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Abstract. We introduce an inequality for graph hypersurfaces and prove a decomposition the-

orem in case equality holds.

1. Introduction. A hypersurface f : M → Rn+1 is called a graph hypersurface if the

affine normal vector field is some constant transversal vector field ξ. Then for any vector

fields X, Y tangent to M , one can decompose DXf∗(Y ) into its tangential and transver-

sal components, where D is the canonical flat connection on Rn+1. This is written as

DXf∗(Y ) = f∗(∇XY ) + h(X, Y )ξ, where h is a symmetric tensor of type (0, 2). If h is

non-degenerate, then h can be considered as semi-Riemannian metric on M , called the

Calabi metric [3]. Let ∇̂ denote Levi-Civita connection of (M, h) and K be the difference

tensor ∇− ∇̂ on M . By taking the trace of K, one obtains a so-called Tchebychev form

T (X) := (1/n) trace {Y → K(X, Y ) }. The Tchebychev vector field T# can then be de-

fined by h(T#, X) = T (X). The vanishing of T implies that the hypersurface, considered

as a hypersurface of the equiaffine space, is an improper affine sphere.

In this article, we assume that h is definite. In case that h is negative definite, we can

change the sign of ξ in order to make h positive definite. Hence we will assume that h

always defines a Riemannian metric on M .

In section 2 we recall the basic facts about graph hypersurfaces in Rn+1. In section

3 we consider the δ-invariant for the curvature of the Riemannian manifold (M, h). We

apply a general result from [1] and prove inequalities which involve the δ-invariants and
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the Tchebychev vector field. If equality is achieved in one of the inequalities, then M is

an improper affine sphere. In section 4 we show that, if in addition dim(ImK) = n, then

M can be decomposed into lower-dimensional improper affine spheres.

2. Preliminaries on graph hypersurfaces. We recall some basic facts about graph

hypersurfaces. For the details, see [4] or [3].

Let M be an n-dimensional C∞-manifold and let f : M → Rn+1 be a hypersurface.

If ξ is a constant vector field which is nowhere tangent to M , then ξ can be regarded as

affine normal vector field along f . We call f together with this normalization ξ a graph

hypersurface.

The Gauss formula is given by

(1) DXf∗(Y ) = f∗(∇XY ) + h(X, Y )ξ,

where D denotes the canonical flat connection of Rn+1, ∇ is a torsion-free connection

on M , called the induced connection, and h is a symmetric (0, 2)-tensor field. The corre-

sponding equations of Gauss and Codazzi are given by

R(X, Y )Z = 0,(2)

(∇Xh)(Y, Z) = (∇Y h)(X, Z).(3)

The totally symmetric (0,3)-tensor field C(X, Y, Z) = (∇Xh)(Y, Z) is called the cubic

form.

From now on we assume that the graph hypersurface is definite. Following [3], h is

called the Calabi metric on M .

Denote by ∇̂ the Levi-Civita connection of h and by R̂ and κ̂ the curvature tensor

and the normalized scalar curvature of h, respectively. The difference tensor K is then

defined by

KXY = K(X, Y ) = ∇XY − ∇̂XY,(4)

which is a symmetric (1, 2)-tensor field. The difference tensor K and the cubic form C

are related by

C(X, Y, Z) = −2h(KXY, Z).(5)

Thus, for each X, KX is self-adjoint with respect to h.

The Tchebychev form T , the Tchebychev vector field T# and the Pick invariant J of

the centroaffine hypersurface M are defined by

T (X) =
1

n
traceKX ,(6)

h(T#, X) = T (X),(7)

h(C, C) = 4h(K, K) = 4n(n − 1)J.(8)

If T = 0 and if we consider M as a hypersurface of the equiaffine space, then M is

a so-called improper affine sphere, with Blaschke normal in the direction of ξ and the

Calabi metric is homothetic to the Blaschke metric. If the difference tensor K vanishes

identically, then M is a paraboloid with axis in the direction of ξ.
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It is well-known in (relative) affine geometry for graph hypersurfaces that

h(KXY, Z) = h(Y, KXZ),(9)

R̂(X, Y )Z = KY KXZ − KXKY Z,(10)

(∇̂K)(X, Y, Z) = (∇̂K)(Y, Z, X) = (∇̂K)(Z, X, Y ),(11)

κ̂ = J −
n

n − 1
h(T#, T#).(12)

If we assume that ξ = (0, . . . , 0, 1) then we can assume that locally M is given by

xn+1 = F (x1, . . . , xn). It turns out that then (x1, . . . , xn) are ∇-flat coordinates on M

and that the Calabi metric is given by

h

(

∂

∂xi

,
∂

∂xj

)

=
∂2F

∂xi∂xj

.

Moreover, M is an improper affine sphere if and only if the Hessian determinant

det[ ∂2F
∂xi∂xj

] is constant.

Now let M1 and M2 be improper affine spheres, with equations xp+1 = F1(x1, . . . , xp)

and yq+1 = F2(y1, . . . , yq). Then we define a new improper affine sphere M in R
p+q+1 by

z = F1(x1, . . . , xp) + F2(y1, . . . , yq),

where (x1, . . . , xp, y1, . . . , yq, z) are the coordinates on R
p+q+1. The affine normal of M

is given by (0, . . . , 0, 1). Obviously, the Calabi metric is the product metric. Following [2]

we call this composition the Calabi composition of M1 and M2.

3. δ-invariants. Let (M, g) be any n-dimensional Riemannian manifold and let T be a

curvature-like (0, 4)-tensor field on M . Then we can talk about the sectional curvature

T (π) associated with a 2-plane section π ⊂ TpM , p ∈ M . Further, let L be a linear

subspace of TpM of dimension r ≥ 2 and {e1, . . . , er} an orthonormal basis of L. We

define the scalar curvature τ (L) of the r-plane section L by

τ (L) =
∑

α<β

T̂ (eα ∧ eβ), 1 ≤ α, β ≤ r.(13)

For an integer k ≥ 0 denote by S(n, k) the finite set consisting of unordered k-tuples

(n1, . . . , nk) of integers ≥ 2 satisfying n1 < n and n1 + · · ·+ nk ≤ n. Denote by S(n) the

set of unordered k-tuples with k ≥ 0 for a fixed n. For each (n1, . . . , nk) ∈ S(n) we define

the δ-invariant δ(n1, . . . , nk) by

δ(n1, . . . , nk)(p) = τ (p) − inf{τ (L1) + · · · + τ (Lk)},(14)

where L1, . . . , Lk run over all k mutually orthogonal subspaces of TpM such that dimLj =

nj , j = 1, . . . , k.

Let (M, g) be any n-dimensional Riemannian manifold and µ be a symmetric (1, 2)-

tensor field on M . If T is a (0, 4)-tensor field on M such that

(15) T (X, Y, Z, W ) = g(µ(Y, Z), µ(X, W ))− g(µ(X, Z), µ(Y, W ))

for all tangent vector vector fields X, Y, Z, W , then obviously T is curvature-like. From

[1] we have the following theorem.
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Theorem 1. For each k-tuple (n1, . . . , nk) ∈ S(n), we have

(16) δ(n1, . . . , nk) ≤
n2(n + k − 1 −

∑k
j=1 nj)

2(n + k −
∑k

j=1 nj)
g(traceµ, traceµ),

where traceµ =
∑n

i=1 µ(ei, ei)

Equality holds in (16) at a point p ∈ M if and only if there exists an orthonormal

basis {e1, . . . , en} at p such that with respect this basis every linear map µξ, ξ ∈ TpM of

the tangent space TpM , defined by g(µξX, Y ) = g(µ(X, Y ), ξ) for all X, Y ∈ TpM takes

the following form:

µξ =













Aξ
1 0

. . .

Aξ
k

0 µξI













,(17)

where I is an identity submatrix and {Aξ
j}

k
j=1 are symmetric nj×nj submatrices satisfying

trace(Aξ
1) = · · · = trace (Aξ

k) = µξ(18)

for some µξ.

For any k-tuple (n1, . . . , nk) ∈ S(n), we put

(19) ∆1 = {1, . . . , n1}, . . . , ∆k = {n1 + · · · + nk−1 + 1, . . . , n1 + · · · + nk},

Throughout this paper, we assume the following convention of indices:

i1, j1 ∈ ∆1, . . . , ik, jk ∈ ∆k.(20)

If equality holds in (16) for some k-tuple (n1, . . . , nk) ∈ S(n), then there exists an

orthonormal basis {e1, . . . , en} of TpM such that, with respect to this basis, each linear

map µξ takes the form of (17)-(18). With respect to the orthonormal basis {e1, . . . , en}

so chosen, we put

Lj = Span {eα : α ∈ ∆j},(21)

where ∆1, . . . , ∆k are defined by (19). Also, let Lk+1 be the linear subspace of TpM

spanned by eσk+1, . . . , en.

From [1] we also obtain that if equality holds in (16) for some (n1, . . . , nk) ∈ S(n) at

a point p ∈ M and in addition that g(µ(X, Y ), Z) is totally symmetric, then traceµ = 0

at p.

If equality is achieved in (16) identically for some k-tuple (n1, . . . , nk) ∈ S(n), then

we may locally define Dj , j = 1, . . . , k, to be the distributions given by Lj = Span {eα :

α ∈ ∆j}, where ∆1, . . . , ∆k are given by (19). Finally we also need the following result

from [1]:

Theorem 2. Let (M, g) be a Riemannian manifold, T a curvature-like (0, 4)-tensor field

and µ a symmetric (1, 2)-tensor field satisfying the algebraic Gauss equation (15) and the
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total symmetry conditions

g(µ(X, Y ), Z) = g(Y, µ(X, Z))(22)

(∇Xµ)(Y, Z) = (∇Y µ)(X, Z).(23)

If dim (Imµ) = n, then the leaves of the integrable distributions Di are totally geodesic

submanifolds of M . Moreover, M is locally isometric to the Riemannian product M1 ×

· · · × Mk, where Mi denotes the leaf of the integrable distribution Di for each i.

4. A general inequality for graph hypersurfaces. The purpose of this section is to

specify and extend the results mentioned in section 3 for graph hypersurfaces, considered

as Riemannian manifolds, equipped with their Calabi metric h. If we take µ = K and

T = −R̂, then (10) shows that the algebraic Gauss equation (15) is satisfied. Moreover,

(9) and (11) show that the two symmetry conditions are satisfied.

However, since we prefer to formulate the inequality using the curvature tensor R̂, we

propose the following definition for the affine δ-invariant:

δ#(n1, . . . , nk)(p) = τ̂ (p) − sup{τ̂ (L1) + · · · + τ̂(Lk)},(24)

where L1, . . . , Lk run over all k mutually h-orthogonal subspaces of TpM such that

dimLj = nj , j = 1, . . . , k.

Then we immediately have the following theorem.

Theorem 3. Let M be graph hypersurface in Rn+1 with positive definite Calabi metric.

Then, for each k-tuple (n1, . . . , nk) ∈ S(n), we have

(25) δ#(n1, . . . , nk) ≥ −
n2

(

n + k − 1 −
∑k

j=1 nj

)

2
(

n + k −
∑k

j=1 nj

) h(T#, T#).

Equality holds in (25) at a point p ∈ M if and only if T# = 0, implying that M is an

improper affine sphere, and there exists an orthonormal basis {e1, . . . , en} at p such that

with respect this basis every linear map KX , X ∈ TpM, takes the following form:

KX =











AX
1 0

. . .

AX
k

0 0











,(26)

where {AX
j }k

j=1 are symmetric nj × nj submatrices satisfying

trace (AX
1 ) = · · · = trace (AX

k ) = 0.(27)

From Theorem 3 we immediately obtain the following corollary.

Corollary 4. If (M, h) is a Riemannian manifold and for some k-tuple (n1, . . . , nk) ∈

S(n) the δ-invariant satisfies δ#(n1, . . . , nk) < 0 at some point, then (M, h) cannot be

realized as improper affine sphere in some affine space.

If we assume additionally that dim(ImK) = n, we obtain the following theorem.
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Theorem 5. Suppose that M is a graph hypersurface in Rn+1, n ≥ 3, such that the

Calabi metric is positive definite and satisfies the equality case of one of the inequalities

in (25) for some k-tuple (n1, . . . , nk) ∈ S(n). If dim (ImK) = n, then M is locally the

Calabi composition of k improper affine spheres of dimension n1, . . . , nk.

Proof. We use the notations of section 3. From Theorem 2 we know that M is locally the

Riemannian product M1×· · ·×Mk, where each Mj is a leaf of Dj . Since Dj ⊕ξ is parallel

along Mj , each Mj is contained in an nj + 1-dimensional affine subspace R
nj+1 spanned

by Dj and ξ. Hence we can consider Mj as graph hypersurface with ξ as affine normal.

Since Mj is totally geodesic in (M, h), it is easy to see that the induced connection, Calabi

metric and difference tensor of Mj are the restrictions of the induced connection, Calabi

metric and difference tensor of M to Mj . Hence each Mj is an improper affine sphere

with affine normal in the direction of ξ.

If we choose coordinates on (x1, . . . , xn, xn+1) on R
n+1 such that ξ = (0, . . . , 0, 1) and

each R
nj+1 is given by the equations xi = 0, i 6∈ ∆j , 1 ≤ i ≤ n. Then Mj is given locally

as the graph of a function Fj .

If Xi ∈ Di and Xj ∈ Dj for i 6= j, then from (18) it follows easily that K(Xi, Xj) = 0,

see [1]. Moreover from (1) and (3) it then follows that

DXi
f∗(Xj) = 0,

which implies that after translation M is given by

(x1, . . . , xn, F1(x1, . . . , xn1
) + · · · + Fk(xn−nk+1, . . . , xn)).
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