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Abstract. A class of quasi-variational inequalities (QVI) of elliptic type is studied in reflexive

Banach spaces. The concept of QVI was earlier introduced by A. Bensoussan and J.-L. Lions

[2] and its general theory has been developed by many mathematicians, for instance, see [6,

7, 9, 13] and a monograph [1]. In this paper we give a generalization of the existence theorem

established in [14]. In our treatment we employ the compactness method along with a concept

of convergence of nonlinear multivalued operators of monotone type (cf. [11]). We shall prove an

abstract existence result for our class of QVI’s, and moreover, give some applications to QVI’s

for elliptic partial differential operators.

1. Introduction. Let X be a real reflexive Banach space and X∗ be its dual. We assume
that X and X∗ are strictly convex and denote by 〈·, ·〉 the duality pairing between X∗

and X. Given a nonlinear operator A from X into X∗, an element g∗ ∈ X∗ and a closed
convex subset K of X, the variational inequality is formulated as a problem to find u in
X such that {

u ∈ K,
〈Au− g∗, u− w〉 ≤ 0, ∀w ∈ K.

(1)

This has been studied by many mathematicians, for instance see [4, 5, 10] and their
references.

The concept of quasi-variational inequality was introduced by A. Bensoussan and
J. L. Lions [2] in order to solve some problems in the control theory. Given an operator
A : X → X∗, an element g∗ ∈ X∗ and a family {K(v); v ∈ X} of closed convex subsets
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of X, the quasi-variational inequality is a problem to find u in X such that{
u ∈ K(u),

〈Au− g∗, u− w〉 ≤ 0, ∀w ∈ K(u).
(2)

The constraint K(u) for the quasi-variational inequality depends upon the unknown u,
which causes one of main difficulties in the mathematical treatment of quasi-variational
inequalities.

The theory of quasi-variational inequalities has been developed for various classes of
mappings v → K(v) and linear or nonlinear operators A : X → X∗; see for instance
[6,7,13], in which two approaches to quasi-variational inequalities were proposed. One of
them is the so-called monotonicity method in Banach lattices X (cf. [13]), and for the
mapping v → K(v) the monotonicity condition

min{w1, w2} ∈ K(v1), max{w1, w2} ∈ K(v2), if v1, v2 ∈ X with v1 ≤ v2, (3)

is required, and an existence result for (2) is proved with the help of a fixed point the-
orem in Banach lattices. Another is the so-called compactness method in which some
compactness properties are required for the mapping v → K(v) such as K(vn) converges
to K(v) in the Mosco sense, if vn → v weakly in X as n→∞. In the latter framework,
an existence result for (2) was shown in [7].

However, these results seem to be insufficient for application from some point of wiew.
Therefore their generalizations were established in [14]. In that paper, it is assumed
that A : X → X∗ is a pseudo-monotone operator, Au = Ã(u, u), generated by a semi-
monotone operator Ã : X ×X → X∗. In such a case our quasi-variational inequality is
of the form: Find u ∈ X and{

u ∈ K(u), u∗ ∈ Au,
〈u∗ − g∗, u− w〉 ≤ 0, ∀w ∈ K(u).

(4)

In this paper, we discuss the following quasi-variational inequality which is a further
generalization of the case treated in [14]. For a given function ϕ : X × X → R, our
quasi-variational inequality is written as{

ϕ(u, u) <∞, u∗ ∈ Au;

〈u∗ − g∗, u− v〉+ ϕ(u, u) ≤ ϕ(u, v), ∀v ∈ X.
(5)

The above abstract result is applied to a quasi-variational inequality arising in the
elastic-plastic torsion problem for visco-elastic materials: Find u ∈ H1

0 (Ω) and ũ ∈ L2(Ω)
satisfying

|∇u| ≤ kc(u) a.e. on Ω, ũ ∈ β(u) a.e. on Ω,
N∑

i,j=1

∫
Ω

aij(x, u)
∂u

∂xi

∂(u− w)
∂xj

dx+
∫

Ω

ũ(u− w)dx ≤
∫

Ω

f(u− w)dx,

∀w ∈ H1
0 (Ω) with |∇w| ≤ kc(u) a.e. on Ω,

where Ω is a bounded smooth domain in RN , f is given in L2(Ω), kc(·) is a positive,
smooth and bounded function on R and β(·) is a maximal monotone graph in R×R. In
this case our abstract result is applied to
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ϕ(v, u) =
∫

Ω

IK(v)(u)dx+ β̂(u)

with K(v) := {w ∈ H1
0 (Ω); |∇w| ≤ kc(u) a.e. on Ω} and indicator function IK(v) of K(v),

where β̂ is the primitive of β, i.e. ∂β̂ = β, and to

Au := −
N∑

i,j=1

∂

∂xj

(
aij(x, u)

∂u

∂xi

)
+ β(u).

It should be noted that the family {K(v); v ∈ H1
0 (Ω)} does not satisfy the monotonicity

condition (3), and that the term β(u) is in general multivalued.

2. Main results. Let X be a real Banach space and X∗ be its dual space, and assume
that X and X∗ are strictly convex. We denote by 〈·, ·〉 the duality pairing between X∗

and X, and by | · |X and | · |X∗ the norms of X and X∗, respectively. For various general
concepts on nonlinear multivalued operators from X into X∗, for instance, monotonicity
and maximal monotonicity of operators, we refer to the monograph [1,4]. In this paper,
operators are multivalued, in general. Given a general nonlinear operator A from X into
X∗, we use the notations D(A), R(A) and G(A) to denote its domain, range and graph.
Now we formulate quasi-variational inequalities for a class of nonlinear operators, called
semi-monotone, from X ×X into X∗.

Definition 2.1. An operator Ã(·, ·) : X ×X → X∗ is called semi-monotone if D(Ã) =
X ×X and the following conditions (SM1) and (SM2) are satisfied:

(SM1) Ã(v, ·) : X → X∗ is maximal monotone, and D(Ã(v, ·)) = X for every v ∈ X.
(SM2) {vn} ⊂ X and vn → v weakly in X as n→∞

⇒ ∀u∗ ∈ Ã(v, u), ∃{un
∗} ⊂ X∗ such that

{
un
∗ ∈ Ã(vn, u), ∀n ∈ N,

un
∗ → u∗ in X∗.

Definition 2.2. If a sequence {ϕn} of proper l.s.c. convex functions on X satisfies the
following (MC1) and (MC2), then we say that ϕn converges to a proper l.s.c. convex
function ϕ on X in the sense of Mosco [11].

(MC1) ∀z ∈ D(ϕ), ∃{zn} ⊂ X such that zn → z in X and ϕn(zn)→ ϕ(z).
(MC2) If {ϕnk

} ⊂ {ϕn} and {zk} ⊂ X such that zk → z weakly in X,
then lim infk→∞ ϕnk

(zk) ≥ ϕ(z).

Let Ã : D(Ã) := X × X → X∗ be a semi-monotone operator. Then we define A :
D(A) = X → X∗ by putting Au := Ã(u, u) for all u ∈ X, which is called the operator
generated by Ã.

Now, for an operator A generated by a semi-monotone operator Ã, any g∗ ∈ X∗ and
a mapping v → K(v) we consider a quasi-variational inequality, denoted by P(g∗,ϕ), to
find u ∈ X and u∗ ∈ X∗ such that

P(g∗,ϕ)
{
ϕ(u, u) <∞, u∗ ∈ Au;
〈u∗ − g∗, u− v〉+ ϕ(u, u) ≤ ϕ(u, v), ∀v ∈ X. (6)

Our main results are as follows.
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Theorem 2.1. Let Ã : D(Ã) = X × X → X∗ be a bounded semi-monotone operator,
A : X → X∗ be the operator generated by Ã, K0 be a bounded closed convex subset of
X, and g∗ ∈ X∗. Assume that ϕ : X × X → R ∪ {∞} is such that ϕ(v, ·) is proper
l.s.c. convex on X for each v ∈ K0, and K0 contains effective domains D(ϕ(v, ·)) for all
v ∈ K0. Moreover, assume the following condition (K):

(K) {vn} ⊂ K0 and vn → v weakly in X

=⇒ ϕ(vn, ·)→ ϕ(v, ·) on X in the sense of Mosco.

Then, the quasi-variational inequality P(g∗,ϕ) has at least one solution u.

The following theorem is a slightly more general version of Theorem 2.1.

Theorem 2.2. Let Ã : D(Ã) = X ×X → X∗ be bounded and semi-monotone, A : X →
X∗ be the operator generated by Ã. Assume that ϕ : X×X → R∪{∞} is a function such
that ϕ(v, ·) is a proper l.s.c. convex function for each v ∈ X, and there exists a bounded
set G0 ⊂ X such that D(ϕ(v, ·)) ∩ G0 6= ∅ for all v ∈ X, and the following boundedness
and coerciveness conditions are satisfied:

∃R > 0 such that inf
z∈G0

ϕ(v, z) ≤ R(|v|X + 1), ∀v ∈ X, (7)

inf
w∗∈Aw

(
〈w∗, w − v〉+ ϕ(w,w)

|w|X

)
→∞ as |w|X →∞ uniformly in v ∈ G0. (8)

Moreover, assume the following condition (K’):

(K’) {vn} ⊂ X, vn → v weakly in X

=⇒ ϕ(vn, ·)→ ϕ(v, ·) on X in the sense of Mosco.

Then, the problem P(g∗,ϕ) has at least one solution u.

In our proof of Theorems 2.1 and 2.2 we use some results on nonlinear operators of
monotone type, which are mentioned below.

Proposition 2.1. Let Ã : D(Ã) = X ×X → X∗ be a semi-monotone operator and let
A : X → X∗ be the operator generated by Ã. Then, the following two properties (a) and
(b) hold:

(a) For any v, u ∈ X,A(v, u) is a non-empty, closed, bounded and convex subset of X∗.
(b) Let {un} and {vn} be sequences in X such that un → u weakly in X and vn →

v weakly in X (as n → ∞). If u∗n ∈ Ã(vn, un), u∗n → g weakly in X∗ and
lim supn→∞〈u∗n, un〉 ≤ 〈g, u〉, then g ∈ Ã(v, u) and limn→∞〈u∗n, un〉 = 〈g, u〉.

For a proof of Proposition 2.1, see [14].

Proposition 2.2. Let A1 : D(A1) ⊂ X → X∗ be a maximal monotone operator and
A2 : D(A2) = X → X∗ be a maximal monotone operator. Suppose that

inf
v∗1∈A1v, v∗2∈A2v

〈v∗1 + v∗2 , v − v0〉
|v|X

→∞ as |v|X →∞, v ∈ D(A1).

Then R(A1 +A2) = X∗.

For a proof of Proposition 2.2, see [4, 5, 8].
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3. Proof of main theorems. We begin with the proof of Theorem 2.1.

Proof of Theorem 2.1. The theorem is proved in the following two steps. In the first step
(A), we prove the case when Ã(v, ·) is strictly monotone from X into X∗ for every v ∈ X,
and the second step (B) is the general case as in the statement of Theorem 2.1.

Case (A). First, we solve the following problem for each v ∈ K0.{
ϕ(v, u) <∞, u∗ ∈ Ã(v, u);
〈u∗ − g∗, u− w〉+ ϕ(v, u) ≤ ϕ(v, w), ∀w ∈ X.

(9)

Now Ã(v, ·) is maximal monotone with D(Ã(v, ·)) = X, and the operator ∂ϕ(v, ·), which is
the subdifferential of ϕ(v, ·), is maximal monotone. Furthermore, for each v ∈ D(ϕ(v, ·)),

inf
w∗

1∈∂ϕ(v,w), w∗
2∈ eA(v,w)

〈w∗1 + w∗2 , w − w0〉
|w|X

→∞ as |w|X →∞, w ∈ D(∂ϕ(v, ·)) (10)

is trivially satisfied because D(∂ϕ(v, ·)) ⊂ K0. From Proposition 2.2, R(∂ϕ(v, ·)+ Ã(v, ·))
= X∗, so that

∃u ∈ D(ϕ(v, ·)), ∃u∗ ∈ Ã(v, u) s.t. g∗ − u∗ ∈ ∂ϕ(v, u). (11)

Therefore,
〈u∗ − g∗, u− w〉+ ϕ(v, u) ≤ ϕ(v, w), ∀w ∈ X, (12)

and the problem (9) has a solution u. By the strict monotonicity, this solution is unique.
Now we consider the operator S : K0 → K0 which assigns to each v ∈ K0 the solution

u ∈ K0 of (9). We shall show that S is weakly continuous in K0. Assume that {vn} ⊂ K0,
vn → v weakly in X, and Svn = un. Then, since K0 is weakly compact in X, there exist
a subsequence {unk

} of {un} and u ∈ K0 such that unk
→ u weakly in X (k →∞). For

each k, we have{
ϕ(vnk

, unk
) <∞, u∗nk

∈ Ã(vnk
, unk

);

〈u∗nk
− g∗, unk

− w〉+ ϕ(vnk
, unk

) ≤ ϕ(vnk
, w), ∀w ∈ X.

(13)

This means u ∈ D(ϕ(v, ·)) by (MC2). By (MC1), we can see that there exists a sequence
{ũk} ⊂ K0 such that ϕ(vnk

, ũk)→ ϕ(v, u) and ũk → u in X. Moreover, 〈u∗nk
, unk

− ũk〉 ≤
〈g∗, unk

−ũk〉−ϕ(vnk
, unk

)+ϕ(vnk
, ũk) for all k∈N by (13), and lim supk→∞(−ϕ(vnk

, unk
))

≤ −ϕ(v, u) by (MC2), so that

lim sup
k→∞

〈u∗nk
, unk
〉 = lim sup

k→∞
(〈u∗nk

, unk
− ũk〉+ 〈u∗nk

, ũk〉)

≤ lim sup
k→∞

(〈g∗, unk
− ũk〉+ 〈u∗nk

, ũk〉

− ϕ(vnk
, unk

) + ϕ(vnk
, ũk))

≤ 〈u∗, u〉. (14)

Next, by (SM2), for any w ∈ X and any w∗ ∈ Ã(v, w), there exists some sequence {w∗k}
in X∗, such that w∗k ∈ Ã(vnk

, w) and w∗k → w∗ in X∗. In addition, 〈u∗nk
−w∗k, unk

−w〉 ≥ 0
for all k ∈ N, because Ã(vnk

, ·) is monotone. Hence

0 ≤ lim sup
k→∞

〈u∗nk
− w∗k, unk

− w〉 ≤ 〈u∗ − w∗, u− w〉 (15)
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and Ã(v, ·) is maximal monotone, which implies that u∗ ∈ Ã(v, u). For these u and u∗, we
use (SM2) to get a sequence {w̃∗k} ⊂ X∗ which satisfies that w̃∗k ∈ Ã(vnk

, u) and w̃∗k → u∗

in X∗. Furthermore, since 〈u∗nk
, unk
〉 ≥ 〈u∗nk

, u〉 + 〈w̃∗k, unk
− u〉 by the monotonicity of

Ã(vnk
, ·), we see that

lim inf
k→∞

〈u∗nk
, unk
〉 ≥ lim inf

k→∞
(〈u∗nk

, u〉+ 〈w̃∗k, unk
− u〉)

= 〈u∗, u〉. (16)

Combining this with (14), we get limk→∞〈u∗nk
, unk
〉 = 〈u∗, u〉.

For any w ∈ D(ϕ(v, ·)), by (MC1) we are able to find a sequence {wk} such that
wk → w in X and ϕ(vnk

, wk)→ ϕ(v, w). Moreover, note from (13) that 〈u∗nk
− g∗, unk

−
wk〉+ ϕ(vnk

, unk
) ≤ ϕ(vnk

, wk). Therefore,

ϕ(v, w) = lim inf
k→∞

ϕ(vnk
, wk)

≥ lim inf
k→∞

(〈u∗nk
, unk
〉 − 〈u∗nk

, wk〉 − 〈g∗, unk
− wk〉+ ϕ(vnk

, unk
))

= 〈u∗ − g∗, u− w〉+ ϕ(v, u). (17)

This shows that Sv = u and S is weakly continuous. By the fixed point theorem for
compact operators (Leray-Schauder type), S has at least one fixed point u in K0, namely
Su = u, which is a solution of P(g∗,ϕ).

Case (B). We approximate Ã by Ãε(v, u) = Ã(v, u)+εJ(u) for every u, v ∈ X, ε ∈ (0, 1],
and the duality mapping J from X into X∗. Then Ãε is semi-monotone and Ãε(v, ·) is
strictly monotone. Applying the case (A) for the operator Aε generated by Ãε, we see
that

∃uε ∈ K0 s.t.

{
uε ∈ D(ϕ(uε, ·)), u∗ε ∈ Aε(uε);

〈uε + ε · Juε − g∗, uε − w〉+ ϕ(uε, uε) ≤ ϕ(uε, w), ∀w ∈ X.
(18)

Now choose a sequence {εn} and a subsequence {uεn
} of {uε} such that εn converges

to 0, and uεn converges to some u weakly in X. Then ϕ(u, u) < ∞ by condition (K’).
According to (MC1), there exists a sequence {ũn} which satisfies ϕ(uεn

, ũn) → ϕ(u, u)
and ũn → u in X. For this sequence, we can choose a subsequence {u∗εnk

} of {u∗εn
} such

that {u∗εnk
} converges to some u∗ weakly in X, because Ã is bounded. We now observe

by using (MC2) and (18) that

lim sup
k→∞

〈u∗εnk
, uεnk

− u〉

= lim sup
k→∞

(〈u∗εnk
+ εnk

· Juεnk
, uεnk

− ũnk
〉+ 〈u∗εnk

+ εnk
· Juεnk

, ũnk
− u〉)

≤ lim sup
k→∞

(〈g∗, uεnk
− ũnk

〉 − ϕ(uεnk
, uεnk

) + ϕ(uεnk
, ũnk

)

+ 〈u∗εnk
+ εnk

· Juεnk
, ũnk

− u〉)

≤ 0. (19)

From Proposition 2.1-(b) and this inequality, we get limk→∞〈u∗εnk
, uεnk

〉 = 〈u∗, u〉. More-



QUASI-VARIATIONAL INEQUALITIES 241

over, as is seen from (MC1), for each w ∈ X

∃{wk} ⊂ X s.t.
{
ϕ(uεnk

, wk)→ ϕ(u,w),
wk → w in X.

With these sequences and (18), we have

ϕ(u,w) = lim
k→∞

ϕ(uεnk
, wk)

≥ lim
k→∞

(〈u∗εnk
+ εnk

· Juεnk
− g∗, uεnk

− wk〉+ ϕ(uεnk
, uεnk

))

≥ 〈u∗ − g∗, u− w〉+ ϕ(u, u)

for all w ∈ X, so u is a solution of P(g∗,ϕ).

Next, we show Theorem 2.2 using the result of Theorem 2.1.

Proof of Theorem 2.2. First, we put

d1 := sup
w∈G0

|w|X ,

d2 := sup
{
|w|X

∣∣∣∣w ∈ X, inf
w∗∈Aw

(
〈w∗, w − v〉+ ϕ(w,w)

|w|X

)
≤|g∗|

X∗ (1 + d1), ∀v ∈ G0

}
,

and M0 = d1 + d2 + 1, and BM = {w ∈ X | |w|X ≤M} for M ≥M0. Now we define the
function ϕM on X ×X by

ϕM (v, u) =
{
ϕ(v, u) if |u|X ≤M,

∞ otherwise.

Then ϕM (v, ·) is a proper l.s.c. convex function on X for each v ∈ X.
Next we show that {ϕM (vn, ·)} converges to ϕM (v, ·) on X in the sense of Mosco. In

fact, for any w ∈ D(ϕM (v, ·)), we use (MC1) to find a sequence {wn} such that wn → w

in X and ϕ(vn, wn) → ϕ(v, w). If |w|X < M , then |wn|X < M is satisfied for all large
n ≥ N0 for a certain N0 ∈ N. Now putting

w̃n =
{

any w ∈ D(ϕM (vn, ·)) (n < N0),
wn (n ≥ N0),

we can see that (MC1) holds for {w̃n}. If |w|X = M , we approximate w by

w(m) =
(

1− 1
m

)
w +

1
m
v0 (m = 1, 2, · · · ), v0 ∈ D(ϕ(v, ·)) ∩G0.

It is clear that w(m) → w as m→∞, w(m) ∈ D(ϕ(v, ·)), and |w(m)|X < M for all m ∈ N.
By the above result with |w|X < M , we see that

∀m ∈ N, ∃{w(m)
n } s.t.

{
w

(m)
n → w(m) in X,

ϕM (vn, w
(m)
n )→ ϕM (v, w(m)).

(20)

Furthermore, for each m ∈ N, there exists n(m) ∈ N such that

|w(m)
n − w(m)|X <

1
2m

and |ϕM (vn, w
(m)
n )− ϕM (v, w(m))|X ≤

1
2m

, ∀n ≥ n(m).

We choose a sequence {n′(m)} which satisfies n′(m) < n′(m + 1), n(m) < n′(m), and
m < n′(m) for every m ∈ N. Then for all n ∈ N there exists i ∈ N such that n′(i) ≤ n <
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n′(i+ 1). We choose w(i)
n as w̃n. Then,

|w̃n − w|X ≤ |w(i)
n − w(i)|X + |w(i) − w|X → 0.

Moreover, we easily see ϕM (v, w(m)) → ϕM (v, w) and ϕM (vn, w
(m)
n ) → ϕM (v, w(m)), so

that
|ϕM (vn, w̃n)− ϕM (v, w)| ≤ |ϕM (vn, w

(i)
n )− ϕM (v, w(i))|+ |ϕM (v, w(i))− ϕM (v, w)|

→ 0

From these results, we can see that {ϕM (vn, ·)} has property (MC1). The verification of
(MC2) is easy. We are now in a position to apply Theorem 2.1 for BM and ϕM for all
M , and we see that

∃uM ∈ X s.t.
{
ϕM (uM , uM ) <∞, u∗M ∈ AuM ,

〈u∗M − g∗, uM − w〉+ ϕM (uM , uM ) ≤ ϕ(uM , w), ∀w ∈ X;
(21)

note that condition (K) for K0 = BM and ϕ = ϕM follows from (K’). From (7), it follows
that

∀M ≥M0, ∃wM ∈ D(ϕM (uM , ·)) ∩G0 s.t. ϕ(uM , wM ) ≤ R(|uM |X + 2).

Now, we obtain from (21) that
〈u∗M , uM − wM 〉+ ϕ(uM , uM )

|uM |X
≤ |g∗|X∗ +R+

|g∗|X∗ + 2R
|uM |X

.

Hence, our coerciveness assumption (8) implies that {uM}M≥M0 is bounded in X. There-
fore,

∃{Mn} ⊂ {M}M≥M0 s.t.
{
uMn

→ u weakly in X,

u∗Mn
→ u∗ weakly in X∗,

(22)

and u ∈ D(ϕ(u, ·)) by (MC2). On account of (MC1), for the weak limit u and any element
w of D(ϕ(u, ·)),

∃{ûn}, ∃{ŵn} s.t.
{
ûn → u, ŵn → w in X,

ϕ(uMn , ûn)→ ϕ(u, u), ϕ(uMn , ŵn)→ ϕ(u,w).
(23)

Using (21), we see that lim supn→∞〈u∗Mn
, uMn

〉 ≤ 〈u∗, u〉 in the same way as in Theorem
2.1. Now by Proposition 2.1-(b), we have 〈u∗Mn

, uMn〉 → 〈u∗, u〉, and hence

ϕ(u,w) = lim inf
n→∞

ϕ(uMn
, ŵn)

≥ lim inf
n→∞

(〈u∗Mn
, uMn

〉 − 〈u∗Mn
, ŵn〉 − 〈g∗, uMn

− ŵn〉+ ϕ(uMn
, uMn

))

≥ 〈u∗ − g∗, u− w〉+ ϕ(u, u).

This means that u is a solution of P(g∗,ϕ).

4. Applications. Let Ω ⊂ RN be a bounded domain with smooth boundary, a0 : Ω ×
R → R and ai(·, ·, ·) : Ω × R × RN → R (i = 1, 2, · · · , N). We assume the following
conditions hold.

(a1) a0(·, η), ai(·, η, ξ) are measurable on Ω, ∀η ∈ R, ∀ξ ∈ RN , i = 1, 2, · · · , N .
(a2) a0(x, ·) is continuous on R for a.e. x ∈ Ω and ai(x, ·, ·) is continuous on R×RN for

a.e. x ∈ Ω, i = 1, 2, · · · , N .
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(a3) There exist positive constants c0 and c1 such that{
c0(|ξ|p−1 − 1) ≤ ai(x, η, ξ) ≤ c1(|ξ|p−1 + 1),

c0(|η|p−1 − 1) ≤ a0(x, η) ≤ c1(|η|p−1 + 1),
for i = 1, 2, · · · , N, η ∈ R, ξ ∈ RN , and a.e. x ∈ Ω.

(a4)
N∑

i=1

(ai(x, η, ξ)− ai(x, η, ξ))(ξi − ξi) ≥ 0

for a.e. x ∈ Ω, η ∈ R, ξ = (ξ1, ξ2, · · · , ξN ), ξ = (ξ1, ξ2, · · · , ξN ).

Our applications are formulated with these functions.

4.1. Application 1 (Gradient obstacle problem). Let X = W 1,p
0 (Ω) with 1 < p <∞. For

any u, v, and w ∈ X, let us define the operator Ã by

〈Ã(v, u), w〉 =
N∑
i

∫
Ω

ai(x, v,∇u)
∂w

∂xi
dx+

∫
Ω

ao(x, v)wdx

and write simply A(u) = Ã(u, u) for each u ∈ X. We put K(v) = {w ∈ X | |∇w| ≤
kc(v) a.e. on Ω}. Let kc(·) : R→ R be a positive function which is Lipschitz continuous
and bounded with upper bound k∗c , and ϕ be defined by

ϕ(v, u) =
∫

Ω

IK(v)(u)dx (v, u ∈ X).

Lemma 4.1.

(i) The operator Ã : X → X∗ is bounded and semi-monotone.
(ii) ϕ(·, ·) and K0 = {w ∈ X | |∇w| ≤ k∗c a.e. on Ω} satisfies the assumptions of

Theorem 2.1.

This lemma is proved in [14].
By Lemma 4.1, all the assumptions of Theorem 2.1 are checked. Applying Theo-

rem 2.1, we can get a solution u of the following quasi-variational inequality for any
f ∈ Lq(Ω):

u ∈ X,
|∇u| ≤ kc(u) a.e. on Ω,
N∑

i=1

∫
Ω

ai(x, u,∇u)
(
∂u

∂xi
− ∂v

∂xi

)
dx+

∫
Ω

ao(x, u)(u− v)dx ≤
∫

Ω

f(u− v)dx,

∀v ∈ X, |∇v| ≤ kc(u) a.e. on Ω.

This gradient obstacle problem is a mathematical model of vibration of a string in R,
vibration of a membrane in R2, and elastic-plastic torsion problem for visco-elastic ma-
terials in R3. In our model we treat the case when the threshold value of |∇u| depends
upon the displacement u.

4.2. Application 2 (Non-local constraints in the interior). Let X = W 1,p(Ω) with 1 <

p <∞, f ∈ Lq(Ω) when q is the conjugate exponent of p, kc ∈ C1(R) with upper bound
k∗c > 0, ρ be a C1-class function on RN × RN . We define an integral operator Λ as

Λv(x) =
∫

Ω

ρ(x, y)v(y)dy, ∀v ∈ X and ∀x ∈ Ω.
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Let us consider the same operator Ã(·, ·) : X ×X → X∗ as in Application 1, and A be
the pseudo-monotone operator generated by Ã which is semi-monotone on X by Lemma
4.1. Moreover, we define a proper l.s.c. convex function ϕ,

ϕ(u, v) =
∫

Ω

I[0,∞)(u− kc(Λv))dx+
∫

Ω

β̂(v)dx

where β̂ is a proper l.s.c. convex function on R such that k∗c ∈ D(β̂) and D(β̂) has
no-empty interior.

Lemma 4.2. ϕ(·, ·) and G0 = {k∗c} satisfy all the assumptions of Theorem 2.2.

Proof. We show that the Mosco convergence property is satisfied. For every w∈D(ϕ(v, ·)),
we see

w ≥ kc(Λv) a.e. on Ω,
∫

Ω

β̂(w)dx <∞.

Now, there exists numbers a and b such that D(β̂) = [a, b] with a < b. Next choose small
constant ε > 0 such that a+ ε < b− ε. Since kc(Λvn)→ kc(Λv) in C(Ω),

∃nε s.t. |kc(Λvn)− kc(Λv)| < ε on Ω, n ≥ nε. (24)

We define wε(x) = min{max{a+ ε, w(x)}, b− ε} for a.e. x ∈ Ω. Then wε ∈ [a+ ε, b− ε]
on Ω, wε → w in X as ε↘ 0, and hence wε ∈ D(ϕ(v, ·)) for any ε ∈ (0, ε). Moreover, we
see ∫

Ω

β̂(wε)dx→
∫

Ω

β̂(w)dx as ε↘ 0, (25)

because |β̂(wε)| ≤ |β̂(w)| + β0 on Ω, where β0 is a positive constant independent of ε.
Next, we define wε,n = wε − kc(Λv) + kc(Λvn) for each ε ∈ (0, ε) and n = 1, 2, · · · . On
account of (24) we have for each ε ∈ (0, ε),

wε,n → wε in X (n→∞),∫
Ω

β̂(wε,n)dx→
∫

Ω

β̂(wε)dx (n→∞),

wε,n ∈ D(ϕ(vn, ·)), ∀n ≥ nε.

(26)

Making use of (24) to (26), by the diagonal argument we easily construct a sequence
{w̃n} such that

w̃n → w in X,

∫
Ω

β̂(w̃n)dx→
∫

Ω

β̂(w)dx.

Hence (MC1) holds for ϕ(vn, ·). Also, (MC2) is shown by

lim inf
n→∞

ϕ(vn, wn) = lim inf
n→∞

(∫
Ω

IK(vn)(wn)dx+
∫

Ω

β̂(vn)dx
)

≥ 0 +
∫

Ω

lim inf
n→∞

β̂(vn)dx = ϕ(v, w).

By Lemmas 4.1, 4.2, and Theorem 2.2, we are able to find a solution u of the following
quasi-variational inequality for every f ∈ Lq(Ω):
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u ∈ X, u ≥ kc(Λu) a.e. on Ω,
N∑

i=1

∫
Ω

ai(x, u,∇u)(
∂u

∂xi
− ∂v

∂xi
)dx+

∫
Ω

a0(x, u)(u− v)dx+
∫

Ω

β̂(u)dx

≤
∫

Ω

f(u− v)dx+
∫

Ω

β̂(v)dx,

∀v ∈ X, v ≥ kc(Λu) a.e. on Ω.

4.3. Application 3 (Non-local constraints on the boundary). Let X = W 1,p(Ω) with 1 <
p <∞, Γ = ∂Ω, kc(·) be the same function as in Application 2, ρ(·, ·) : RN × RN → R,
be of class C1, G0 = {k∗c}, and K(v) = {w ∈ X | w ≥ kc(Λv) a.e. on Γ}, where

Λv(x) =
∫

Γ

ρ(x, y)v(y)dΓy, ∀x ∈ Γ,

ϕ(v, u) =
∫

Γ

I[0,∞)(u− kc(Λv))dΓ.

It is easy to see that all the assumptions of Theorem 2.2 are satisfied in the same
way as in Section 4.1 and 4.2. Now applying Theorem 2.2, we see that the following
quasi-variational inequality has at least one solution u:

u ∈ X, u ≥ kc(Λu) a.e. on Γ,
N∑

i=1

∫
Ω

ai(x, u,∇u)
(
∂u

∂xi
− ∂v

∂xi

)
dx+

∫
Ω

a0(x, u)(u− v)dx ≤
∫

Ω

f(u− v)dx,

∀v ∈ X, v ≥ kc(Λu) a.e. on Γ.
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Ann. Inst. Fourier (Grenoble) 18 (1968), 115–175.

[5] F. E. Browder, Nonlinear monotone operators and convex sets in Banach spaces, Bull.

Amer. Math. Soc. 71 (1965), 780–785.

[6] J. L. Joly and U. Mosco, Sur les inéquations quasi-variationnelles, C. R. Acad. Sci. Paris

Sér. A 279 (1974), 499–502.

[7] J. L. Joly and U. Mosco, A propos de l’existence et de la régularité des solutions de
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