MARCINKIEWICZ CENTENARY VOLUME BANACH CENTER PUBLICATIONS, VOLUME 95 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2011

DUNFORD–PETTIS OPERATORS ON THE SPACE OF BOCHNER INTEGRABLE FUNCTIONS

MARIAN NOWAK

University of Zielona Góra, Faculty of Mathematics, Computer Science and Econometrics ul. Prof. Szafrana 4A, 65–516 Zielona Góra, Poland E-mail: M.Nowak@wmie.uz.zgora.pl

Abstract. Let (Ω, Σ, μ) be a finite measure space and let X be a real Banach space. Let $L^{\Phi}(X)$ be the Orlicz–Bochner space defined by a Young function Φ . We study the relationships between Dunford–Pettis operators T from $L^1(X)$ to a Banach space Y and the compactness properties of the operators T restricted to $L^{\Phi}(X)$. In particular, it is shown that if X is a reflexive Banach space, then a bounded linear operator $T : L^1(X) \to Y$ is Dunford–Pettis if and only if T restricted to $L^{\infty}(X)$ is $(\tau(L^{\infty}(X), L^1(X^*)), \|\cdot\|_Y)$ -compact.

1. Introduction and preliminaries. Recall that a bounded linear operator T between two Banach spaces is a Dunford–Pettis operator if T maps weakly convergent sequences onto norm convergent sequences. J. Bourgain [B, Proposition 1] showed that a bounded linear operator T from L^1 to a Banach space Y is a Dunford–Pettis operator if and only if T restricted to L^p for some $p \in (1, \infty]$ is compact. The purpose of this paper is to extend and strengthen this result for operators defined on the space of Bochner integrable functions $L^1(X)$. We study the relationships between Dunford–Pettis operators $T: L^1(X) \to Y$ and the compactness properties of T restricted to Orlicz–Bochner spaces $L^{\Phi}(X)$ (see Theorems 2.1, 2.3 and Corollary 2.5 below).

We denote by $\sigma(L, K)$ the weak topology on L with respect to the dual pair $\langle L, K \rangle$. Let (L, ξ) and (M, η) be Hausdorff locally convex spaces. Recall that a linear operator $S: L \to M$ is (ξ, η) -compact if there exists a neighbourhood U of 0 for ξ such that S(U) is a relatively compact set in (M, η) . By Bd (L, ξ) we denote the collection of all ξ -bounded sets in L. Moreover, $(L, \xi)^*$ stands for the topological dual of (L, ξ) .

For terminology and basic properties concerning Banach function spaces we refer to [KA]. Now we recall terminology concerning Orlicz space (see [Lu], [RR] for more

2010 Mathematics Subject Classification: 47B38, 47B05, 46E40, 46A70.

Key words and phrases: Orlicz–Bochner spaces, mixed topologies, generalized DF-spaces, Mackey topologies, Dunford–Pettis operators, compact operators.

The paper is in final form and no version of it will be published elsewhere.

details). From now on we assume that (Ω, Σ, μ) is a finite measure space. By a Young function we mean here a non-zero convex, left continuous function $\Phi : [0, \infty) \to [0, \infty]$ that is vanishing and continuous at 0. We say that Φ jumps to infinity, if $\Phi(t) = \infty$ for all $t \ge t_0 > 0$.

The Orlicz space $L^{\Phi} = \{u \in L^0 : \int_{\Omega} \Phi(\lambda | u(\omega) |) d\mu < \infty \text{ for some } \lambda > 0\}$ can be equipped with the complete Riesz norm:

$$||u||_{\Phi} = \inf\{\lambda > 0 : \int_{\Omega} \Phi(|u(\omega)|/\lambda) \, d\mu \le 1\}.$$

Then L^{Φ} is a perfect Banach function space and $L^{\infty} \subset L^{\Phi} \subset L^1$, where the inclusion maps are continuous. Moreover, the Köthe dual $(L^{\Phi})'$ of L^{Φ} is equal to the Orlicz space L^{Φ^*} , where Φ^* stands for the Young function complementary to Φ in the sense of Young. The associated norm $\|\cdot\|_{\Phi^*}^0$ on L^{Φ^*} (called the Orlicz norm) can be defined by

$$|\cdot||_{\Phi^*}^0 = \sup \left\{ \int_{\Omega} |u(\omega)v(\omega)| \, d\mu : u \in L^{\Phi}, \ ||u||_{\Phi} \le 1 \right\}.$$

Note that if $\lim_{t\to\infty} \frac{\Phi(t)}{t} = \infty$, then $L^{\Phi} \subsetneq L^1$ and

$$L^{\infty} \subsetneq (L^{\Phi^*})_a = E^{\Phi^*} = \Big\{ v \in L^{\Phi^*} : \int_{\Omega} \Phi(\lambda | v(\omega) |) \, d\mu < \infty \text{ for all } \lambda > 0 \Big\}.$$

In particular, if Φ jumps to infinity, then $L^{\Phi} = L^{\infty}$. If $\lim_{t \to \infty} \frac{\Phi(t)}{t} < \infty$, then $L^{\Phi} = L^1$ and $L^{\Phi^*} = L^{\infty}$.

From now on we assume that $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ are real Banach spaces and X^*, Y^* denote their Banach duals. By $L^0(X)$ we denote the set of μ -equivalence classes of all strongly Σ -measurable functions $f : \Omega \to X$.

For $f \in L^0(X)$ let $\widetilde{f}(\omega) = ||f(\omega)||_X$ for $\omega \in \Omega$. Then the space

$$L^{\Phi}(X) = \{ f \in L^0(X) : \widetilde{f} \in L^{\Phi} \}$$

provided with the norm $||f||_{L^{\Phi}(X)} := ||\tilde{f}||_{\Phi}$ is a Banach space and is usually called an *Orlicz–Bochner space* (see [CM], [L], [RR] for more details).

Now we recall terminology and basic results concerning duality of the spaces $L^{\Phi}(X)$ (see [Bu1], [Bu2]). A linear functional F on $L^{\Phi}(X)$ is said to be order continuous if $F(f_{\alpha}) \to 0$ whenever $\tilde{f}_{\alpha} \stackrel{(o)}{\longrightarrow} 0$ in L^{Φ} . The set of all order continuous functionals on $L^{\Phi}(X)$ will be denoted by $L^{\Phi}(X)_{n}^{\sim}$ and called the order continuous dual of $L^{\Phi}(X)$. Then $L^{\Phi}(X)^{*} = L^{\Phi}(X)_{n}^{\sim}$ if Φ satisfies the so called Δ_{2} -condition, i.e., $\limsup_{t\to\infty} \frac{\Phi(2t)}{\Phi(t)} < \infty$. Due to Bukhvalov (see [Bu1], [Bu2]) if X^{*} has the Radon-Nikodym property (in particular, X is reflexive), then $L^{\Phi}(X)_{n}^{\sim}$ can be identified with $L^{\Phi^{*}}(X^{*})$ throughout the mapping: $L^{\Phi^{*}}(X^{*}) \ni g \mapsto F_{g} \in L^{\Phi}(X)_{n}^{\sim}$, where

$$F_g(f) = \int_{\Omega} \langle f(\omega), g(\omega) \rangle d\mu$$
 for all $f \in L^{\Phi}(X)$.

Note that $L^1(X)_n^{\sim} = L^1(X)^* = \{F_g : g \in L^{\infty}(X^*)\}$ if X is reflexive.

For a subset H of $L^{\Phi}(X)$ let $\widetilde{H} = \{\widetilde{f} : f \in H\}$. By $B_{L^{\Phi}(X)}$ (resp. $B_{L^{\Phi}}$) we will denote closed unit ball in $(L^{\Phi}(X), \|\cdot\|_{L^{\Phi}(X)})$ (resp. $(L^{\Phi}, \|\cdot\|_{\Phi})$). Then $\widetilde{B}_{L^{\Phi}(X)} = B_{L^{\Phi}}$.

The following characterization of relative $\sigma(L^{\Phi}(X), L^{\Phi}(X)_n^{\sim})$ -compactness in $L^{\Phi}(X)$ will be of importance (see [N1, Theorem 2.7, Proposition 2.1]).

PROPOSITION 1.1. Assume that X is a reflexive Banach space and Φ is a Young function. Then for a subset H of $L^{\Phi}(X)$ the following statements are equivalent:

- (i) *H* is relatively $\sigma(L^{\Phi}(X), L^{\Phi^*}(X^*))$ -compact.
- (ii) \widetilde{H} is relatively $\sigma(L^{\Phi}, L^{\Phi^*})$ -compact.
- (iii) The functional $p_{\tilde{H}}$ on L^{Φ^*} defined by $p_{\tilde{H}}(v) = \sup_{u \in \tilde{H}} \int_{\Omega} |u(\omega)v(\omega)| d\mu$ is an order continuous seminorm.

2. Dunford-Pettis operators on $L^1(X)$. We study the relationships between Dunford-Pettis operators $T : L^1(X) \to Y$ and the compactness properties of the operator T restricted to $L^{\Phi}(X)$. Note that a bounded linear operator $T : L^1(X) \to Y$ is a Dunford-Pettis operator if and only if T maps relatively weakly compact sets in $L^1(X)$ onto relatively norm compact sets in Y (see [AB, §19]).

Let $i_{\Phi}: L^{\Phi}(X) \to L^{1}(X)$ stand for the inclusion map.

THEOREM 2.1. Let $T : L^1(X) \to Y$ be a bounded linear operator. Assume that Φ is Young function and let $T \circ i_{\Phi} : L^{\Phi}(X) \to Y$ be a $(\| \cdot \|_{\Phi}, \| \cdot \|_{Y})$ -compact operator. Then T is a Dunford–Pettis operator.

Proof. We see that $T(B_{L^{\Phi}(X)})$ is relatively compact in $(Y, \|\cdot\|_Y)$. Let H be a relatively $\sigma(L^1(X), L^1(X)^*)$ -compact subset of $L^1(X)$. To show that T(H) is relatively compact in $(Y, \|\cdot\|_Y)$ it is enough to show in view of [D, p. 5] that for every $\varepsilon > 0$ there exists a relatively compact subset K_{ε} of $(Y, \|\cdot\|_Y)$ such that

$$T(H) \subset \varepsilon B_Y + K_\varepsilon,$$

where B_Y is a closed unit ball in Y. Note that the set \widetilde{H} is uniformly integrable in L^1 (see [DU, Theorem 4, p. 104]). For $f \in L^1(X)$ and $\lambda > 0$ let

$$A_{f,\lambda} = \{ \omega \in \Omega : \widetilde{f}(\omega) > \lambda \}.$$

Then

$$\lim_{\lambda \to \infty} \sup_{f \in H} \int_{A_{f,\lambda}} \widetilde{f}(\omega) \, d\mu = \lim_{\lambda \to \infty} \sup_{f \in H} \| \mathbb{1}_{A_f,\lambda} \, f \|_{L^1(X)} = 0.$$

Let $\varepsilon > 0$ be given. Then there exists $\lambda_{\varepsilon} > 0$ such that for each $f \in H$ we have

$$\|1_{A_{f,\lambda_{\varepsilon}}} f\|_{L^{1}(X)} \leq \frac{\varepsilon}{\|T\|}.$$

Hence for $f \in H$ we get

$$\|T(1_{A_{f,\lambda_{\varepsilon}}}f)\|_{Y} \le \|T\| \cdot \|1_{A_{f,\lambda_{\varepsilon}}}f\|_{L^{1}(X)} \le \varepsilon.$$

Moreover, $1_{\Omega \setminus A_{f,\lambda_{\varepsilon}}}(\omega)\widetilde{f}(\omega) \leq \lambda_{\varepsilon}$ for $\omega \in \Omega$, so $1_{\Omega \setminus A_{f,\lambda_{\varepsilon}}}f \in L^{\infty}(X) \subset L^{\Phi}(X)$. Since $\|h\|_{L^{\Phi}(X)} \leq a\|h\|_{L^{\infty}(X)}$ for some a > 0 and all $h \in L^{\infty}(X)$, we get

$$\|1_{\Omega\setminus A_{f,\lambda_{\varepsilon}}} f\|_{L^{\Phi}(X)} \le a\lambda_{\varepsilon}.$$

Hence

$$T(f) = T(1_{A_f,\lambda_{\varepsilon}}f) + T(1_{\Omega \setminus A_{f,\lambda_{\varepsilon}}}f) \in \varepsilon B_Y + a\lambda_{\varepsilon}T(B_{L^{\Phi}(X)}).$$

This means that the set T(H) is relatively compact in $(Y, \|\cdot\|_Y)$, as desired.

From now we assume that Φ is a Young function such that $\lim_{t\to\infty} \frac{\Phi(t)}{t} = \infty$. Let \mathcal{T}_{Φ} be the topology on $L^{\Phi}(X)$ generated by the norm $\|\cdot\|_{L^{\Phi}(X)}$ on $L^{\Phi}(X)$, and let \mathcal{T}_{0} stand for the complete *F*-norm $\|\cdot\|_{L^{0}(X)}$ -topology on $L^{0}(X)$ that generates convergence in measure. Then the mixed topology $\gamma[\mathcal{T}_{\Phi}, \mathcal{T}_{0}|_{L^{\Phi}(X)}]$ (briefly, γ_{Φ}) on $L^{\Phi}(X)$ is the finest Hausdorff locally convex topology on $L^{\Phi}(X)$ which agrees with $\mathcal{T}_{0}|_{L^{\Phi}(X)}$ on $\|\cdot\|_{L^{\Phi}(X)}$ -bounded subsets of $L^{\Phi}(X)$ (see [W, 2.2.2], [F1, Theorem 3.3]). Moreover, we have (see [F2, Proposition 2.1]):

$$\operatorname{Bd}(L^{\Phi}(X), \gamma_{\Phi}) = \operatorname{Bd}(L^{\Phi}(X), \|\cdot\|_{L^{\Phi}(X)}).$$
(2.1)

This means that $(L^{\Phi}(X), \gamma_{\Phi})$ is a generalized DF-space (see [Ru, Definition 1.1]).

It is known that a linear operator $T : L^{\Phi}(X) \to Y$ is $(\gamma_{\Phi}, \|\cdot\|_{Y})$ -continuous if and only if T is $(\gamma_{\Phi}, \|\cdot\|_{Y})$ -linear, i.e., $\|T(f_{n})\|_{Y} \to 0$ whenever $\|f_{n}\|_{L^{0}(X)} \to 0$ and $\sup_{n} \|f_{n}\|_{L^{\Phi}(X)} < \infty$ (see [W, Theorem 2.6.1(iii)], [F2, Proposition 2.3]).

We shall need the following lemma.

LEMMA 2.2. Assume that Φ is a Young function such that $\lim_{t\to\infty} \frac{\Phi(t)}{t} = \infty$ and X is a reflexive Banach space. Then $i_{\Phi} : L^{\Phi}(X) \to L^{1}(X)$ is a $(\|\cdot\|_{L^{\Phi}(X)}, \sigma(L^{1}(X), L^{1}(X)^{*}))$ -compact operator.

Proof. To show that $B_{L^{\Phi}(X)}$ is a relatively $\sigma(L^{1}(X), L^{1}(X)^{*})$ -compact subset of $L^{1}(X)$, in view of Proposition 1.1 it is enough to show that $B_{L^{\Phi}}$ is relatively $\sigma(L^{1}, L^{\infty})$ -compact in L^{1} , that is, the seminorm on L^{∞} defined by

$$p_{B_{L^{\Phi}}}(v) := \sup_{u \in B_{L^{\Phi}}} \int_{\Omega} |u(\omega)v(\omega)| \, d\mu$$

is order continuous. Indeed, note that $p_{B_{L^{\Phi}}}(v) = \|\cdot\|_{\Phi^*}^0$ for $v \in L^{\infty}$, where $L^{\infty} \subsetneq E^{\Phi^*} = (L^{\Phi^*})_a$. Thus the proof is complete.

Now we are ready to prove our main result.

THEOREM 2.3. Assume that Φ is a Young function such that $\lim_{t\to\infty} \frac{\Phi(t)}{t} = \infty$ and X is a reflexive Banach space. Let $T: L^1(X) \to Y$ be a Dunford-Pettis operator. Then the operator $T \circ i_{\Phi}: L^{\Phi}(X) \to Y$ is $(\gamma_{\Phi}, \|\cdot\|_Y)$ -compact.

Proof. Since X is supposed to be reflexive, in view of [F1, Theorem 3.2] we have

$$(L^{\Phi}(X), \gamma_{\Phi})^* = \{ F_g : g \in E^{\Phi^*}(X^*) \}.$$

First, we shall show that $T \circ i_{\Phi} : L^{\Phi}(X) \to Y$ is $(\gamma_{\Phi}, \|\cdot\|_{Y})$ -linear. Indeed, let (f_n) be a sequence in $L^{\Phi}(X)$ such that $\|f_n\|_{L^0(X)} \to 0$ and $\sup_n \|f_n\|_{L^{\Phi}(X)} < \infty$. Then $f_n \to 0$ for γ_{Φ} (see [F1, Theorem 3.1]), and it follows that $f_n \to 0$ for $\sigma(L^{\Phi}(X), E^{\Phi^*}(X^*))$ because $\sigma(L^{\Phi}(X), E^{\Phi^*}(X^*)) \subset \gamma_{\Phi}$. Hence $f_n \to 0$ for $\sigma(L^1(X), L^1(X)^*)$ because $\sigma(L^1(X), L^1(X)^*) = \sigma(L^1(X), L^{\infty}(X^*))$ and $L^{\Phi}(X) \subset L^1(X)$ and $L^{\infty}(X^*) \subset E^{\Phi^*}(X^*)$. Since T is a Dunford–Pettis operator, we get $\|T(f_n)\|_Y \to 0$. This means that $T \circ i_{\Phi}$ is $(\gamma_{L^{\Phi}(X)}, \|\cdot\|_Y)$ -continuous.

By Lemma 2.2 the mapping $T \circ i_{\Phi}$ is $(\|\cdot\|_{L^{\Phi}(X)}, \|\cdot\|_{Y})$ -compact. Hence, in view of (2.1) $T \circ i_{\Phi}$ transforms γ_{Φ} -bounded sets in $L^{\Phi}(X)$ onto relatively $\|\cdot\|_{Y}$ -compact sets in Y. Making use of [Ru, Theorem 3.1] we conclude that $T \circ i_{\Phi}$ is $(\gamma_{\Phi}, \|\cdot\|_{Y})$ -compact, as desired.

As an application of Theorems 2.1 and 2.3 we get:

COROLLARY 2.4. Assume that Φ is a Young function such that $\lim_{t\to\infty} \frac{\Phi(t)}{t} = \infty$ and X is a reflexive Banach space. Then for a bounded linear operator $T: L^1(X) \to Y$ the following statements are equivalent:

- (i) T is a Dunford–Pettis operator.
- (ii) $T \circ i_{\Phi} : L^{\Phi}(X) \to Y$ is $(\gamma_{\Phi}, \|\cdot\|_{Y})$ -compact.
- (iii) $T \circ i_{\Phi} : L^{\Phi}(X) \to Y$ is $(\|\cdot\|_{L^{\Phi}(X)}, \|\cdot\|_{Y})$ -compact.

In particular, if X is reflexive, then the mixed topology γ_{∞} on $L^{\infty}(X)$ coincides with the Mackey topology $\tau(L^{\infty}(X), L^{1}(X^{*}))$ (see [N2, Corollary 4.4]). Hence, as a consequence of Corollary 2.4 we get:

COROLLARY 2.5. Assume that X is a reflexive Banach space. Then for a bounded linear operator $T: L^1(X) \to Y$ the following statements are equivalent:

- (i) T is a Dunford–Pettis operator.
- (ii) $T \circ i_{\infty} : L^{\infty}(X) \to Y$ is $(\tau(L^{\infty}(X), L^{1}(X^{*})), \|\cdot\|_{Y})$ -compact.
- (iii) $T \circ i_{\infty} : L^{\infty}(X) \to Y$ is $(\|\cdot\|_{L^{\infty}(X)}, \|\cdot\|_{Y})$ -compact.

References

- [AB] C. D. Aliprantis, O. Burkinshaw, *Positive Operators*, Pure Appl. Math. 119, Academic Press, Orlando, 1985.
- [B] J. Bourgain, Dunford-Pettis operators on L¹ and the Radon-Nikodym property, Israel J. Math. 37 (1980), 34–47.
- [Bu1] A. V. Bukhvalov, The analytic representation of linear operators with abstract norm, Izv. Vyssh. Uchebn. Zaved. Mat. 1975, no. 11, 21–32 (Russian).
- [Bu2] A. V. Bukhvalov, The analytic representation of linear operators by means of measurable vector-valued functions, Izv. Vyssh. Uchebn. Zaved. Mat. 1977, no. 7, 21–31 (Russian).
- [CM] P. Cembranos, J. Mendoza, Banach Spaces of Vector-Valued Functions, Lectures Notes in Math. 1676, Springer, Berlin, 1997.
- [D] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, New York, 1984.
- [DU] J. Diestel, J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, RI, 1977.
- [F1] K. Feledziak, Uniformly Lebesgue topologies on Köthe-Bochner spaces, Comment. Math. Prace Mat. 37 (1997), 81–98.
- [F2] K. Feledziak, Weakly compact operators on Köthe-Bochner spaces, in: Function Spaces VIII, Banach Center Publ. 79, Polish Acad. Sci. Inst. Math., Warsaw, 2008, 71–77.
- [KA] L. V. Kantorovich, A. V. Akilov, Functional Analysis, Pergamon Press, Oxford-Elmsford, N.Y., 1982.
- [L] P.-K. Lin, *Köthe–Bochner Function Spaces*, Birkhäuser, Boston, 2004.
- [Lu] W. Luxemburg, Banach Function Spaces, Thesis, Assen, 1955.
- [N1] M. Nowak, Weak sequential compactness and completeness in Köthe–Bochner spaces, Bull. Polish Acad. Sci. Math. 47 (1999), 209–220.

- [N2] M. Nowak, Lebesgue topologies on vector-valued function spaces, Math. Japon. 52 (2000), 171–182.
- [RR] M. M. Rao, Z. D. Ren, Theory of Orlicz Spaces, Monogr. Textbooks Pure Appl. Math. 146, Marcel Dekker, New York, 1991.
- [Ru] W. Ruess, [Weakly] compact operators and DF-spaces, Pacific J. Math. 98 (1982), 419–441.
- [W] A. Wiweger, Linear spaces with mixed topology, Studia Math. 20 (1961), 47–68.