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Abstract. We derive the asymptotic spectral distribution of the distance k-graph of

N -dimensional hypercube as N →∞.

1. Introduction. For a given graph G = (V,E) and a positive integer k the distance
k-graph is defined to be a graph G[k] = (V,E[k]) with

E[k] = {{x, y} : x, y ∈ V, ∂G(x, y) = k},

where ∂G(x, y) is the graph distance. In this paper we focus on the asymptotic spectral
distribution of the distance k-graphs of the N -dimensional hypercube as N →∞. The re-
sults are viewed as concrete examples of limit distributions obtained along with quantum
probability theory [5].

The N -dimensional hypercube is a graph G(N) = (V (N), E(N)), where

V (N) = {x = (ξ1, ξ2, . . . , ξN ) : ξi ∈ {0, 1}},

E(N) = {{x, y} : ∂(x, y) = 1},

and ∂(x, y) is the Hamming distance defined by

∂(x, y) =
∣∣{1 ≤ i ≤ N : ξi 6= ηi}

∣∣,
x = (ξ1, ξ2, . . . , ξN ), y = (η1, η2, . . . , ηN ) ∈ V (N).

The N -dimensional hypercube is also called the Hamming graph H(N, 2). For 1 ≤ k ≤ N ,
let G(N,k) = (V (N), E(N,k)) be the distance k-graph of the N -dimensional hyper-
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cube G(N). We see easily that G(N,k) is a regular graph with degree
(
N
k

)
. Note also

that G(N,k) is not necessarily connected.
Let A(N,k) denote the adjacency matrix of G(N,k) = (V (N), E(N,k)). We are interested

in the spectral distribution (eigenvalue distribution) of the normalized adjacency matrix:(
N

k

)−1/2

A(N,k)

and its limit distributions as N →∞. The main result of this paper is the following

Theorem 1.1. For k = 1, 2, . . . let µk be the probability distribution of the random
variable defined by

1√
2kk!

Hk

( X√
2

)
where Hk(x) is the k-th Hermite polynomial and X is a random variable obeying the
standard normal distribution N(0, 1). Then

lim
N→∞

(
N

k

)−m/2

ϕtr

(
(A(N,k))m

)
=
∫ +∞

−∞
xm µk(dx), k,m = 1, 2, . . . ,

where ϕtr is the normalized trace.

Setting k = 2, we obtain the following

Corollary 1.2. The normalized asymptotic spectral distribution of the distance 2-graph
of the N -dimensional hypercube as N →∞ is given by

µ2(dx) =
1√

π(
√

2x+ 1)
exp
(
−
√

2x+ 1
2

)
1(−1/

√
2,+∞)(x) dx,

i.e., the normalized χ2
1-distribution.

The result in Corollary 1.2 was shown first by Kurihara–Hibino [6] by means of quan-
tum decomposition but the result for an arbitrary k ≥ 3 has not been yet obtained. The-
orem 1.1 answers this question. Our proof is based on direct computation of the spectral
distribution of the N -dimensional hypercube. It was also shown in [6] that the asymptotic
spectral distribution of A(N,N−1) as N → ∞ is the Gaussian distribution. This type of
asymptotics is different from that of Theorem 1.1. In this connection it seems interesting
to investigate the asymptotic spectral distribution of A(N,k) as N → ∞, k → ∞ with
k/N → λ.

2. Adjacency matrices. The N -dimensional hypercube G(N) is isomorphic to the
N -fold direct product of the complete graph with two vertices:

G(N) = K2 × . . .×K2 (N -times).

Since the adjacency matrix of K2 is given by

R =
[
0 1
1 0

]
,
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the adjacency matrix of G(N) is expressed as

A =
N∑

i=1

I ⊗ . . .⊗ I ⊗R⊗ I ⊗ . . .⊗ I (1)

where R sits at the i-th position and I denotes the identity matrix. Similarly, for k =
1, 2, . . . , N the adjacency matrix of G(k)

N is expressed as

A(N,k) =
∑

1≤i1<i2<...<ik≤N

I ⊗ . . .⊗ I ⊗R⊗ I ⊗ . . .⊗ I ⊗R⊗ I ⊗ . . .⊗ I,

where R appears k times and sits at the i1-th, i2-th, . . . , ik-th positions. Whenever there
is no confusion, we write for simplicity

A(k) = A(N,k), A = A(1) = A(N,1), I = A(0) = A(N,0).

Lemma 2.1. For a fixed N ≥ 1

A(0) = I, A(1) = A,

AA(k) = (k + 1)A(k+1) + (N − k + 1)A(k−1), k = 1, 2, . . . , N − 1.

Proof. By direct computation. We need only to note that R2 = I.

3. Krawtchouk polynomials. Following the standard notation [2, 3], for an integer
N ≥ 1 and 0 < p < 1 we define the Krawtchouk polynomials k(N,p)

n (x) by

k(N,p)
n (x) =

n∑
k=0

(x−N)n−k(x− k + 1)k

(n− k)!k!
pn−k(1− p)k

= (−p)n

(
N

n

) n∑
k=0

(−n)k(−x)k

(−N)kk!
p−k =

1
n!
xn + (lower), n = 0, 1, 2, . . . , N.

It is known that {k(N,p)
n (x) : n = 0, 1, 2, . . . , N} are the orthogonal polynomials with

respect to the binomial distribution B(N, p), i.e.,

N∑
x=0

k(N,p)
m (x)k(N,p)

n (x)
(
N

x

)
px(1− p)N−x =

(
N

n

)
pn(1− p)nδmn .

Moreover, the three-term recurrence relation holds:

k
(N,p)
0 (x) = 1,

k
(N,p)
1 (x) = x− pN

xk(N,p)
n (x) = (n+ 1)k(N,p)

n+1 (x)

+ (pN + n− 2pn)k(N,p)
n (x) + p(1− p)(N − n+ 1)k(N,p)

n−1 (x).

Now we set

K(N)
n (x) = 2nn! k(N,1/2)

n

(x+N

2

)
, n = 0, 1, 2, . . . , N.
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The first five are given by

K
(N)
0 (x) = 1,

K
(N)
1 (x) = x,

K
(N)
2 (x) = x2 −N,

K
(N)
3 (x) = x3 − (3N − 2)x,

K
(N)
4 (x) = x4 − (6N − 8)x2 + 3N(N − 2).

Lemma 3.1. {K(N)
n (x)} are the orthogonal polynomials with respect to

βN =
N∑

j=0

(
N

j

)
1

2N
δ−N+2j . (2)

Here mean(βN ) = 0 and var(βN ) = N .

Proof. Straightforward by variable change.

Lemma 3.2. {K(N)
n (x)} fulfil the three-term recurrence relation:

K
(N)
0 (x) = 1, K

(N)
1 (x) = x,

xK(N)
n (x) = K

(N)
n+1(x) + (N − n+ 1)nK(N)

n−1(x).

Therefore, the Jacobi parameters of {K(N)
n (x)}, or equivalently, of βN are given by

ωn = (N − n+ 1)n, 1 ≤ n ≤ N,
αn = 0, 1 ≤ n ≤ N + 1.

Proof. Straightforward from the three-term recurrence relations of k(N,p)
n (x) mentioned

above.

Lemma 3.3. The adjacency matrix of the distance k-graph of the N -dimensional hyper-
cube G(N) is given by

A(N,k) =
1
k!
K

(N)
k (A), k = 0, 1, 2, . . . , N,

where A in the right-hand side is the adjacency matrix of G(N).

Proof. Straightforward from Lemmas 2.1 and 3.2.

4. Proof of the main result. We start with

Lemma 4.1. Let N ≥ 1 be a natural number. Let A = A(1) = A(N,1) be the adjacency
matrix of the N -dimensional hypercube G(N). Then the eigenvalue distribution of A co-
incides with βN . Therefore,

ϕtr(Am) =
∫ +∞

−∞
xm βN (dx), m = 1, 2, . . . . (3)

Proof. Since the eigenvalues of R =
[
0 1
1 0

]
are ±1, we see from (1) that −N + 2j is an

eigenvalue of A with multiplicity
(
N
j

)
. The assertion is then obvious.
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Combining Lemmas 3.3 and 4.1, we obtain

ϕtr

(
(A(N,k))m

)
=
∫ +∞

−∞

{ 1
k!
K

(N)
k (x)

}m

βN (dx), m = 1, 2, . . . . (4)

Let β̃N be the normalization of βN , i.e.,

β̃N =
N∑

j=0

(
N

j

)
1

2N
δ−
√

N+2j/
√

N .

Note that mean(β̃N ) = 0 and var(β̃N ) = 1. Then, after the change of variable (4) becomes(
N

k

)−m/2

ϕtr

(
(A(N,k))m

)
= {k!N(N − 1) . . . (N − k + 1)}−m/2

∫ +∞

−∞

{
K

(N)
k (x)

}m
βN (dx)

= {k!N(N − 1) . . . (N − k + 1)}−m/2

∫ +∞

−∞

{
K

(N)
k (
√
N x)

}m
β̃N (dx). (5)

Our task is now to compute the limit as N →∞.
As usual [2, 3], let {Hn(x)} be the Hermite polynomials defined by the three-term

recurrence relation:

H0(x) = 1, H1(x) = 2x,

2xHn(x) = Hn+1(x) + 2nHn−1(x).

For normalization we set

H̃n(x) = 2−n/2Hn

( x√
2

)
, n = 0, 1, 2, . . . .

Lemma 4.2. {H̃n(x)} are the orthogonal polynomials with respect to the standard Gaus-
sian distribution N(0, 1) and are normalized as H̃n(x) = xn + (lower). Moreover, the
Jacobi parameters are given by ωn = n and αn = 0, n = 1, 2, . . . .

Proof. Easy. In fact, we have

H̃0(x) = 1, H̃1(x) = 2x,

xH̃n(x) = H̃n+1(x) + nH̃n−1(x),

from which the assertions are obvious.

Lemma 4.3. For each k = 0, 1, 2, . . .

H̃k(x) = lim
N→∞

N−k/2K
(N)
k (
√
N x).

Proof. Straightforward by comparison of the three-term recurrence relations satisfied by
{H̃k(x)} and {K(N)

k (x)}.

Lemma 4.4.

lim
N→∞

∫ +∞

−∞
xm β̃N (dx) =

1√
2π

∫ +∞

−∞
xme−x2/2 dx, m = 1, 2, . . . .

Proof. This is a variant of the de Moivre–Laplace theorem (central limit theorem).
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We are now in a position to compute the limit of (5). By virtue of Lemmas 4.3 and
4.4 we obtain

lim
N→∞

(
N

k

)−m/2

ϕtr

(
(A(N,k))m

)
= lim

N→∞
{k!N(N − 1) . . . (N − k + 1)}−m/2

∫ +∞

−∞

{
K

(N)
k (
√
N x)

}m

β̃N (dx)

= (k!)−m/2 1√
2π

∫ +∞

−∞
{H̃k(x)}me−x2/2 dx.

Therefore, the probability distribution µk in the main theorem (Theorem 1.1) coincides
with the distribution of

(k!)−1/2H̃k(X) = (2kk!)−1/2Hk

( X√
2

)
,

where X is a random variable obeying N(0, 1). Thus the proof of Theorem 1.1 is com-
pleted.

Remark 4.5. The probability distributions µk were obtained by Hora [4] in the study
of asymptotic spectral distributions of the adjacency operators related to the infinite
symmetric group. It is plausible that our result is generalized in terms of quotient spaces
of the symmetric groups.

Remark 4.6. It is well known that the k-th distance matrix A(k) of a distance-regular
graph is a polynomial of its adjacency matrix A = A(1), see e.g., [1]. In fact, the
N -dimensional hypercube is a Hamming graph H(N, 2) so is distance-regular, and the
polynomials are explicitly obtained in Lemma 3.3. From this aspect our argument in this
paper is apparently applicable to a more general class of distance-regular graphs.
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