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0. Introduction. First we define the important concepts: 1) unitarizing measure for
the representation of a Lie group G in a space of holomorphic functions (the unitarizing
measure is a real measure), 2) infinitesimal representation of the Lie algebra, 3) from the
vector fields of the infinitesimal representation, construction of a second order differential
operator ∆OU with a drift term and real valued coefficients, and finally we ask 4) whether
the measure µ of the representation of the group G is also the invariant measure for this
differential operator ∆OU . Such a study is motivated by the work and ideas in [6], [3],
[17], [18] and [9]. In particular, according to [3], [18], in certain cases, the measure for
the representation of an infinite-dimensional Lie group should be obtained as the invari-
ant measure for an Ornstein–Uhlenbeck operator ∆OU . In [9], the space of holomorphic
functions is identified with a complex line bundle, each section of this bundle being a
complex valued function, the operator ∆OU is constructed in this abstract setting by the
stochastic calculus of variation and the example of the group SU(1, 1) with the Poincaré
disk SU(1, 1)/S1 is given. It is interesting to have more examples and explicit formulas for
the operator ∆OU . In Section 4, we consider discrete series representations for Gl(2,R)
and for elementary finite-dimensional complex linear groups. The realization of discrete
series representation in concrete functions spaces has been done by several authors, see
the historical notes, Chapter V in [24]. In the present work, G is a finite-dimensional
group. In the first part (Section 1), we explain the relations between ∆OU operators and
representations of the form Tgf(z) = hg(z)f(kg(z)) where hg and kg are holomorphic
functions on a domain D. We show in Theorems 1.10 and 1.18 how to find, in a sys-
tematic way, the differential operator ∆OU in terms of the infinitesimal representation of
the group. Theorems 1.10 and 1.18 can be applied to all the examples (Sections 2, 3, 4)
and also to the 3-dimensional Heisenberg group (Section 5). We illustrate Section 1 and
along the lines of the ideas in [18], by direct calculation on the examples, we establish
the expressions for the differential operator ∆OU , the measure of the representation and
the vector fields in the infinitesimal representation.

1. Unitary representations and ∆OU differential operators

1.1. Unitarizing measure and unitary representation. Given a Lie group G and µ
a real measure on a domain D in Cn = R2n, we denote by L2

Hol(µ) the set of holomorphic
functions f : D → D such that |f |2 is µ-integrable, i.e.

L2
Hol(D;µ) = Hol(D) ∩ L2(µ).
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We put z = (z1, z2, . . . , zn) ∈ Cn and zj = xj +
√
−1 yj , xj , yj ∈ R. For g ∈ G, we

consider the operators
Tg : L2

Hol(D;µ)→ L2
Hol(D;µ)

such that Tg has the following properties:

(a) For any holomorphic function f on D,

Tg1g2f = Tg1(Tg2f)

where g1g2 is the product of g1 and g2 in the group G. If e is the neutral element
of G,

(Tef)(z) = f(z),

and therefore, for any g ∈ G, we have

(Tg)−1 = Tg−1 .

In fact, Tg is a semi-group of operators indexed by a group G.
(b) Tg is unitary or, equivalently, µ is unitarizing for Tg, that is∫

|Tg(f)(z)|2 dµ(z) =
∫
|f(z)|2 dµ(z)

(c) Tg is of the form
(Tgf)(z) = hg(z)f(kg(z))

where hg : D → C and kg : D → D are holomorphic functions on D. The conditions
(a) and (c) together give the following system on hg and kg

hg1(z)hg2(kg1(z)) = hg1g2(z) (1.1)

and
kg2(kg1(z)) = kg1g2(z). (1.2)

Moreover, since (Tef)(z) = z, we deduce that

ke(z) = z and he(z) = 1. (1.3)

When (a)–(b)–(c) are satisfied, Tg is a unitary representation of G into L2
Hol(D;µ). We

denote this representation by (Tg, µ). We assume that kg(z) depends effectively upon g;
thus the trivial cases where kg(z) = z for any g will be eliminated from our considerations.

Remark 1.1. Assume that kg is determined and that ĥg and h̃g are both solutions of
(1.1), then the product hg = ĥg × h̃g is also a solution of (1.1). If kg(z) is a solution of
(1.2), then for any holomorphic function ψ : D → C,

hg(z) =
ψ(kg(z))
ψ(z)

as well as the determinant of the complex Jacobian matrix of kg(z) are solutions of (1.1).
If kg(z) = (k1(z), k2(z), . . . , kn(z)), we define the complex Jacobian matrix of kg(z) as
the matrix

(
∂km
∂zj

)
. In the following, for simplicity, D is a subset of C. Then in these cases

we have hg(z) =
(kg(z)

z

)q for any positive integer q, hϕg (z) = exp(ϕ(kg(z))− ϕ(z)) where
ϕ is holomorphic and

hg(z) = k′g(z).
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On the other hand, if kg(z) satisfies (1.2) and hg(z) satisfies (1.1), then for any integer q,

k̂g(z) = [kg(zq)](1/q)

satisfies also (1.2) and ĥg(z) = hg(zq) satisfies ĥg1(z)ĥg2(k̂g1(z)) = ĥg1g2(z).

Remark 1.2. Assume that the group law is not known, but that two functions kg(z)
and hg(z) are given. If kg(z) and hg(z) satisfy (1.1)–(1.2), from the following example,
we see that it is possible to determine the group law. Assume G = C3, g = (a, b, c) ∈ C3.
Assume that hg(z) = ebz+c and kg(z) = z + a. We determine the group law ∗

(a1, b1, c1) ∗ (a2, b2, c2) = (a3, b3, c3)

as follows. The condition (1.2) implies a3 = a1 + a2 and the condition (1.1) implies that
b3 = b1 + b2, c3 = c1 + c2 + a1b2. This defines the group structure G = (C3, ∗) associated

to the multiplication of 3 × 3 Heisenberg matrices
(

1 a c
0 1 b
0 0 1

)
. We can find a subgroup

G1 of G such that µ = e−(x2+y2) dx dy is a unitarizing measure for the representation
Tgf(z) = ebz+cf(z + a), g ∈ G1. Writing the condition (b), we obtain

a+ b = 0, c+ c+ aa = 0.

The set of g1 = (a,−a, c) with c+c+aa = 0 is a subgroup G1 of G with the representation

Tg1f(z) = e−az+cf(z + a) in L2
Hol(e

−(x2+y2) dx dy).

1.2. Unitarizing measure and the infinitesimal representation of the Lie alge-
bra G. In [3], [1], [4], the unitarizing measure and its relation to ∆OU have been studied
in the case of representations of the Lie algebra G of G. The infinitesimal representation
of the Lie algebra G into L2

µ(D) is obtained as follows: Let ε 7→ gε be a curve on G such
that g0 = identity of G, we put

v =
d

dε

∣∣∣
ε=0

gε. (1.4)

For f holomorphic on D and f ∈ L2
µ(D), we put

ρ(v)f =
d

dε

∣∣∣
ε=0

Tgεf, (1.5)

the unitarizing condition gives∫
[ρ(v)f ]φdµ+

∫
f ρ(v)φdµ = 0 (1.6)

for any f and φ holomorphic. Let (ej)(j=1,...,n) be a basis of the Lie algebra G, and let
(ρ(ej)) be the corresponding operators in the infinitesimal representation,

ρ(ej)f =
d

dε

∣∣∣
ε=0

Tgjεf, ej =
d

dε

∣∣∣
ε=0

gjε

where gjε are curves on G.

Lemma 1.3. If we assume that (Tg, µ) is of the form (c), we have

ρ(ej) = αj(z)
∂

∂z
+ βj(z),

αj(z) =
d

dε

∣∣∣
ε=0

kgjε (z), βj(z) =
d

dε

∣∣∣
ε=0

hgjε (z),
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where gjε are curves on G such that ej = d
dε

∣∣
ε=0

gjε . We see that αj(z) and βj(z) are
holomorphic functions of z. If

Tgf(z) = [k′g(z)]
γ ψ(kg(z))

ψ(z)
f(kg(z)) where ψ is holomorphic, (1.7)

we have

ρ(ej) = αj(z)
∂

∂z
+ γα′j(z) + αj(z)

ψ′(z)
ψ(z)

. (1.8)

In this work, we shall assume that γ is an integer though other real values of γ are
admissible, see [6]. Assume that the measure µ has the density R(z, z) with respect to
the Lebesgue measure dz dz on D, let

dµ = 2R(z, z) dx dy = R(z, z) dz dz,

and put

Γj(z, z) =
1

R(z, z)
∂

∂z
(αj(z)R(z, z)) = α′j(z) + αj(z)

∂

∂z
logR(z, z). (1.9)

Equivalently

Γj(z, z) = αj(z)
∂

∂z
log(αj(z)R(z, z)) for j = 1, . . . , n.

We obtain by writing (1.6) for v = ej , j = 1, . . . , n, that the functions βj(z) and Γj(z, z)
have the same real part,

<βj(z) = <Γj(z, z) for j = 1, . . . , n. (1.10)

Since the condition (1.10) is concerned only with the real parts, a representation may
have several unitarizing measures and this is the case in Lemma 3.2, formula (3.4). On
the other hand, when n > 1, the system of equations (1.9)–(1.10) or equivalently the
system

1
2

(
αj(z)

∂

∂z
+ αj(z)

∂

∂z

)
logR = <(βj(z)− α′j(z)), j = 1, . . . , n, (1.11)

must have a common solution R(z, z). This fact is verified on our examples. In particular,
in the case of (1.8) with ψ(z) = 1, we have βj(z) = γα′j(z),

Γj − βj = (1− γ)α′j + αj
∂

∂z
logR (1.12)

and the system (1.11) reduces to
1
2

(
αj(z)

∂

∂z
+ αj(z)

∂

∂z

)
logR = (γ − 1)<(α′j(z)), j = 1, . . . , n.

If R(z, z) has been determined, we have the following

Lemma 1.4. Assume that dµ = R(z, z) dz dz, then

(i) <
[
αj(z)

∂

∂z
logR(z, z)

]
is harmonic on D for j = 1, . . . , n.

The function βj(z) is completely determined by αj(z) and R(z, z). We have

(ii) < ∂

∂z

[
αj(z)

∂2

∂z ∂z
logR

]
= 0, j = 1, . . . , n.
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Proof. Since βj(z) and α′j(z) are holomorphic, <(βj) is harmonic. To prove (ii), we cal-
culate the Laplacian of the expression in (i).

For the bracket in G,
[ei, ej ] =

∑
k

ckijek, (1.13)

the condition ρ([ei, ej ]) = [ρ(ei), ρ(ej)] together with (1.13) implies that

αiα
′
j − αjα′i =

∑
k

ckijαk, (1.14)

αiβ
′
j − αjβ′i =

∑
k

ckijβk. (1.15)

The relation (1.15) is a consequence of (1.14) when ρ(ej) is given by (1.8). Moreover
(1.14) and (1.9) imply

αi
∂

∂z
Γj − αj

∂

∂z
Γi =

∑
k

ckijΓk. (1.16)

Definition 1.5. If V is a vector field on D, we define the divergence function divµ(V )
by the condition∫

divµ(V )(z, z)Φ(z, z) dµ =
∫

(V Φ) dµ for any differentiable function Φ(z, z).

If dµ = R(z, z) dz dz, we have

divµ
(
u(z, z)

∂

∂z

)
= − 1

R

∂

∂z
(u(z, z)R(z, z)). (1.17)

We consider the vector fields

Hj = αj(z)
∂

∂z
and Hj = αj(z)

∂

∂z
, (1.18)

then (1.9) implies divµ(Hj) = −Γj(z, z) and divµ(Hj) = −Γj(z, z).
The vector field V has divergence zero with respect to µ if and only if

∫
(V Φ) dµ = 0

for any differentiable Φ(z, z). For example, for a differentiable function h : R→ R,

V = z
∂

∂z
− z ∂

∂z
= i

∂

∂θ
with z = reiθ (1.19)

has divergence zero with respect to µ = h(zz) dz dz.

Definition 1.6. We call a vector field V such that divµ(V ) = 0 a divergence-free vector
field associated to the representation (Tg, µ).

1.3. Invariant measure with respect to u(z, z) ∂2

∂z∂z
+ v(z, z) ∂

∂z

Definition 1.7. We say that the second order differential operator A has the real mea-
sure µ as invariant measure if for any differentiable function Φ(z, z) we have∫

AΦ dµ = 0. (1.20)

Remark 1.8. Since the measure µ is real, we have
∫

(C1A + C2A)Φ dµ = 0 for any
constants C1, C2. If C1A+ C2A reduces to a first order operator, then V = C1A+ C2A

is a vector field and divµ(V ) = 0.
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Lemma 1.9. An operator of the form

u(z, z)
∂2

∂z∂z
+ v(z, z)

∂

∂z
(1.21)

has R(z, z) dz dz as invariant measure if and only if

v(z, z) =
1
R

∂

∂z
(u(z, z)R(z, z)). (1.22)

Comparing (1.22) and (1.9), we see that the concept of unitarizing measure and that
of invariant measure are closely related.

Theorem 1.10. Assume that the Lie algebra G has dimension n, n > 1. Consider the
unitarizing measure µ = R(z, z) dz dz for the representation Tg. Assume that there exist
constants Ajk, j, k = 1, . . . , n, such that∑

j,k

Ajkαj(z)αk(z) = 0. (1.23)

Let
∆ =

∑
j,k

Ajk(ρ(ej) + ρ(ej))Hk, (1.24)

then

(i) ∆ has µ as invariant measure,
(ii) ∆ is an operator of the form (1.21).

The condition (1.23) means that
∑
j,k AjkHjHk reduces to a (holomorphic) vector field.

Proof. Let Γj(z, z) be as in (1.9). The conditions (1.9)–(1.10) imply that for any j, k

∆jk = (ρ(ej) + ρ(ej))Hk (1.25)

has µ as invariant measure, thus ∆ has µ as invariant measure. The condition (1.23)
implies that ∆ is of the form (1.21), it has no term in ∂2

∂z2
.

Independently of Theorem 1.10, we have

Theorem 1.11. The functions Γj(z, z) are given by (1.9). If there exist constants Ajk
such that ∑

j,k

Ajk(βj(z)− Γj(z, z))αk(z) = 0, (1.26)

then ∆ =
∑
j,k Ajkρ(ej)Hk has R(z, z) dz dz as invariant measure.

Proof. By (1.9).

Corollary 1.12. Assume that βj = γα′j and that
∑
j,k Ajkαj(z)αk(z) is real. If (1.26)

is satisfied, we have

R(z, z) = constant×
[∑
j,k

Ajkαj(z)αk(z)
]γ−1

.

Proof. Substituting (1.12) into (1.26), we obtain∑
j,k

Ajk(1− γ)α′jαk +
∑
j,k

Ajkαjαk
∂

∂z
logR = 0.
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This condition implies that R = Φ(z) × [
∑
j,k Ajkαjαk]γ−1. Since

∑
j,k Ajkαj(z)αk(z)

and R(z, z) are real, we deduce that Φ(z) is constant.

The conditions of Theorem 1.11 are satisfied for the one-dimensional cases: in Sections
2 and 3, we calculate the density R in such a way that β = Γ, see (2.4) and Remark
3.3. They are also satisfied for some of the examples in Section 4 but we cannot apply
Theorem 1.11 to the Heisenberg group, Section 5, where we use Theorem 1.10 instead.
The conditions (1.23) are satisfied both for the Heisenberg group and for the examples
in Section 4. We relate Theorems 1.10 and 1.11.

Lemma 1.13. Assume that both conditions (1.23) and (1.26) are satisfied and that the
constants Ajk are real numbers. Then

∑
j,k Ajkρ(ej)Hk = 0.

Proof. We have to verify that ∑
j,k

Ajk(αjα′k + βjαk) = 0. (1.27)

The condition (1.23) implies that
∑
j,k Ajkαjα

′
k = −

∑
j,k Ajkα

′
jαk. Using (1.9), we re-

place α′j . Thus for proving (1.27), we have to verify that∑
j,k

Ajk

(
−Γj + αj

∂

∂z
logR+ βj

)
αk = 0. (1.28)

The condition (Ajk are real) as well as (1.10) and (1.26) imply that∑
j,k

Ajk(βj − Γj)αk = 0. (1.29)

Then (1.29) and (1.23) imply (1.28).

1.4. Ornstein–Uhlenbeck operator. For the classical Ornstein–Uhlenbeck operator,

D =
d2

dx2
− x

t

d

dx
= δ

d

dx
where δ =

d

dx
− x

t
I,

the measure µ = e−x
2/2t dx is invariant. For the first order term, we have the divergence

condition
x

t
= divµ

( d
dx

)
.

The divergence operator δ satisfies

δ
d

dx
− d

dx
δ =

1
t
I.

The n-th Hermite polynomial is Hn(x) = δn1.
On the complex plane C, we consider only Hermitian metrics, they are of the form

ds2 = g(z, z) dz dz where g(z, z) is a real valued function (see for example p. 289 in [14]).
In fact, these metrics are also Kählerian, [11]. This will give restrictions on the choice of
the unitarizing measure as we can see in Remark 3.3, and on the operator ∆ which has
µ as invariant measure, see Remark 4.8.

By analogy with the classical Ornstein–Uhlenbeck operator, we introduce the following
definition.
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Definition 1.14. We call an operator a real Ornstein–Uhlenbeck operator (OU-operator)
associated to the holomorphic representation (Tg, µ) when it is of the form

u(x, y)
[ ∂2

∂x2
+

∂2

∂y2
+
∂Q

∂x

∂

∂x
+
∂Q

∂y

∂

∂y

]
(1.30)

such that

(i) it has the measure µ of the representation as invariant measure,
(ii) u(x, y) is real positive.

Since dµ = Rdz dz is real, this implies that Q is a real valued function. If z = z + iy,
then

∂2

∂x2
+

∂2

∂y2
+
∂Q

∂x

∂

∂x
+
∂Q

∂y

∂

∂y
= 4

∂2

∂z∂z
+ 2
[∂Q
∂z

∂

∂z
+
∂Q

∂z

∂

∂z

]
. (1.31)

We have

dµ = Rdz dz = eQ(z,z) dv with dv =
dz dz

u(z, z)
(1.32)

and
Q = log(Ru). (1.33)

If the product Ru is real positive, then Q is real valued. The volume element 1
2 dv is

associated to the metric ds2 on D = {u(z, z) > 0},

ds2 =
1
u

(dx2 + dy2).

Definition 1.15. We call an operator a complex OU-operator associated to (Tg, µ), when
it is of the form

u(z, z)
[ ∂2

∂z∂z
+
∂Q

∂z

∂

∂z

]
(1.34)

with the measure µ of the representation as invariant measure and such that Q is real
valued.

Consider the symplectic form

ω =
dz ∧ dz
u(z, z)

. (1.35)

We define the complex gradient of Q with respect to ω as the vector field

gradω Q = u
∂Q

∂z

∂

∂z
. (1.36)

With this notation, the complex OU-operator associated to (Tg, µ) is

∆laplacian + gradω Q, (1.37)

where ∆laplacian is the Riemannian Laplacian on D. The classical Ornstein–Uhlenbeck
has been extended to an analogue on the Wiener space and in the infinite-dimensional
setting, commutations and integration by parts identities have been obtained with the
divergence operator, see [23]. In our context, we obtained the following factorization.
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Lemma 1.16. Let h(z, z) be a function of (z, z) with real or complex values. Consider the
divergence operator δh

δh = h
[ ∂
∂z

+
( ∂
∂z

log(Rh)
)
I
]
. (1.38)

If Q = log(Ru), we have

u(z, z)
[ ∂2

∂z∂z
+
∂Q

∂z

∂

∂z

]
= δh

(u
h

∂

∂z

)
. (1.39)

In particular, if we put Γα = α ∂
∂z log(αR) as in (1.9), we have δα = α ∂

∂z + Γα.

In the following, our problem is to express (1.37) or equivalently (1.39) in terms of
the infinitesimal representation as in Theorems 1.10 or 1.11. For example, Theorem 1.11
comes down to writing the factorization (1.39) as a sum of factors ρ(ej)αk(z) ∂∂z where
the ρ(ej) have the shape of a divergence operator.

Lemma 1.17. Assume that
∑
j,k Ajkαj(z)αk(z) = 0. Let ∆ be as in Theorem 1.10, then

∆ is of the form (1.39) with Q = log(Ru),

u(z, z) =
∑
j,k

Ajkαj(z)αk(z),

∆ =
∑
j,k

Ajk(ρ(ej) + ρ(ej))Hk = u(z, z)
[ ∂2

∂z∂z
+
∂Q

∂z

∂

∂z

]
.

Proof. We verify that the coefficient of ∂
∂z in ∆ is equal to u ∂Q

∂z .

We deduce

Theorem 1.18. Assume that the conditions of Theorem 1.10 are satisfied, i.e. there exist
constants Ajk such that

∑
j,k Ajkαj(z)αk(z) = 0. Assume that up to a multiplicative

constant, u(z, z) =
∑
j,k Ajkαj(z)αk(z) is real and positive. Let D be the subset of C

defined by
D =

{
z
∣∣∣ ∑
j,k

Ajkαj(z)αk(z) 6= 0
}
. (1.40)

Assume that D 6= ∅. Then there is an Ornstein–Uhlenbeck operator ∆OU associated to
the representation (Tg, µ), and we have

∆OU = ∆ + ∆ where ∆ =
∑
j,k

Ajk(ρ(ej) + ρ(ej))Hk. (1.41)

Moreover, divµ(V ) = 0 for the vector field

V = ∆−∆ =
∑
j,k

Ajk(βj + βj)
(
αk

∂

∂z
− αk

∂

∂z

)
. (1.42)

Proof. According to Theorem 1.10, ∆ is of the form (1.21) and

v(z, z) = u(z, z)
∂

∂z
log(Ru).

By Lemma 1.17, ∆ + ∆ is an OU-operator. On the other hand since u(z, z) is real, we
deduce that V = ∆−∆ is a vector field.
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We have the identification

Unitarizing measure for a representation of a group G on L2
Hol(D;µ)

= invariant measure for an OU-process on D.

The so-called OU-process is the diffusion on D with an infinitesimal generator ∆OU .
This identification would permit the construction of the invariant measure from the OU-
process, see [18], [3] and [8] and a study of unitary representations of the group G. Given
the infinitesimal representation (ρ(ej)), let ∆ be as in Theorem 1.10 with appropriate
constants Ajk, a problem is to construct an invariant real measure µ for ∆, and find
the Hilbert space L2

Hol(µ) of the representation. From our examples, the infinitesimal
representation and ∆OU determine the support of µ.

1.5. Equivalent representations. Since our purpose is to relate the unitarizing mea-
sure of the representation to a second order differential operator which has this measure as
invariant measure, it is worthwhile to consider equivalent representations and to compare
the differential operators and invariant measures for these representations. Moreover, the
unitarizing measures for two equivalent representations do not have in general the same
class of integrable functions. See Subsection 4.1.

1.5.1. The representation Tψg . Assume that kg(z) satisfies (1.2). For any holomorphic
function ψ, let

hψg (z) =
ψ(kg(z))
ψ(z)

.

It satisfies (1.1). Consider the representations

(Tgf)(z) = hg(z)(f(kg(z))) and (Tψg f)(z) = hψg (z)(Tgf)(z). (1.43)

If Tg is unitary for µ, then Tψg is unitary for the measure dµψ(z) = |ψ(z)|2 dµ(z). If
ψ(z) 6= 0, we define the linear operator Aψ

(Aψf)(z) =
f(z)
ψ(z)

.

Since we consider mainly the cases ψ(z) = exp(ϕ(z)) and ψ(z) = zn where n is a positive
integer, we do not investigate the zeroes of ψ(z). The identities

∫
|Aψf |2 dµψ =

∫
|f |2 dµ

and (Tψg )(Aψf)(z) = Aψ(Tgf)(z) show that (Tg, µ) and (Tψg , µ
ψ) are equivalent. For

the concept of equivalent representations, see for example page 7 in [24]. In Section 3.1,
solving the functional equation α(t1) + t1α(t2) = α(t1t2) yields representations like Tg
and T expϕ

g = exp(ϕ(kg(z)) − ϕ(z))(Tgf)(z). The representation T expϕ
g is unitary for

dµϕ(z) = exp(ϕ(z) + ϕ(z)) dµ(z) and (Aexpϕf)(z) = exp(−ϕ(z))f(z). Define

ρψ(v)f =
d

dε

∣∣∣
ε=0

Tψgεf(z),

then

[ρψ(v)f ](z) = [ρ(v)f ](z) +
ψ′(z)
ψ(z)

[ d
dε

∣∣∣
ε=0

kgε(z)
]
f(z).
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Since kg(z) is the same for Tg and Tψg , we have

[ρψ(ej)f ](z) = [ρ(ej)f ](z) +
ψ′(z)
ψ(z)

αj(z)f(z).

Let ∆ be as in (1.24), we have ∆ = u(z, z)
[
∂2

∂z∂z + ∂Q
∂z

∂
∂z

]
where

u(z, z) =
∑
j,k

Ajkαj(z)αk(z).

According to Theorem 1.10, with the infinitesimal representation ρψ, we obtain

∆ψ = ∆ +
ψ′(z)
ψ(z)

u(z, z)
∂

∂z
= u(z, z)

[ ∂2

∂z ∂z
+
∂Qψ
∂z

∂

∂z

]
with eQψ = eQψ. (1.44)

The measure dµψ = |ψ|2 dµ of the equivalent representation is invariant for ∆ψ if and
only if dµ is invariant for ∆.

1.5.2. The representation T̂g. Assume that q is an integer. Let

(Tgf)(z) = hg(z)(f(kg(z))) and (T̂gf)(z) = hg(zq)f((kg(zq))1/q). (1.45)

We put (Aqf)(z) = f(zq). Since T̂g Aq = Aq Tg, the two representations (1.45) are equiv-
alent. If Tg is unitary for µ, let µq be the measure such that

∫
|Aqf |2 dµq =

∫
|f |2 dµ,

then T̂g is unitary for µq. Let ρ(v)f(z) = d
dε

∣∣
ε=0

Tgf(z) = α(z)f ′(z) + β(z), we obtain

ρ̂(v)f(z) =
d

dε

∣∣∣
ε=0

T̂gεf =
α(zq)
qzq−1

f ′(z) + β(zq)f(z).

1.6. Classical examples. In the next sections, for holomorphic representations of
finite-dimensional elementary groups, we start from the system (1.1)–(1.2). We deter-
mine Tg in the form (c) with (1.1)–(1.2), then we construct the real measure µ such that
(b) is satisfied, next we find a second order differential operator denoted by ∆ (not neces-
sarily real) which has µ as invariant measure. We require ∆ to be of the form (1.21). We
express this operator in terms of the infinitesimal representation of the Lie algebra as in
(1.24). This explicitly relates the first order terms in ∆ to the infinitesimal representation
of the Lie algebra G of G. In the one-dimensional example in Section 3, one can associate
several unitarizing measures to a representation Tg. However, there is only one density
R(z, z) such that Γ(z, z) = β(z) (see (1.9)–(1.10) and Lemma 1.3). For the 3-dimensional
Heisenberg group in Section 5, D = C, see ([5], [20], [1]), the ∆OU operator is completely
determined by the infinitesimal representation. In Section 4, we examine

1) the group of 2×2 matrices
(
a b

b a

)
such that |a|2−|b|2 = 1, D is the unit disk in C,

see [4].
2) the group of 2× 2 matrices

(
a b

−b a

)
such that |a|2 + |b|2 = 1, D = C.

These two examples enter in the same framework of the group of 2 × 2 matrices(
a b

pb a

)
such that |a|2 − p|b|2 > 0 and p is a real number.

Our future objective is to extend the results to infinite-dimensional Lie groups, see
[18], [21]. We have in mind: 1) the infinite-dimensional Siegel disk, see [2], [22], 2) the
group of diffeomorphisms of the circle and the Virasoro algebra, see [3], [16], [21], [18],
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[19], [12], 3) the infinite-dimensional Heisenberg group and its representation with unita-
rizing measure being the Wiener measure on the Wiener space of continuous maps from
[0, 1] to C (see [10], [13]) or its representation in a Gaussian space (S ′(R), γ) of tempered
Schwartz distributions where γ is the Gaussian measure given by its Fourier transform,
see [7].

2. The additive group (R, +). The system (1.1)–(1.2) becomes

(i) : ht1(z)ht2(kt1(z)) = ht1+t2(z) and (ii) : kt2(kt1(z)) = kt1+t2(z). (2.1)

Looking for solutions kt(z) = az+ tb where a, b are constants, implies kt(z) = z+ tb. We
substitute in (2.1)(i)

ht1(z)ht2(z + t1b) = ht1+t2(z). (2.2)

Looking for solutions of (2.2) in the form ht(z) = exp(αtz+β) where α, β are constants,
we find β = 0, b = 0, thus (Ttf)(z) = eαtzf(z). Since kg(z) does not depend upon g,
we do not consider these solutions. Now take for solutions of (2.1), kt(z) = eλtz and
ht(z) = eαt where α and λ are constant, we obtain (Ttf)(z) = eαtf(eλtz). The change of
parameter t 7→ et leads to the multiplicative group (R∗ = R − 0,×) studied in the next
section. We also have for solutions of (1.2)

kt(z) =
( zk

1− tzk
)(1/k)

where k 6= 0 is an integer, (2.3)

or equivalently kt(z) = (zp − t)(1/p) if k = −p. Compare with the flows (18)–(19) in [15].
By Remark 1.1, ht(z) = (1− tzk)γ is solution of (1.1) (see Subsection 1.5.2). Let

α(z) =
d

dt

∣∣∣
t=0

kt(z) =
1
k
zk+1, β(z) =

d

dt

∣∣∣
t=0

ht(z) = −γzk.

As in (1.9), solving for real R(z, z),

β(z) = α′(z) + α(z)
∂

∂z
logR(z, z),

we find R(z, z) = H(θ)(zz)−(1+k(γ+1)) where z = reiθ and

dµ = (zz)−kγ
dz dz

(zz)k+1
is unitarizing for Ttf(z) = (1− tzk)γf(kt(z)).

We have divµ(zk+1 ∂
∂z ) = −kγzk and dµ is invariant with respect to

k2∆ = (zz)k+1
[ ∂2

∂z∂z
− kγ

z

∂

∂z

]
. (2.4)

3. The multiplicative group (R∗ = R − 0, ×). Assume t 6= 0. The system (1.1)(1.2)
becomes

ht1(z)ht2(kt1(z)) = ht1t2(z) and kt2(kt1(z)) = kt1t2(z). (3.1)

We take kt(z) = tz, then
ht1(z)ht2(t1z) = ht1t2(z). (3.2)
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Lemma 3.1. The function ht(z) = ea(t−1)z, where a ∈ C, is a solution of (3.2). Solving
(3.1), we have from (c)

(Ttf)(z) = ea(t−1)zf(tz)

with t 6= 0 and a constant. For the neutral t = 1, T1f(z) = f(z). The operator Tt is
invertible (Tt)−1f(z) = T1/tf(z).

Proof. Putting t1 = 0 in (3.2) and assuming that h0(z) 6= 0, we find ht(0) = 1 for any t.
We look for a solution of (3.2) in the form ht(z) = eα(t)z where α(t) is a function of t.
The equation for α(t) is

α(t1) + t1α(t2) = α(t1t2) ∀ t1, t2 6= 0. (3.3)

If t1 = t2, it becomes (1 + t)α(t) = α(t2). A solution is α(t) = a(t − 1) where a is a
constant and this is also a solution of (3.3). This gives ht(z) = ea(t−1)z where a ∈ C.

Lemma 3.2. Let α ∈ C, λ, β, δ ∈ R. On D = {(x, y) |λx2 + βxy + δy2 6= 0}, the real
measures

dµα,A,B,γ(z) =
eaz+az dx dy

(λx2 + βxy + δy2)1−γ
=

eaz+az dz dz

(Az2 + 2Bzz +Az2)1−γ
, z = x+ iy, (3.4)

are unitarizing for Tt with t 6= 0,

(Ttf)(z) = tγ eα(t−1)zf(tz). (3.5)

The constant B is real. The infinitesimal representation associated to (Tt) is

ρ(1) = z
∂

∂z
+ (az + γ)I and (If)(z) = f(z). (3.6)

Proof. We find the measure µ by writing (b), i.e.
∫
|Ttf(z)|2 dµ =

∫
|f(z)|2 dµ. Assume

that µ = g(x, y) dx dy. For unitarity, we must have

t2γ
∫
e(t−1)(αz+αz)|f(tz)|2g(x, y) dx dy =

∫
|f(z)|2g(x, y) dx dy.

With the change of variables x′ = tx, y′ = ty, z′ = tz, the integral is equal to

t2γ
∫
e(1−1/t)(αz+αz)|f(z)|2g

(x
t
,
y

t

) 1
t2
dx dy.

We deduce that
e−(αz+αz)/tg

(x
t
,
y

t

) 1
t2−2γ

= e−(αz+αz)g(x, y).

This identity shows that the function ψ(x, y) = e−(αz+αz)g(x, y) is homogeneous of degree
−2+2γ and we can take ψ(x, y) = constant [λx2 +βxy+δy2]γ−1. The density is g(x, y) =
constant×e(αz+αz)×[λx2+βxy+δy2]γ−1 with z = x+iy. Then we calculate (ρ(1)f)(z) =
d
dt

∣∣
t=1

(Ttf)(z) = zf ′(z) + (az + γ)f(z).

Remark 3.3. With the notation from Lemma 1.3, we put α(z) = z,

R(z, z) =
eaz+az

(Az2 + 2Bzz +Az2)1−γ
,

Γ(z, z) = α′(z) + α(z)
∂

∂z
logR(z, z) = az + γ + (γ − 1)z

∂

∂z
log
(
A
z

z
+ 2B +A

z

z

)
.



UNITARIZING MEASURES 23

In polar coordinates z = reiθ, z ∂
∂z + z ∂

∂z = r ∂
∂r , thus the term with log cancels in Γ + Γ.

We obtain <Γ(z, z) = <(az + γ) and we deduce β(z) = az + γ.
The case β(z) = Γ(z, z) occurs when A = 0, then we consider dµα,γ = dµα,0,1,γ ,

dµα,γ =
eαz+αz

(x2 + y2)1−γ
dx dy.

We define H1 = z ∂
∂z as the first order term in ρ(1). The measure dµα,γ is invariant with

respect to

∆ = ρ(1)H1 = zz
[ ∂2

∂z∂z
+ a

∂

∂z

]
+ γ z

∂

∂z
.

Since kt(z) = tz, the group (R∗,×) acts on R2 by the homothetic transformations z 7→ tz.
The metric ds2 = dx2+dy2

x2+y2 on R2 is invariant under the transformations kt(z) = tz.

Combining with Section 1.5, we have

Theorem 3.4. Let ϕ be a holomorphic function, and define

Ttf(z) = tγ eϕ(tz)−ϕ(z)f(tz) for t ∈ R∗. (3.7)

We have T1f(z) = f(z), T−1
t f(z) = t−γ eϕ(z/t)−ϕ(z)f(z/t) and Tt1Tt2 = Tt1t2 . The in-

finitesimal representation is

ρ(1) = z
∂

∂z
+ [zϕ′(z) + γ]I.

The measure

dµ(z) = eϕ(z)+ϕ(z) (x2 + y2)γ
dx dy

(x2 + y2)
, z = x+ iy, (3.8)

is unitarizing for Tt, i.e.
∫
|Ttf(z)|2 dµ =

∫
|f(z)|2 dµ and dµ is an invariant measure

with respect to the complex operator

∆ = ρ(1)H1 = zz
[ ∂2

∂z∂z
+ ϕ′(z)

∂

∂z
+
γ

z

∂

∂z

]
. (3.9)

The real measure dµ is also invariant with respect to ∆OU = ∆ + ∆. The vector field
V = ∆−∆ satisfies divµ(V ) = 0,

V = zz
[
ϕ′(z)

∂

∂z
− ϕ′(z) ∂

∂z

]
+ γ
[
z
∂

∂z
− z ∂

∂z

]
. (3.10)

4. The group of 2 × 2 invertible matrices. The results of Sections 2 and 3 are
consequences of the following. Consider the group G of 2× 2 complex invertible matrices

g =
(
a b

c d

)
, g−1 =

1
det g

(
d −b
−c a

)
(4.1)

with the usual multiplication

g1g2 =
(
a1 b1
c1 d1

) (
a2 b2
c2 d2

)
=
(
a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

)
. (4.2)

If we put

ψg(z) =
az + b

cz + d
, (4.3)
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then

ψg1g2(z) =
(a1a2 + b1c2)z + (a1b2 + b1d2)
(c1a2 + d1c2)z + (c1b2 + d1d2)

= ψg1(ψg2(z)). (4.4)

Let
kg(z) = ψg−1(z) =

dz − b
−cz + a

, k′g(z) =
d

dz
kg(z) =

det g
(−cz + a)2

. (4.5)

We verify that kg satisfies (1.2) and that ĥg(z) = −cz + a satisfies (1.1) (see (4.5)).
Another solution of (1.1) is hg(z) = det g. We express ĥg(z) = −cz + a in terms of k′g(z)
and det g. Consider

(Tgf)(z) = (det g)ν [k′g(z)]
γ kg(z)

n

zn
eϕ(kg(z))−ϕ(z)f(kg(z)) (4.6)

with kg(z) = dz−b
−cz+a . As in Lemma 1.3, let

α(z) =
d

dε

∣∣∣
ε=0

kgε(z) where
d

dε

∣∣∣
ε=0

gε = V.

The infinitesimal representation is ρ(V )f(z) = α(z)f ′(z) + β(z)f(z) with

β(z) = ν
d

dε

∣∣∣
ε=0

(det gε) + γα′(z) +
[
ϕ′(z) +

n

z

]
α(z). (4.7)

Assume that the representation (4.6) is unitary with respect to R(z, z) dz dz. As in (1.9),
we put

Γ(z, z) = α′(z) + α(z)
∂

∂z
logR(z, z). (4.8)

4.1. The domain D is the complex plane or the complex half-plane. In this
section, we also consider equivalent representations, see Subsection 1.5.1.

Lemma 4.1. For g ∈ G, let (Tgf)(z) be as in (4.6), then we have Tg1Tg2 = Tg1g2 . The
infinitesimal representation is given by

ρ1 = ρ(a) = −z ∂

∂z
+ [ν − γ − n− zϕ′(z)],

ρ2 = ρ(b)f(z) = − ∂

∂z
− n

z
− ϕ′(z),

ρ3 = ρ(c) = z2 ∂

∂z
+ [(2γ + n)z + z2ϕ′(z)],

ρ4 = ρ(d) = z
∂

∂z
+ [ν + γ + n+ zϕ′(z)].

(4.9)

Proof. To obtain (4.9), we take small variations of the coefficients aε = a+ ε, . . . and we
calculate the partial derivatives (∂a)

∣∣
g=e

Tgf(z) at g = e =
(

1 0
0 1

)
.

Corollary 4.2. Let ρj, j = 1, 2, 3, 4, be as in Lemma 4.1, and αj , βj be defined by
ρj = αj(z) ∂

∂z + βj(z). Then

(i) α3α2 + α2α3 + 2α2
1 = 0 and α3α2 + α2α3 + 2α1α1 = −(z − z)2,

(ii) α4α2 − α2α4 = 0 and α4α2 − α2α4 = z − z,
(iii) α1α3 − α3α1 = 0 and α1α3 − α3α1 = zz(z − z).

The conditions (1.23) in Theorem 1.10 are satisfied for (i), (ii) or (iii).
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In order to write the system (1.10) to find the density R(z, z), we put Γj = α′j +
αj

∂
∂z logR as in (1.9). We assume that ϕ(z) = 0. We deduce from Lemma 4.1

β1 − Γ1 = ν − (γ + n− 1) + z
∂

∂z
logR, β2 − Γ2 = −n

z
+

∂

∂z
logR,

β3 − Γ3 = (2γ + n− 2)z − z2 ∂

∂z
logR, β4 − Γ4 = ν + γ + n− 1− z ∂

∂z
logR.

(4.10)

Lemma 4.3. Assume ν = 0. The system <(βj − Γj) = 0 for j = 1, . . . , 4 (see (1.10)) has
the solution

R = constant (z − z)2(γ−1)(zz)n. (4.11)

For this solution R(z, z), letting z = reiθ, we have

β1 − Γ1 = −i(γ − 1)
cos θ
sin θ

=
(γ − 1)(z + z)

z − z
, β2 − Γ2 = −i γ − 1

r sin θ
=

2(γ − 1)
z − z

,

β3 − Γ3 = i
(γ − 1)r

sin θ
= −2(γ − 1)zz

z − z
, β4 − Γ4 = i(γ − 1)

cos θ
sin θ

= −(β1 − Γ1).

Proof. With <(βj − Γj) = 0 for j = 1 and j = 4, we obtain <(ν) = 0 and(
z
∂

∂z
+ z

∂

∂z

)
logR = 2(γ + n− 1).

Let z = reiθ. It gives R = H(θ)r2(γ+n−1). We replace in <(βj − Γj) = 0, j = 2, 3,[
cos θ

∂

∂r
− 1
r

sin θ
∂

∂θ

]
logR = 2n

cos θ
r

,[
cos θ

∂

∂r
+

1
r

sin θ
∂

∂θ

]
logR = 2(2γ + n− 2)

cos θ
r

.

We deduce (4.11).

4.1.1. Holomorphic representation of Gl(2,R). When R is given by (4.11), we have

(β3 − Γ3)α2 + (β2 − Γ2)α3 + 2(β1 − Γ1)α1 = 0. (4.12)

The conditions (1.26) of Theorem 1.11 are satisfied. With (i) in Corollary 4.2, Theorem
1.11 and Lemma 4.3, we obtain

Theorem 4.4. Assume that a, b, c, d are real numbers (and that 2γ is an integer). Let

(Tgf)(z) = [k′g(z)]
γ kg(z)

n

zn
f(kg(z)) with kg(z) =

dz − b
−cz + a

,

dµ = (z − z)2γ (zz)n dv with dv =
dz dz

(z − z)2
1{z 6=z} . (4.13)

The measure µ is unitarizing for Tg. Let Ha = −z ∂
∂z , Hb = − ∂

∂z , Hc = z2 ∂
∂z , Hd = z ∂

∂z

and let ρ be the infinitesimal representation as in Lemma 4.1 (with ν = 0, ϕ = 0). Then
µ is an invariant measure for

∆ = ρ(c)Hb + ρ(b)Hc + 2ρ(a)Ha = −(z − z)2
[ ∂2

∂z∂z
+
( 2γ
z − z

+
n

z

) ∂

∂z

]
, (4.14)

or, equivalently,

∆ = −(z − z)2
[ ∂2

∂z∂z
+
∂Q

∂z

∂

∂z

]
with Q = log[(z − z)2γ(zz)n]. (4.15)
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Proof. With (4.11), we obtain the unitarizing measure dµ = constant× (z−z)2γ(zz)n dv.
In that case, the domain of integration is D = {z ∈ C |=z 6= 0}. If a, b, c, d are real
numbers and the imaginary part =z 6= 0, then kg(z) in (4.6) is well defined and kg is a
map from D to D. The expression (4.14) is a consequence of (4.12) and Theorem 1.10.
Compare (4.14) with Definition 1.14.

Corollary 4.5. Let ∆ be as in Theorem 4.4, we have

∆ = −
( ∂
∂z

+
2(γ − 1)
z − z

+
n

z

)(
(z − z)2 ∂

∂z

)
.

Moreover,

∆ + ∆ = 2y2
[ ∂2

∂x2
+

∂2

∂y2
+ 4

γ

y

∂

∂y
+

2n
x2 + y2

(
x
∂

∂x
+ y

∂

∂y

)]
has µ as invariant measure and we have divµ(V ) = 0 for the vector field

V = ∆−∆ = −4iγy
∂

∂x
− 4iny2

x2 + y2

(
y
∂

∂x
− x ∂

∂y

)
. (4.16)

Remark 4.6. If we consider the subgroup of matrices g such that det g > 0 and the
domain D1 = {z ∈ C |=z > 0}, then kg is a map from D1 to D1. As in Subsection
1.5.1, consider the holomorphic function ψ(z) = e(i−1)z. We have |ψ(z)|2 = e−2(x+y)

with z = x + iy. Assume that dµ = dx dy, then dµψ = e−2(x+y) dx dy. The functions
1z+z>0(z − z)n are integrable for dµψ but not for dµ.

Remark 4.7. If γ = 1, then dµ = (zz)n dz dz is unitarizing for Tg, the domain D is the
complex plane, we do not need the restriction of the assumption that a, b, c, d are real.
Since βj −Γj = 0, by Theorem 1.11, µ is invariant for any ∆ =

∑
j,k AjkρjHk where Ajk

are arbitrary constants, j, k = 1, . . . , 4. For example, for γ = 1, n = 0, it is immediate
that

ρ(a)Ha + ρ(b)Hb + ρ(c)Hc + ρ(d)Hd = (1 + zz)2
∂2

∂z∂z
+ 2(1 + zz)z

∂

∂z
(4.17)

has dz dz as invariant measure.

Remark 4.8. The case where the metric on D is not Hermitian. If we do not require ∆
to be of the form (1.21) and allow

∆ = w(z, z)
∂2

∂z2 + u(z, z)
∂2

∂z∂z
+ v(z, z)

∂

∂z

with w(z, z) 6= 0, there are many differential operators ∆ with µ = (z−z)2(γ−1)(zz)n dz dz
as invariant measure. However, the principal symbol in such operators does not corre-
spond to a Hermitian metric on C. Examples of such ∆ are given by 1.25,

[ρ(a) + ρ(a)]Ha = zz
∂2

∂z∂z
+ z2 ∂

2

∂z2 + (2γ + 2n+ 1)z
∂

∂z
, . . .

4.1.2. The subgroup of transformations kg(z) = tz − b where t, b are complex numbers.
We consider the relation (ii) in Corollary 4.2. If R is given by (4.11), we verify that

(β4 − Γ4)α2 − (β2 − Γ2)α4 = −(γ − 1). (4.18)

We cannot apply Theorem 1.11, we find an OU-operator with Theorem 1.10.
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Theorem 4.9. Consider the group of transformations of the complex plane defined by
kg(z) = tz− b where t is real, t 6= 0 and b is a complex number. Assume that 2γ − 1 ≥ 0.
Let

Tgf(z) = tγf(tz − b).

Consider the Hilbert space H of entire functions f such that

‖f‖2 =
∫
|f(x+ iy)|2ys dx dy < +∞ for 0 ≤ s ≤ 2γ − 1.

Then the measure
dµ = (z − z)2(γ−1) dz dz

satisfies the unitarity condition
∫
|Tgf(z)|2 dµ =

∫
|f |2 dµ for all f ∈ H and it is an

invariant measure for

∆ = (ρ(t) + ρ(t))Hb − (ρ(b) + ρ(b))Ht = (z − z) ∂2

∂z∂z
− (2γ − 1)

∂

∂z

where ρ(t) = ρ4 = z ∂
∂z + γ and ρ(b) = ρ2 = − ∂

∂z as in Lemma 1.4.

Proof. If f ∈ H, then for any real t and complex number b, the function |f(tz − b)|2 is
integrable for µ.

4.1.3. The subgroup of transformations kg(z) = z
−cz+a where c, a are complex numbers

and a 6= 0. We apply Theorem 1.10 with Corollary 4.2(iii). We find

(β1 − Γ1)α3 − (β3 − Γ3)α1 = −(γ − 1)z2.

Theorem 4.10. Consider the group of transformations

kg(z) =
z

−cz + a

and let

Tgf(z) =
aγ

(−cz + a)2γ
f
( z

−cz + a

)
.

The measure dµ = (z − z)2(γ−1) dz dz is unitarizing for Tg, i.e. for any holomorphic
function such that |f(z)|2 and Tgf(z)|2 are integrable for µ, we have

∫
|Tgf(z)|2 dµ =∫

|f(z)|2 dµ. The measure µ is invariant for

∆ = zz(z − z) ∂2

∂z∂z
− z2 ∂

∂z
+ 2γzz

∂

∂z
.

Proof. We apply Theorem 1.10. As in Subsection 4.1.2, the difficulty is to determine a
class of holomorphic functions f such that |f(kg(z))|2 is integrable for µ for any c and a,
a 6= 0.

4.2. The subgroups Ap and Gp. If we require conditions on the parameters a, b, c, d,
in order to have a subgroup of G, this gives restrictions on Tg; thus for a subgroup of G,
we have more unitarizing measures since there are fewer equations in the system (1.10).
For example, for the commutative subgroup of diagonal matrices g =

(
1 0
0 d

)
with d 6= 0,

we obtain kg(z) = dz and we are in the case of Section 3, if d is a real number.
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Notation 4.11. Given a fixed real number p, we denote by Ap the group constituted
with matrices

g =
(
a b

p b a

)
with det g = aa− pbb > 0.

We denote by Gp the subgroup of matrices in Ap with determinant equal to one.

Since we do not fix the value of the determinant for elements in Ap, the Lie algebra
Ap of Ap is a four-dimensional real vector space. Fixing the determinant equal to one
for elements in Gp takes off one degree of freedom, then the Lie algebra Gp of Gp is a
three-dimensional real vector space. In the following, we consider representations of Gp.
Because of 1.5.1, we assume n = 0 and ϕ = 0 in (4.6). Since k′g(z) = (aa−pbb)[−pb z+a]−2,
the representation (4.6) for Gp is written as

(Tgf)(z) =
1

(−pb z + a)2γ
f
( az − b
−pbz + a

)
. (4.19)

To calculate the infinitesimal representation of Gp, for t > 0, t small, we consider the
following three curves g(j)

t , j = 1, 2, 3, which are in Gp and g
(j)
0 = Identity of Gp. The

vectors ej = d
dt

∣∣
t=0

g
(j)
t , j = 1, 2, 3, form a basis of the Lie algebra Gp.

g
(1)
t =

(
eit/2 0

0 e−it/2

)
, e1 =

1
2

(
i 0
0 −i

)
,

g
(2)
t =

1√
cos2(t/2)− p sin2(t/2)

(
cos(t/2) sin(t/2)
p sin(t/2) cos(t/2)

)
, e2 =

1
2

(
0 1
p 0

)
,

g
(3)
t =

1√
cos2(t/2)− p sin2(t/2)

(
cos(t/2) i sin(t/2)
−ip sin(t/2) cos(t/2)

)
, e3 =

1
2

(
0 i

−ip 0

)
.

(4.20)

Then [e1, e2] = e3, [e1, e3] = −e2, [e2, e3] = pe1 and {e, e1, e2, e3} is a basis of Ap.
Lemma 4.12. The infinitesimal representation for Gp associated to (4.19) is given by

ρ(e1)f(z) = −i[zf ′(z) + γf(z)],

ρ(e2)f(z) = −1
2

(1− pz2)f ′(z) + γpzf(z),

ρ(e3)f(z) = − i
2

(1 + pz2)f ′(z)− iγpzf(z).

In the following, we put ρj = ρ(ej) = αj(z) ∂∂z+βj(z). We solve the system (1.9)–(1.10)
with

β1 − Γ1 = −i(γ − 1) + iz
∂

∂z
logR,

β2 − Γ2 = (γ − 1)pz +
1
2

(1− pz2)
∂

∂z
logR,

β3 − Γ3 = −i(γ − 1)pz +
i

2
(1 + pz2)

∂

∂z
logR.

We obtain R(z, z) = constant (1− pzz)2γ−2. With the expression of R,

β1−Γ1 = −i(γ−1)
1 + pzz

1− pzz
, β2−Γ2 = (γ−1)

p(z − z)
1− pzz

, β3−Γ3 = −i(γ−1)
p(z + z)
1− pzz

.
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4.2.1. Domains Dp = {1− pzz ≥ 0}. We have

α2(z) = α2(z) + α3(z)α3(z)− pα1(z)α1(z) =
1
2

(1− pzz)2

and α2
2 + α2

3 − pα2
1 = 0, (4.21)

(β2 − Γ2)α2 + (β3 − Γ3)α3 − p(β1 − Γ1)α1 = 0,

and ∆1 = ρ(e2)H2 + ρ(e3)H3 − pρ(e1)H1 = 0. The conditions (1.26) of Theorem 1.11
are satisfied. In the following lemma, we write the unitarizing measure in terms of the
volume measure. We deduce

Lemma 4.13. Let Hj = αj(z) ∂∂z , j = 1, 2, 3, and Hj = αj(z) ∂∂z .

H1f(z) = −izf ′(z), H2f(z) = −1
2

(1− pz2)f ′(z), H3f(z) = − i
2

(1 + pz2)f ′(z),

then ∆ = ρ(e2)H2 + ρ(e3)H3 − pρ(e1)H1 has the unitarizing measure

dµp = (1− pzz)2γ dz dz

(1− pzz)2
(4.22)

as invariant measure.

Theorem 4.14. The domain Dp = {z ∈ C |1− pzz > 0} is invariant under the transfor-
mations z 7→ (az + b)(pbz + a)−1. Let

(Tgf)(z) =
1

(−pb z + a)2γ
× f

( az − b
−pbz + a

)
for g ∈ Gp, z ∈ Dp. (4.23)

Given g1 and g2 ∈ Gp, we have Tg1Tg2 = Tg1g2 . Here, we assume that 2γ is an integer.
If g ∈ Gp, the operator Tg is unitary in L2

Hol(Dp;µp) where µp is given by (4.22). Let
ρ(ej)j=1,2,3, Hj and ∆ as in Lemma 4.13, we have

∆ = ρ(e2)H2 + ρ(e3)H3 − pρ(e1)H1 =
1
2

(1− pzz)2
[ ∂2

∂z∂z
− 2γp z

(1− pzz)
∂

∂z

]
. (4.24)

The measure µp is invariant for ∆ and for ∆OU = ∆ + ∆. We have

∆OU = (1− pzz)2
[ ∂2

∂z∂z
+ γ

∂

∂z
log(1− pzz) ∂

∂z
+ γ

∂

∂z
log(1− pzz) ∂

∂z

]
= (1− pzz)2

[ ∂2

∂z∂z
+ γh′(zz)

(
z
∂

∂z
+ z

∂

∂z

)]
(4.25)

with h(zz) = log(1 − pzz). The vector field V = ∆ −∆ is a free-divergence vector field
(divµ(V ) = 0),

V = ∆−∆ = −γp(1− pzz)
(
z
∂

∂z
− z ∂

∂z

)
. (4.26)

Proof. This is a consequence of Theorem 1.10 and Lemma 4.13. Below, we show how to
calculate R from the condition of unitarity (b). Let µ = R(z, z) dz dz be a real measure
on Dp such that (b) is realized. With a change of variable in (b), we obtain

(det g)2ν |k′g(k−1
g (z))|2γ ×R(k−1

g (z), k−1
g (z))× |(k−1

g )′(z)|2 = R(z, z).

Since (k−1
g )′(z) = 1/k′g(k

−1
g (z)), it gives

(det g)2ν |(k−1
g )′(z)|2(1−γ) ×R(k−1

g (z), k−1
g (z)) = R(z, z) ∀ g ∈ Gp.

If det g = 1, then R(z, z) = (1− pzz)2(γ−1) is a solution.
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5. The 3-dimensional Heisenberg group and the system (1.1)–(1.2)

5.1. Commutators in non-commutative groups. If the group G is not commuta-
tive, we compare Tg1Tg2 and Tg2Tg1 for g1, g2 ∈ G. We say that g ∈ G is a commutator
in G if g is of the form g = c(g1, g2) = g−1

2 g1g2g
−1
1 with g1, g2 ∈ G. In that case, we have

g1g2 = g2c(g1, g2)g1. If this property is satisfied, according to (a), we obtain

Tg1g2T(g2g1)−1 = Tg1g2g−1
1 g−1

2
= Tg1g−1

1 c(g2,g
−1
1 )g2g

−1
2

= Tc(g2,g−1
1 )

This gives Tg1g2 = Tc(g2,g−1
1 ) Tg2g1 and Tg1g2 = Tg2g1Tc(g−1

2 ,g1)
. In the case of the Heisen-

berg group, see Remark 1.2, commutators are g = (0, 0, ik) where k is a real number.

5.2. Representations where kg(z) = z + u(g) and hg(z) = exp(l(g)z + m(g)).
Let γ and δ be two fixed constants such that γ − δ 6= 0. We assume that γ and δ are real
numbers. Consider on the 3-dimensional real space the group law

(a1, b1, c1) ∗ (a2, b2, c2) = (a1 + a2, b1 + b2, c3)

with

c3 = c1 + c2 +
(
a1 b1

)(0 γ

δ 0

)(
a2

b2

)
= c1 + c2 + γa1b2 + δa2b1. (5.1)

The commutators (see Subsection 5.1) are given by g1g2 = g2c(g1, g2)g1 with

c(g1, g2) = (0, 0, (γ − δ)(a1b2 − a2b1)).

Let u = (α, β) and l = (λ, ε) be two complex vectors in C2, we have

det(u, l) = αε− λβ.

For g = (a, b, c), we put

u(g) = αa+ βb and l(g) = λa+ εb,

det(u, l) = αε− λβ.

We have u(g1)l(g2)− u(g2)l(g1) = det(u, l)(a1b2 − a2b1). We put

m(g) = m(a, b, c) =
1
2
l(g)u(g) + det(u, l)

[ 1
γ − δ

c− γ + δ

2(γ − δ)
ab
]
. (5.2)

Let
kg(z) = z + u(g) and hg(z) = exp(l(g)z +m(g)), (5.3)

then the conditions (1.1)–(1.3) are satisfied.

Lemma 5.1. We define

Tgf(z) = (Ta,b,tf)(z) = exp(l(g)z +m(g))× f(z + u(g)). (5.4)

Then Tg1Tg2 = Tg1g2 . The infinitesimal representation for (5.4) is

ρ(a)f(z) = αf ′(z) + λzf(z),

ρ(b)f(z) = βf ′(z) + εzf(z),

ρ(c)f(z) =
det(u, l)
γ − δ

f(z).

(5.5)

In the next lemma, we determine the density R(z, z) of the unitarizing measure µ.
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Lemma 5.2. Let ρ(j) = α(j) ∂∂z + β(j) with j = a, b, c and Γ(j) = 1
R
∂
∂z (α(j)R), then

β(a)− Γ(a) = λz − α ∂

∂z
logR,

β(b)− Γ(b) = εz − β ∂

∂z
logR,

β(c)− Γ(c) =
det(u, l)
γ − δ

.

(5.6)

Solving the system <(β(j)− Γ(j)) = 0, j = a, b, c, we obtain

(i) <[det(u, l)] = 0 where det(u, l) = αε− λβ,

and letting α = α1 + iα2, β = β1 + iβ2,

(ii) det(u, u) = αβ − αβ = −2i(α1β2 − α2β1) 6= 0.

When (i) and (ii) are satisfied, we have, up to an additive constant

logR =
1
2
λβ − εα
αβ − βα

z2 +
λβ − ε α
αβ − βα

z z +
1
2
εα− λβ
αβ − βα

z2. (5.7)

We put logR = Az2 + 2Bzz +Az2 + 2Bzz +Az2. The constant B is real.

Proof. Since β(c)− Γ(c) = 0, we have (ii). The system (1.10) becomes

α
∂

∂z
logR+ α

∂

∂z
logR = λz + λz, β

∂

∂z
logR+ β

∂

∂z
logR = εz + εz

and has a unique solution if αβ − αβ 6= 0.

Corollary 5.3. If the density E(z, z) is given by (5.7), we have

β(a)− Γ(a) = 2B(αz − αz) β(b)− Γ(b) = 2B(βz − βz), β(c)− Γ(c) =
det(u, l)
γ − δ

and [β(a)− Γ(a)]α(b)− [β(b)− Γ(b)]α(a) = (λβ − εα)z.

5.2.1. Example. Let u(g) = ha+ 2τb, l(g) = ib, γ = 1 and δ = 0, then with the notation
of (5.2), m(g) = iτb2 + ihc, λ = 0, ε = i, α = h, β = 2τ . A group element (a, b, c) acts on
holomorphic functions as

Uh,τ (a, b, c)f(z) = exp(ihc)(Sa ◦ Tbf)(z) = exp(ihc) exp(iτb2 + ibz)f(z + ah+ 2τb),

where (Saf)(z) = f(z+ha) and (Tbf)(z) = exp(iτb2 + ibz)f(z+2τb), see [20, pages 6–7],

Uh,τ (a1, b1, c1) ◦ Uh,τ (a2, b2, c2) = Uh,τ (a1 + a2, b1 + b2, c1 + c2 + a1b2).

Uh,τ (a, b, c) is unitary on the Hilbert space of entire functions on the complex plane
such that ‖f‖2τ =

∫
C

exp(−y2/2t)|f(x + iy)|2 dx dy is finite, see [20, pages 6–7]. The
infinitesimal representation is

ρ(a)f(z) = hf ′(z), ρ(b)f(z) = 2τf ′(z) + izf(z), ρ(c)f(z) = ihf(z).

We assume that a, b, c are real numbers and τ = it where t is a real number. We obtain
that R(z, z) = constant× exp(−y2/2t) and logR = (z − z)2/(8t). The operator

∆OU =
∂2

∂x2
+

∂2

∂y2
− y

t

∂

∂y
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has exp(−y2/2t) dz dz as invariant measure. To give an expression of ∆OU in terms of ρ(a),
ρ(b) andHa = h ∂

∂z ,Hb = 2it ∂
∂z is not immediate. ∆OU is not equal to ρ(a)Ha+ρ(b)Hb =

(h2 + 4t2) ∂2

∂z∂z + 2zt ∂
∂z . But we verify that

(ρ(b) + ρ(b))(ρ(a)− ρ(a))− 2it
h

(ρ(a) + ρ(a))2 = −2ith
[ ∂2

∂x2
+

∂2

∂y2
− y

t

∂

∂y

]
.

We can find ∆OU in a systematic way with Theorem 1.10: As in Lemma 5.1, α(a) = h,
α(b) = 2it, α(c) = 0, then α(a)α(b) − α(b)α(a) = 0 and α(a)α(b) − α(b)α(a) = −2ith.
By Theorem 1.10,

∆ = (ρ(a) + ρ(a))Hb − (ρ(b) + ρ(b))Ha = −4ith
[ ∂2

∂z∂z
+

1
4t

(z − z) ∂
∂z

]
as well as ∆−∆ = −2ith∆OU have Rdz dz as invariant measure and the vector field

V = ∆ + ∆ = −4ith(z − z)
( ∂
∂z

+
∂

∂z

)
satisfies divµ(V ) = 0. We also have

β(a)− Γ(a) = −h ∂
∂z

logR =
h(z − z)

4t
, β(b)− Γ(b) = iz − 2it

∂

∂z
logR = i

(z + z

2

)
and β(c)− Γ(c) = ih. Since α(a)(β(b)− Γ(b))− α(b)(β(a)− Γ(a)) = ihz 6= 0, we cannot
apply Theorem 1.11.

5.2.2. The representation (5.4). Assume that γ, δ are real constants. The constants α,
β, λ, ε are complex numbers. Let α = α1 + iα2, β = β1 + iβ2, λ = λ1 + iλ2, ε = ε1 + iε2
and α1, β1, λ1, ε1 are the real parts, α2, β2, λ2, ε2 are the imaginary parts. We have

Theorem 5.4. Consider the 3-dimensional real Heisenberg group G1 with the group law
(5.1). Let Tg as in (5.4).

Tgf(z) = (Ta,b,tf)(z) = exp(l(g)z +m(g))× f(z + u(g)).

Assume that <[det(u, l)] = 0 where det(u, l) = αε − λβ and assume that det(u, u) =
αβ − αβ = −2i(α1β2 − α2β1) 6= 0. Then Tg is a holomorphic unitary representation for
the group G1 on L2(µ),∫

|Tgf(z)|2 dµ(x, y) =
∫
|f(z)|2 dµ(x, y), z = x+ iy,

where dµ(x, y) = exp(Q(x, y)) dx dy and the quadratic form Q(x, y) is

Q(x, y) =
λ1β2 − α2ε1
α1β2 − α2β1

x2 +
(α1ε1 + α2ε2)− (λ1β1 + λ2β2)

α1β2 − α2β1
xy

+
λ2β1 − α1ε2
α1β2 − α2β1

y2. (5.8)

The real measure dµ is an invariant measure for

∆OU =
∂2

∂x2
+

∂2

∂y2
+
(∂Q
∂x

) ∂
∂x

+
(∂Q
∂y

) ∂
∂y
. (5.9)

We have

∆OU =
2

αβ − αβ
×
[
(ρ(a) + ρ(a))(Hb −Hb) + (ρ(b) + ρ(b))(Ha −Ha)

]
(5.10)
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where Ha = α ∂
∂z , Hb = β ∂

∂z . In particular, ∆OU does not depend on the constants δ and
γ in (5.1). On the complex plane, consider the metric ds2 = dx2 + dy2, the Laplacian is
∂2

∂x2 + ∂2

∂y2 and ∆OU is the usual two-dimensional Ornstein–Uhlenbeck operator.

Proof. With the notation of (5.5)–(5.6), α(a) = α, α(b) = β. As in example 5.2.1,
α(a)α(b)− α(b)α(a) = 0 and α(a)α(b)− α(b)α(a) = αβ − βα 6= 0. By Theorem 1.10,

∆ = (ρ(a) + ρ(a))Hb − (ρ(b) + ρ(b))Ha

= (αβ − βα)
[ ∂2

∂z ∂z
+
( λβ − εα
αβ − βα

z +
λβ − εα
αβ − βα

z
) ∂

∂z

]
has the measure Rdz dz as invariant measure (R = eQ is given by (5.7) and Q = Az2 +
2Bzz +Az2). Since αβ − βα 6= 0 and <(αβ − βα) = 0, we have

∆−∆ = (αβ − βα)
[
2

∂2

∂z∂z
+

∂

∂z
logR

∂

∂z
+

∂

∂z
logR

∂

∂z

]
where R is given by (5.7) and

V = ∆ + ∆ = det
(
lz + lz, u

∂

∂z
+ u

∂

∂z

)
where

det
(
lz + lz, u

∂

∂z
+ u

∂

∂z

)
= (det(l, u)z + det(l, u)z)

∂

∂z
+ (det(l, u)z + det(l, u)z)

∂

∂z
.

We obtain (5.9)–(5.10) from (1.34).

Remark 5.5. Let ψ(z) = zn, the unitarizing measure of the equivalent representation
Tψg of Subsection 1.5.1 is dµψ = (x2 + y2)neQ(x,y) dx dy.
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