/|t| when 0 < |t| ≤ π,
k + 1 when t ∈ (−∞,+∞).

Hence

Tn,A,Bf(x)− f(x) =
1
π

∫ π

0

ϕx(t)
n∑
r=0

r∑
k=0

bn,rar,kDk(t) dt.

We will prove our results for 1 < p <∞ only. If p =∞ we have to use the generalized
Hölder inequality instead of the classical one.
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Proof of Theorem 1. Let

Tn,A,B(x)− f(x) =
1
π

(∫ π/(n+1)

0

+
∫ π

π/(n+1)

)
ϕx(t)

n∑
r=0

r∑
k=0

bn,rar,kDk(t) dt

=
∫ π/(n+1)

0

+
∫ π

π/(n+1)

and

|Tn,A,Bf(x)− f(x)| ≤
∣∣∣∣∫ π/(n+1)

0

∣∣∣∣+ ∣∣∣∣∫ π

π/(n+1)

∣∣∣∣.
By the Hölder inequality ( 1

p + 1
q = 1), and (2.2), for 0 ≤ β < 1− 1

p ,∣∣∣∣∫ π/(n+1)

0

∣∣∣∣ ≤ (n+ 1)
π

∫ π/(n+1)

0

|ϕx(t)| dt

≤ (n+ 1)
π

{∫ π/(n+1)

0

[
|ϕx(t)|
ω(t)

sinβ
t

2

]p
dt

}1/p{∫ π/(n+1)

0

[
ω(t)

sinβ t
2

]q
dt

}1/q

� (n+ 1)1−1/pω
( π

n+ 1

){∫ π/(n+1)

0

[
1
tβ

]q
dt

}1/q

� (n+ 1)βω
( π

n+ 1

)
� 1

n+ 1

n∑
s=1

(s+ 1)βω
( π

n+ 1

)
≤ 1
n+ 1

n∑
s=1

(s+ 1)βω
( π

s+ 1

)
and, since sin t

2 ≥
t
π or

∣∣sin(2k + 1) t2
∣∣ ≤ (2k + 1) sin t

2 for t ∈ [0, π], we have∣∣∣∣∫ π

π/(n+1)

∣∣∣∣ ≤ 1
π

∫ π

π/(n+1)

∣∣∣ϕx(t) n∑
r=0

r∑
k=0

bn,rar,k
sin(k + 1

2 )t
2 sin(t/2)

∣∣∣ dt
�
∫ π

π/(n+1)

|ϕx(t)|
∣∣∣∣τ−1∑
r=0

r∑
k=0

(k + 1)bn,rar,k

∣∣∣∣ dt
+
∫ π

π/(n+1)

|ϕx(t)|
t

∣∣∣∣ n∑
r=τ

τ−1∑
k=0

bn,rar,r−k sin
(
r − k +

1
2

)
t

∣∣∣∣ dt
+
∫ π

π/(n+1)

|ϕx(t)|
t

∣∣∣∣ n∑
r=τ

r∑
k=τ

bn,rar,r−k sin
(
r − k +

1
2

)
t

∣∣∣∣ dt
= I1 + I2 + I3,

where τ = [πt ] for t ∈ (0, π].
Now we shall estimate the integrals of type I. So, using the Hölder inequality, by

assumption (2.1)

I1 ≤
∫ π

π/(n+1)

|ϕx(t)|
τ−1∑
r=0

(r + 1)bn,r dt

=
n∑
s=1

∫ π/s

π/(s+1)

|ϕx(t)|
τ−1∑
r=0

(r + 1)bn,r dt�
n∑
s=1

s∑
r=0

(r + 1)bn,r
∫ π/s

π/(s+1)

|ϕx(t)| dt
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≤
n∑
s=1

s∑
r=0

(r + 1)bn,r

{∫ π/s

π/(s+1)

[
|ϕx(t)|
ω(t)

sinβ(t/2)
]p
dt

}1/p{∫ π/s

π/(s+1)

[
ω(t)

sinβ t
2

]q
dt

}1/q

�
n∑
s=0

s∑
r=0

(r + 1)bn,r(s+ 1)−2/pω
( π

s+ 1

)
(s+ 1)β−2/q

≤
n∑
s=0

s∑
r=0

(r + 1)bn,rω
( π

s+ 1

)
(s+ 1)β−2 =

n∑
r=0

(r + 1)bn,r
n∑
s=r

ω
( π

s+ 1

)
(s+ 1)β−2

≤
n∑
r=0

(r + 1)bn,rω
( π

r + 1

)
(r + 1)β−1 =

n∑
r=0

bn,rω
( π

r + 1

)
(r + 1)β

�
n∑
r=0

bn,r
1

r + 1

r∑
s=0

(s+ 1)βω
( π

s+ 1

)
.

From (2.3) and (2.4) we obtain

I2 =
∫ π

π/(n+1)

|ϕx(t)|
t

∣∣∣∣τ−1∑
k=0

[n−1∑
r=τ

(bn,rar,r−k − bn,r+1ar+1,r+1−k)
r∑
l=τ

sin
(
l − k +

1
2

)
t

+ bn,nan,n−k

n∑
l=τ

sin
(
l − k +

1
2

)
t

]∣∣∣∣ dt
�
∫ π

π/(n+1)

|ϕx(t)|
t2

τ∑
k=0

[n−1∑
r=τ

bn,r
(r + 1)2

+ bn,nan,n−k

]
dt

=
∫ π

π/(n+1)

|ϕx(t)|
t2

[
(τ + 1)

n−1∑
r=τ

bn,r
(r + 1)2

+ bn,n

τ∑
k=0

an,n−k

]
dt

≤
∫ π

π/(n+1)

|ϕx(t)|
t2

[
(τ + 1)

n−1∑
r=τ

bn,r
(r + 1)2

+ bn,n

]
dt

≤
∫ π

π/(n+1)

|ϕx(t)|
t2

(τ + 1)
n−1∑
r=τ

bn,r
(r + 1)2

dt+ bn,n

∫ π

π/(n+1)

|ϕx(t)|
t2

dt

�
n∑
s=1

∫ π/s

π/(s+1)

|ϕx(t)|
t2

(τ + 1)
n−1∑
r=τ

bn,r
(r + 1)2

dt+
1

n+ 1

∫ π

π/(n+1)

|ϕx(t)|
t2

dt

≤
n∑
s=1

(
(s+ 1)

n∑
r=s

bn,r
(r + 1)2

+
1

n+ 1

)∫ π/s

π/(s+1)

|ϕx(t)|
t2

dt

≤
n∑
s=1

(
(s+ 1)

n∑
r=s

bn,r
(r + 1)2

+
1

n+ 1

)

·
{∫ π/s

π/(s+1)

[
|ϕx(t)|
ω(t)

sinβ
t

2

]p
dt

}1/p{∫ π/s

π/(s+1)

[
ω(t)

t2 sinβ(t/2)

]q
dt

}1/q

�
n∑
s=1

(
(s+ 1)

n∑
r=s

bn,r
(r + 1)2

+
1

n+ 1

)
(n+ 1)−2/pω

(π
s

){∫ π/s

π/(s+1)

[
1

tβ+2

]q
dt

}1/q
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�
n∑
s=0

(
(s+ 1)

n∑
r=s

bn,r
(r + 1)2

+
1

n+ 1

)
(s+ 1)βω

( π

s+ 1

)
=

n∑
r=0

bn,r
(r + 1)2

r∑
s=0

(s+ 1)β+1ω
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and

I3 =
∫ π

π/(n+1)

|ϕx(t)|
t

∣∣∣∣ n∑
r=τ

r∑
k=τ

bn,rar,r−k sin
(
r − k +

1
2

)
t

∣∣∣∣ dt
=
∫ π

π/(n+1)

|ϕx(t)|
t

∣∣∣∣ n∑
k=τ

n∑
r=k

bn,rar,r−k sin
(
r − k +

1
2

)
t

∣∣∣∣ dt
=
∫ π

π/(n+1)

|ϕx(t)|
t

∣∣∣∣ n∑
k=τ

[n−1∑
r=k

(bn,rar,r−k − bn,r+1ar+1,r+1−k)
r∑
l=k

sin
(
l − k +

1
2

)
t

+ bn,nan,n−k

n∑
l=k

sin(l − k +
1
2
)t
]∣∣∣∣ dt

�
∫ π

π/(n+1)

|ϕx(t)|
t2

n∑
k=τ

[n−1∑
r=k

|bn,rar,r−k − bn,r+1ar+1,r+1−k|+ bn,nan,n−k

]
dt

≤
∫ π

π/(n+1)

|ϕx(t)|
t2

[ n∑
r=τ

r∑
k=τ

|bn,rar,r−k − bn,r+1ar+1,r+1−k|+ bn,n

n∑
k=τ

an,n−k

]
dt

�
∫ π

π/(n+1)

|ϕx(t)|
t2

[ n∑
r=τ

r∑
k=τ

bn,r
(r + 1)2

+
1

n+ 1

]
dt

≤
∫ π

π/(n+1)

|ϕx(t)|
t2

[ n∑
r=τ

bn,r
r + 1

+
1

n+ 1

]
dt.

Further, the same calculation as that in the estimate of I2, gives the inequality
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If β > 0 then

|Tn,A,Bf(x)− f(x)| � (n+ 1)ω
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Collecting these estimates we obtain the desired result.

Proof of Theorem 2. With the notation of the above proof,∣∣∣∣∫ π/(n+1)
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Furthermore, using the Hölder inequality, by condition (2.5), we obtain the next estimates
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Further, similarly as in the estimates of I2,
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If β − γ > 0, then

|Tn,A,Bf(x)− f(x)|
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Collecting these estimates we obtain the desired result.

Proof of Theorems 3 and 4. If we put bn,r = 1
n+1 in the above proofs, then the desired

estimates immediately hold.

Proof of Corollary 1. We have to show that condition (2.7) and the monotonicity of (pν)
imply (2.6). Indeed, putting

ar,k =
pr−k
Pr
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and taking τ = 1 in (2.7) we can see that

1� P1

r∑
ν=1

1
Pν
≥ p0

r∑
ν=1

1
Pr

=
p0

Pr
r,

whence, by the monotonicity of (pν) we have

Pr+1 ≥ (r + 1)pr+1

and therefore

|ar,r−l − ar+1,r+1−l| =
pl
Pr
− pl
Pr+1

= pl

( 1
Pr
− 1
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= pl

Pr+1 − Pr
PrPr+1
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pl
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pr+1
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≤ pl
Pr

pr+1

(r + 1)pr+1
=

pl
(r + 1)Pr

≤ p0

(r + 1)Pr
� 1

(r + 1)2
.

Thus the desired implication follows.

Proofs of Theorems 5 and 6. The proofs are similar to the above. In the estimates under
Lp norms with respect to x there will be the expressions like these on the left hand
side of our conditions (2.1), (2.2) and (2.5). Since f ∈ Lp(ω)β , such norm quantities will
always have the same orders like these on the right hand side of the mentioned conditions.
Therefore the proofs follow without any additionally assumptions on f and ω.
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