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Abstract. We tackle R. V. Kadison’s similarity problem (i.e. any bounded representation of any

unital C∗-algebra is similar to a ∗-representation), paying attention to the class of C∗-unitarisable

groups (those groups G for which the full group C∗-algebra C∗(G) satisfies Kadison’s problem)

and thereby we establish some stability results for Kadison’s problem. Namely, we prove that

A⊗min B inherits the similarity problem from those of the C∗-algebras A and B, provided B is

also nuclear. Then we prove that G/Γ is C∗-unitarisable provided G is C∗-unitarisable and Γ is

a normal subgroup; and moreover, if G/Γ is amenable and Γ is C∗-unitarisable, so is the whole

group G (Γ a normal subgroup).

1. Introduction. This work pursues the work [HP, H] where we aim to further the
study of Kadison’s similarity problem (SP), see [Ka] or [P2], focusing on the class of
group C∗-algebras. Our study benefits somehow from Banach algebra techniques already
considered in e.g. [H]. In particular, we would like to understand when the full group C∗-
algebra C∗(G) satisfies (SP) and if (SP) of C∗(G) passes to (or is inherited from) C∗(Γ)
and C∗(G/Γ) with Γ a (normal) subgroup of a locally compact (or discrete) group G.
Moreover, when C∗(G1×G2) satisfies (SP) or, more generally, for which tensor products
(SP) is inherited from the underlying C∗-algebras.
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The origin of the similarity problems should perhaps be traced back to 1929 when
John von Neumann introduced the notion of an amenable group and late 1940’s with
the work of Dixmier [Di] with the notion of unitarisable group. Remind that a locally
compact group G is called unitarisable if any continuous and uniformly bounded (u.b.)

sup
g∈G
‖π(g)‖ <∞ (1)

representation π of G on a Hilbert space H is unitarisable (= similar to a unitary repre-
sentation, i.e. there exists an invertible operator S : H → H such that g 7→ S−1π(g)S is
a unitary representation of G). Dixmier asked in 1950 whether

G unitarisable =⇒ G amenable? (2)

This is still an open problem, but the converse was proved by Dixmier [Di] and H. Day
independently, see also [P5]. Motivated by this, Kadison [Ka] conjectured in 1955 that
C∗-algebras satisfy the similarity problem (abbreviated as (SP)), where we say that a
C∗-algebra A satisfies (SP) if any bounded (not necessarily ∗-preserving) homomorphism
π : A → B(H) from a C∗-algebra A into the algebra of bounded operators in a Hilbert
space H, is similar to a ∗-homomorphism, i.e. given such π there exists an invertible
operator S : H → H such that Sπ(·)S−1 is a ∗-homomorphism, see e.g. [P5]. So Kadison’s
conjecture can be written as follows:

π : A→ B(H) bounded homomorphism =⇒ π similar to a C∗-representation? (3)

We note that any ∗-homomorphism between C∗-algebras is contractive and thus bounded.
Also note that if π : A → B(H) is a ∗-representation of a C∗-algebra A and G ⊆ UA is
a subgroup of the unitary group UA of A, the restriction π|G : G → B(H) is a unitary
representation. More generally, if π is similar to a ∗-representation then its restriction
π|G : G → B(H) is similar to a unitary representation. Although there are examples of
non-unitarisable groups, e.g. SL(2,R) [EM], free groups or some Burnside groups [OM],
we still do not know if there exists a C∗-algebra A (related or not with the above non-
unitarisable groups) and a bounded homomorphism π : A → B(H) which is not similar
to a ∗-representation!

C∗-algebras without tracial states [H1] (e.g. B(l2(N))) and nuclear C∗-algebras (e.g.
commutative and finite-dimensional ones) do satisfy (SP). It is worth mentioning that
deep results of Connes [C2] and Haagerup [H2] show that amenable C∗-algebras are
precisely the nuclear ones. Type II1 factors with property Γ also satisfy (SP), as in [Ch].
In sharp contrast, Kadison’s conjecture (3) is still open when A is, for example, the
reduced (or full) group C∗-algebra of the non-abelian free group Fn on n generators,
although these discrete groups are well known to be non-unitarisable, see [P2].

We may extend (SP) to operator algebras (cf. (12)), not necessarily self-adjoint norm
closed subalgebras of some B(H), or Banach algebras, see (11). Pisier [P1] proved that
the disc algebra A(D) does not satisfy the (generalised) similarity problem.

The rest of the paper is organised as follows. In Section 2 we provide some background
of the notions of amenable groups and group C∗-algebras (reduced, full and ‘big’ group
algebra) for locally compact groups, the multiplier algebra, nuclear C∗-algebras and com-
pletely bounded maps. In Section 3, we introduce the notions of completely bounded
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map as in (9) and the total reduction property, as in (10), for operator algebras. Then
for Banach algebras we put forward the notions of the similarity property in (11) and the
generalised similarity problem in (12). We also conclude that for C∗-algebras, the total
reduction property, similarity property and generalised similarity property, the derivation
problem and the completely bounded property are all equivalent.

Finally in Section 4 we present our main results. After reviewing the concepts of
weak similarity problems (WSP) for von Neumann algebras and C∗-unitarisable groups
(see Definitions 4.1 and 4.6), we relate the (SP) of a C∗-algebra A with the (WSP)
of its bidual A∗∗ (see Propositions 4.2 and 4.3) and draw some more or less standard
conclusions regarding the unitarisable groups G and the (SP) of their cousin C∗-algebras,
namely of the reduced C∗red(G), full C∗(G), big A(G) and of the von Neumann vN(G)
group algebras, in Propositions 4.7 and 4.8. Regarding the stability results of (SP): in
Proposition 4.4 we show that A⊗minB inherits the (SP) from those of A and B, assuming
B to be nuclear, in particular G1 ×G2 is C∗-unitarisable provided G1 is C∗-unitarisable
and G2 is amenable. In Proposition 4.9 we relate the C∗-unitarisability of G with that of
G/Γ and of Γ, for Γ a (normal) subgroup of G.

2. Preliminaries

2.1. Group C∗-algebras C∗
red(G), C∗(G) and A(G). Let G be a locally compact

group and µ the (left) Haar measure of G. Recall that the notion of amenable group was
introduced by von Neumann in 1929, and says that G is amenable if there exists a left
invariant mean on G, i.e. if there exists a positive linear functional m : L∞(G)→ C such
that m(1) = 1 and m(f) = m(gf) for any g ∈ G, where gf(t) = f(g−1t), and L∞(G) is
the Banach space of all essentially bounded functions G → C with respect to the Haar
measure.

Next, we let Cc(G) be the space of complex valued continuous functions on G with
compact support. Consider L2(G) the Hilbert space of square integrable functions with
respect to µ. We also recall the convolution product as follows:

(f ∗ g)(t) =
∫
G

f(s)g(s−1t) dµ(s). (4)

Let ∆ be the modular function on G (∆ ≡ 1 for discrete groups). Then f∗(t) =
∆(t−1)f(t−1) equips Cc(G) with an involution ∗. For an integrable function f ∈ Cc(G),
‖f‖1 :=

∫
G
|f(t)| dµ(t) equips Cc(G) with a structure of a normed algebra. The convo-

lution algebra L1(G) is the ∗-Banach algebra obtained by completion of Cc(G) in that
norm. Any unitary representation π of G can be lifted to a ∗-representation π of L1(G)
on the same Hilbert space. The (full) group C∗-algebra C∗(G) of G is the C∗-enveloping
algebra of L1(G), i.e. the completion of L1(G) with respect to the largest C∗-norm:

‖f‖C∗(G) := sup
π
‖π(f)‖, (5)

where π ranges over all unitary representations of G on Hilbert spaces. The reduced
C∗-algebra C∗red(G) is the C∗-algebra generated by the left regular representation λ(G)
in B(L2(G)) and defined as follows:

λg(f)(t) = f(g−1t), g, t ∈ G, f ∈ L2(G). (6)
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The left regular representation gives rise to a natural C∗-morphism C∗(G) → C∗red(G)
which is an isomorphism if and only if G is amenable. Also let vN(G) be the von Neumann
algebra generated by λ(G) in B(L2(G)). In general we have:

‖f‖C∗red(G) ≤ ‖f‖C∗(G) ≤ ‖f‖L1(G). (7)

Any group morphism between two discrete groups G1 → G2 can be lifted to a C∗-algebra
∗-homomorphism C∗(G1) → C∗(G2) (see Rieffel’s [R, Proposition 4.1]). In general this
functoriality does not extend to locally compact groups.

The big group C∗-algebra A(G) associated to a locally compact group G is defined
as follows. Let H be an infinite-dimensional separable Hilbert space and let GH be the
set of all unitary representations π : G → B(H) on that fixed Hilbert space H and
A(G) = {J : GH → B(H)} the set of maps from GH to B(H) satisfying some natural
conditions as in [E, page 469], where we can define an involutive algebra structure. The
weak topology on A(G) is defined to be the smallest topology such that the functions
J → 〈J(L)ξ, ψ〉 are continuous, for all J ∈ GH and ξ, ψ ∈ H. As Banach algebras, A(G)
may be identified with C∗(G)∗∗ the bidual of the full C∗-algebra C∗(G). For every g ∈ G,
let ĝ : GH → B(H) be the map defined by ĝ(π) = π(g). Then g → ĝ gives an imbedding
of G into A(G), with image Ĝ constituted by unitary operators, see [E, Theorem 2.3].
Moreover, the algebras L1(G) and C∗(G) are dense in A(G), see [E, Corollary 3.2]. The
∗-subalgebra Alg(Ĝ) of all finite linear combinations of elements in Ĝ is dense in A(G)
relative to any of the topologies: weak and σ-weak, see [E, Theorem 7.2].

For locally compact groups, C∗(G) is non-unital, and so we will also be interested
in the multiplier algebra M(C∗(G)). Recall that for an algebra A, the double centraliser
algebra Γ(A) is a unital algebra defined as follows. A double centraliser of A is a pair
(L,R) of maps from A to A satisfying aL(b) = R(b)a for all a, b ∈ A. Then L and R are
linear maps. We can embed A in Γ(A) by using the map a 7→ (La, Ra) with La(c) = ac

and Ra(c) = ca. When A is a C∗-algebra, then the multiplier algebra M(A) of A is the
set of bounded double centralisers (L,R), in which case ‖L‖ = ‖R‖. In this way, M(A)
is a unital C∗-algebra with the C∗-norm ‖(L,R)‖ = ‖L‖, and A is a strongly dense two
sided ideal M(A). We further remark that we have an embedding j : G→M(C∗(G)) of a
locally compact group G into the multiplier algebra M(C∗(G)), by mapping g 7→ (Lg, Rg)
with Lg(f) = δg ∗ f and Rg(f) = f ∗ δg.

2.2. Nuclear C∗-algebras and completely bounded maps. For the minimal C∗-
norm, we first embed A and B in B(H1) and B(H2) as C∗-algebras, respectively. Then
for any x =

∑
ai ⊗ bi in the algebraic tensor product A⊗B, ‖x‖min is the norm on the

space B(H1 ⊗ H2). The completion of this isometric ∗-homomorphism image of A ⊗ B
into B(H1 ⊗H2) is denoted by A⊗min B. For the maximal tensor product we define

‖x‖max = sup ‖π(x)‖B(H),

where π runs over all possible Hilbert spaces H and ∗-homomorphisms π : A⊗B → B(H).
The completion of A⊗B with the norm ‖ �‖max is denoted by A⊗maxB. For any C∗-norm
‖ � ‖ on A⊗B we have

‖ � ‖min ≤ ‖ � ‖ ≤ ‖ � ‖max. (8)
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For two discrete groups G1 and G2, it is easily checked that (see [P4, page 149]):
C∗red(G1)⊗min C∗red(G2) ' C∗red(G1 ×G2), and C∗(G1)⊗max C

∗(G2) ' C∗(G1 ×G2).

A C∗-algebra A is called nuclear if for any C∗-algebra B, there is a unique C∗-norm
on A ⊗ B, i.e. ‖ � ‖max = ‖ � ‖min. Connes [C2] and Haagerup [H2] showed that nuclear
C∗-algebras are precisely the amenable ones. If A is finite-dimensional or commutative
then A is nuclear. For discrete groups G, the reduced C∗red(G) (or full C∗(G)) algebra is
nuclear if and only if G is amenable [C1, C2].

3. Similarity problems for Banach algebras versus C∗-algebras. Let A be a
complex Banach algebra. A Banach 〈left, bi〉-module on A is a Banach space X which is
an algebraic 〈left, bi〉-module on A such that the module actions are continuous. Note that
X∗ becomes a Banach 〈left, bi〉-module with respect to the dual actions 〈a, f〉(b) = f(ba)
and 〈f, a〉(b) = f(ab) identically for every a, b ∈ A and f ∈ X∗. A derivation from A into
a Banach A-bimodule X is a bounded map D : A −→ X such that D(ab) = D(a)b+aD(b)
for all a, b ∈ A. A derivation D is inner if there is x ∈ X such that D(a) = a.x− x.a for
a ∈ A. A Banach algebra A is said to be amenable if for each Banach A-bimodule X,
every derivation D : A −→ X∗ is inner. Amenable Banach algebras were introduced by
B. E. Johnson in [J1] and they were well investigated in [Cur, GLW, J2]. It was established
in [C2] by A. Connes that every amenable C∗-algebra A (i.e., every closed self-adjoint of
B(H), the algebra of bounded operators on a given Hilbert space H) is nuclear; i.e., for all
C∗-algebra B, there exists a unique C∗-norm for which the completion of the (algebraic)
tensor product A⊗B is a C∗-algebra. The converse has been shown by Haagerup in [H2].

Assume now that A is an operator algebra, that is, a Banach algebra which acts
as an algebra of bounded operators on a Hilbert space K (in fact, A is a norm-closed
subalgebra of the algebra B(K) of bounded operators on K). Identifying the matrix space
Mn(B(K)) over B(K) with B(Kn), we let Mn(A) have the relative norm in B(Kn).
A bounded homomorphism φ : A −→ B is completely bounded (c.b. for short) if for
every n, φn : Mn(A) −→ Mn(B) defined by (aij) 7→ (φ(aij)) is bounded, such that

(c.b.) ‖φ‖cb = sup ‖φn‖Mn(A)→Mn(B) <∞. (9)

The relevant point here for us is the result of Haagerup [H1] that says that a bounded
homomorphism π : A→ B(H) is similar to ∗-homomorphism if and only if π is completely
bounded, see also [P2] and [H].

A representation π of A on a Hilbert space H, i.e., a bounded homomorphism π :
A −→ B(H), is said to be non-degenerated if π(A)H = H. It is called irreducible when
the only closed invariant subspaces of π(A) are {0} and H. A Hilbert A-module H is
defined to be a left Banach module on A that is isomorphic to a Hilbert space. This is
equivalent to the existence of a representation π : A −→ B(H) of A on H. A Hilbert
A-module is said to have the reduction property if for every closed submodule V of H,
there is a closed submodule W such that H = V ⊕W . A Hilbert A-module H is said to
have the complete reduction property if the amplified module H∞ (=H⊗2l

2(N)
)

has the
reduction property for A(∞). An operator algebra A is said to have the total reduction
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property (TRP for short) if

(TRP) every Hilbert A-module has the reduction property. (10)

If A ⊆ B(K) is an operator algebra, then the total reduction property for A implies the
complete reduction for A, which in turn implies the reduction property. If A is an operator
algebra and π : A −→ B(H) is a bounded representation, then H has the reduction
property if and only if every submodule of H is the range of an idempotent operator in
π(A)′, the commutant of π(A). Such idempotents are called idempotent operator module
projections. The total reduction property for operator algebras has been introduced in
J. A. Gifford’s thesis [G1]. This property is satisfied by amenable operator algebras.
In fact, many problems raised in the amenability context, have natural extension to
operator algebras with the total reduction property. In [P2, page 13], Pisier asks which
unital Banach algebras A have the similarity property (SP), i.e., are such that for each
bounded unital representation φ : A→ B(H),

(SP) ∃S ∈ B(H) invertible such that a 7→ S−1φ(a)S is a contraction. (11)

He gave several results answering partially this question. In his paper [P3], he also has
raised the Generalised Similarity Problem (GSP): Which unital operator algebras have
the following

(GSP) Any representation π : A −→ B(H) (H an arbitrary Hilbert space) is c.b. (12)

In the C∗-algebras case, (SP) is equivalent to (GSP). Gifford in [G2] has shown
that a C∗-algebra A has the total reduction property if and only if it satisfies (SP),
i.e. each representation of A is similar to a ∗-homomorphism. Note that for C∗-algebras
a ∗-homomorphism is automatically a contraction, and Kadison conjectured in 1955 that
all (unital) C∗-algebras do satisfy (SP). It is shown in [H, Theorem 3.1] that an operator
algebra A has (TRP) if both I and A/I have the (TRP), with I a closed two sided ideal
of A. Since (TRP) is equivalent to (SP) for C∗-algebras, we obtain the following

Proposition 3.1 ([H, Corollary 3.5]). Let A be a C∗-algebra and I a two sided ideal
of A, such that both I and A/I satisfy (SP). Then A satisfies (SP).

This result is still open for amenable groups. Kadison’s similarity problem (i.e. (SP)
for C∗-algebra) is equivalent to another crucial problem (the derivation problem) in the
cohomology theory of operator algebras, as follows. A celebrated theorem of Kirchberg
[Ki] states that, for C∗-algebras the following holds

A satisfies (SP) ⇐⇒ A satisfies (DP), (13)

where we say that a C∗-algebra A satisfies (DP) – the derivation problem – if any deriva-
tion

(DP) D : A→ B(H) is inner, i.e. D(a) = ab− ba, for some b ∈ A. (14)

Note that we may check that a map D : A→ B(H) is a derivation with respect to a
representation π of a C∗-algebra A on H if and only the map defined by

πD(a) =
[
π(a) D(a)

0 π(a)

]
∈ B(H ⊕H)
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is a representation of A in H ⊕H. Moreover πD is similar to a ∗-homomorphism if and
only if D is inner. To see the ‘if’ part, we remark that if D = δT , then

πD(a) =
[

1 T

0 1

] [
π(a) 0

0 π(a)

] [
1 −T
0 1

]
.

Therefore, π is similar to the ∗-homomorphism idA⊕ idA. In this way we have established
the easier implication (SP) =⇒ (DP). For the proof of the ‘only if’ of the above statement
and thus the implication (DP) =⇒ (SP), we advise the reader to consult Kirchberg’s proof
in [Ki].

We naturally also have a notion of derivation for a group representation and we say
that a group G satisfies the (DP) if any derivation on G is inner, see [J1].

In the case of (non-self-adjoint) operator algebras, it is natural to look for similar
results including possible connections of the total reduction property with (GSP) or (SP).
Anyhow, it has been conjectured in [G2] that:

Conjecture 1. Every non-self-adjoint operator algebra with total reduction property is
isomorphic (as Banach algebra) to a C∗-algebra.

Conjecture 2. Every weakly closed complete reduction non-self-adjoint operator algebra
A ⊆ B(K) is similar to C∗-algebra B, i.e. ∃S ∈ B(K) invertible such that A = S−1BS.

As partial results, Gifford has proven that every operator algebra A ⊆ B(K) with total
reduction property which is a closed subalgebra of an abelian C∗-algebra is a C∗-algebra
and every operator algebra A ⊆ B(K) with total reduction property which is a closed
subalgebra of the algebra of compact operators on K is similar to a C∗-algebra. It is clear
that if Conjecture 2 is true, then Conjecture 1 holds for weakly closed operator algebras.
We finish this section by giving recent partial answers to the above conjectures:

Theorem 3.2 ([H]). Let A ⊆ B(K) be an operator algebra with (TRP).

1) If A is isomorphic to a C∗-algebra, then A is similar to a C∗-algebra.
2) Let B be the weak-closure of the algebra generated by A′ and A′′. Then B is similar

to a C∗-algebra.

4. Main results

4.1. Similarity properties for C∗-algebras vs their duals. Similarity properties for
C∗-algebras vs their duals

A von Neumann algebra is of course a C∗-algebra, but besides bounded representations
of N as a C∗-algebra we may also consider the ones that are bounded and weakly-
continuous, giving rise to the following definition.

Definition 4.1 ([HP]). We say that a von Neumann algebra N satisfies the weak simi-
larity problem, for short (WSP), if for any bounded and weak∗-continuous representation
π : N → B(H), the operator S−1π(·)S is a ∗-homomorphism for some invertible opera-
tor S.

It is clear by definition that N satisfies (WSP) if N satisfies (SP).
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Proposition 4.2. A C∗-algebra A satisfies (SP) if and only if A∗∗ has (WSP).

Proof. Let π : A∗∗ → B(H) be a w∗-continuous representation on A∗∗. There is an
invertible operator S ∈ B(H) such that S−1πS is a ∗-homomorphism on A. Notice that
the algebra isomorphism of B(H) defined by T 7→ S−1TS is w∗-continuous. It follows that
S−1πS is a ∗-homomorphism on A∗∗. For the converse, let π : A→ B(H) be a bounded
representation. Its extension to A∗∗ is w∗-continuous and bounded on A∗∗. Then there
is an invertible operator S ∈ B(H) such that S−1πS is a ∗-homomorphism on A∗∗. The
restriction of this ∗-homomorphism is also a ∗-homomorphism on A. This completes the
proof.

Proposition 4.3. A C∗-algebra A satisfies (SP) if and only if the bicommutant satisfies
(WSP).

Proof. Let π : A′′ → B(H) be a w∗-continuous bounded homomorphism. Its restriction
on A is similar to a ∗-homomorphism; this means that there exists an invertible operator
S in B(H) such that S−1πS is a ∗-homomorphism. The homomorphism T 7→ S−1TS is
w∗-continuous on B(H), hence S−1πS is a ∗-homomorphism on A′′. This completes the
proof.

In particular, if C∗red(G) has (SP), then vN(G) has (WSP).

Proposition 4.4. Let A and B be unital C∗-algebras such that A has (SP) and B is
nuclear. Then A⊗min B has (SP).

Proof. It suffices to show that A⊗minB has (GSP), i.e. every bounded representation of
A⊗minB is completely bounded. Consider a bounded representation π : A⊗B → B(H).
Let πA and πB be the representations, respectively, on A and B, defined by πA(a) = a⊗1
and πB(b) = 1⊗b. Since πB is completely bounded, it is an invertible operator S ∈ B(H)
such that ρB = S−1πBS is a ∗-homomorphism. Put ρA = S−1πAS. It is completely
bounded. Then, first, ρA ⊗ ρB is completely bounded on A⊗min B and since ρA(A) is in
the commutant of ρB(B), ρA ⊗ ρB has the image in ρB(B)′ ⊗ ρB(B).

Second, we can easily check that the restriction of the linear map p : B(H)⊗B(H)→
B(H) defined by a ⊗ b 7→ ab is a ∗-homomorphism from ρB(B)′ ⊗max ρB(B). Since
ρB(B)′⊗maxρB(B) = πB(B)′⊗minρB(B) and ρ = p◦(ρA⊗ρB), ρ is completely bounded.
We deduce that π = S−1ρS which is completely bounded.

4.2. Stability results for group C∗-algebras. Let A be a C∗-algebra and U(A)
its unitary group. When equipped with the discrete topology, we denote this (locally
compact) group by Ud(A).

Proposition 4.5. If the group Ud(A) is unitarisable then A satisfies (SP).

Proof. Let π̃ : A→ B(H) be a bounded representation of A and π := π̃|Ud(A). Then π is
a uniformly bounded representation of Ud(A) because ‖π(g)‖ ≤ ‖π̃‖ for any g ∈ Ud(A).
Thus there exists an invertible operator S : H → H such that S−1πS is a unitary rep-
resentation of Ud(A), as Ud(A) is unitarisable. Since every a ∈ A is a linear combination
of four unitaries in Ud(A), we easily conclude that S−1π̃S is a ∗-homomorphism of A.
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Note that the finite-dimensional (full matrix) algebra M2×2(C) shows that the con-
verse of Proposition 4.5 is false.

We may easily see that if we have a surjective homomorphism ϕ : A → B between
C∗-algebras, then if A satisfies Kadison’s (SP), so does B. In particular we apply this
for the natural surjective homomorphism λ : C∗(G)→ C∗red(G) whenever C∗(G) has the
(SP). We now propose the following definition.

Definition 4.6 ([HP]). A (locally compact) group G is C∗-unitarisable if the C∗-algebra
C∗(G) satisfies (SP).

If G is amenable, then C∗(G) is a nuclear C∗-algebra [H2] and thus C∗(G) satisfies
(SP), and therefore G is a C∗-unitarisable group. Also if we use Pisier [P5, Theorem 0.9],
then it is clear that for a given discrete group G, a bounded representation π : C∗(G)→
B(H) of G on a Hilbert space H is similar to a ∗-homomorphism if and only if the
restriction π|G is a unitarisable representation of the group G on H. We thus conclude
that every unitarisable discrete group G is C∗-unitarisable.

We summarise further easy consequences of the definitions in the following result.

Proposition 4.7. Let G be a discrete group. Let us consider the following statements:

1) G is unitarisable.
2) G is C∗-unitarisable.
3) C∗red(G) satisfies (SP).

Then 1) =⇒ 2) =⇒ 3).

Proof. 1) ⇒ 2). Let ϕ : C∗(G) → B(H) be a continuous representation of the group
C∗-algebra C∗(G). Then we define a representation π : G → B(H) of the group G by
setting π(g) = ϕ(δg).

As G is unitarisable, there exists an invertible operator S : H → H such that S−1πS

is a unitary representation of G. Notice that since G is discrete, π can be extended to a
representation π̃ : L1(G) → B(H), hence S−1π̃S ≡ S−1ϕS on L1(G) and in particular
S−1ϕS is a ∗-homomorphism on C∗(G).

2)⇒ 3). Let π : C∗red(G)→ B(H) be a representation. The left regular representation
λ of G provides a natural ∗-homomorphism λ : C∗(G) → C∗red(G). Since C∗(G) satisfies
(SP), there is an invertible S ∈ B(H) such that S−1λ ◦π(.)S is a ∗-homomorphism. As λ
is surjective, S−1π(.)S is a ∗-homomorphism. This show that C∗red(G) satisfies (SP). Of
course we can use the argument before Definition 4.6 to prove this implication.

As an immediate consequence of Propositions 4.2 and 4.7 we have the following

Corollary 4.8. Let G be a discrete and unitarisable group. Then the big group algebra
A(G) satisfies (SP).

We have the following stability result.

Proposition 4.9 ([HP]). Let G be a discrete group.

1) If G is C∗-unitarisable, then for every normal subgroup Γ, we have that G/Γ is
C∗-unitarisable.
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2) Let Γ be a normal subgroup of G. Assume that Γ is C∗-unitarisable and G/Γ is
amenable. Then G is C∗-unitarisable.
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