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Abstract. In this note, we are concerned with the Kozlowski-Simon conjecture on ovaloids and

prove that it is correct under additional conditions.

1. Introduction. Let An+1 be the unimodular affine space of dimension n + 1. A con-

nected, compact, locally strongly convex hypersurface without boundary in An+1 is called

an ovaloid. In 1923, W. Blaschke made the following conjecture (cf. [Bl]):

An ovaloid x : M2 → A3 with affine metric of constant scalar curvature must be an

ellipsoid.

In [Sch] R. Schneider proved that if an ovaloid M and an ellipsoid are equiaffinely

isometric, that is, they have the same Blaschke metric, then M is an ellipsoid. This

result solves the above conjecture. Later, M. Kozlowski and U. Simon gave the following

generalization for general dimensions (cf. [K-S] or [L-S-Z]):
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Theorem 1. Let x : Mn → An+1 be an ovaloid of dimension n; if R is constant for

n = 2, or (Mn, G) is an Einstein space for n ≥ 3, then x(M) must be an ellipsoid. Here

G is the Blaschke metric and R is the scalar curvature of G.

Based on the above theorem, M. Kozlowski and U. Simon made the following conjec-

ture, which up to now is still open for n ≥ 3.

Kozlowski-Simon Conjecture (see [K-S] and [L-S-Z]). Let x : Mn → An+1 be an

ovaloid. If the scalar curvature of M is constant, then x(M) is an ellipsoid.

Toward this conjecture, G. S. Zhao made another contribution by proving the following

result.

Theorem 2 ([Zh]). Let x : Mn → An+1 be an ovaloid of dimension n. If (Mn, G) has a

parallel Ricci curvature tensor, then it is locally the Riemannian product of some Einstein

manifolds and consequently x(M) must be an ellipsoid.

In this note, we will contribute to Kozlowski-Simon’s problem by proving the following

results.

Theorem 3. Let x : Mn → An+1(n ≥ 3) be an ovaloid and assume that the Blaschke

metric G of x(M) is locally conformally flat and possesses constant scalar curvature.

Then x(M) must be an ellipsoid.

There is an analogous result for compact hypersurfaces in Euclidean space, see e.g.

Theorem 4.2 in [Ch]:

Theorem ([Ch]). An n-dimensional n > 3 compact, connected orientable, locally con-

formally flat hypersurface in Euclidean space with constant scalar curvature is isometric

to a standard sphere.

We would like to point out that our method of proof can also be used to prove Cheng’s

theorem.

Theorem 4. Let x : M3 → A4 be an ovaloid; if the Blaschke metric G of x(M) is of

harmonic curvature, then x(M) is an ellipsoid.

2. Some results on locally conformally flat manifolds and manifolds with

harmonic curvature. Recall that an n-dimensional Riemannian manifold (Mn, g) is

said to be locally conformally flat if it admits a coordinate covering {Uα, ϕα} such that

the map fα : (Uα, gα) → (Sn, g0) is a conformal map, where g0 is the standard metric

on Sn.

Firstly, we recall the following well-known results due to N. H. Kuiper and M. Obata,

respectively.

Lemma 1 (cf. [K]). A conformally flat, simply connected Riemannian manifold (Mn, g)

is conformorphic to an open submanifold of Sn(1). In particular, if Mn is compact, then

(Mn, g) is conformorphic to Sn(1).

Lemma 2 (cf. [O]). Let (Sn(1), g) be the unit sphere with g the standard metric, if g̃ is

another Riemannian metric on Sn and if g̃ is conformal to g and is of constant scalar

curvature, then g̃ must have constant sectional curvature.
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Secondly, recall that a Riemannian manifold (Mn, g) is said to have harmonic curva-

ture if its curvature tensor satisfies δR = 0, i.e., ∇iRhijk = 0. (For details on this notion,

see e.g. [D1, D2]). If (Mn, g) is of harmonic curvature, then by using the second Bianchi

identity, we have

∇iRhijk = ∇kRhj −∇jRhk = 0.

By contracting the indices h, k, we have

−∇iRij = ∇iRij −∇jR = 0.

Thus ∇jR = 0 and (Mn, g) is of constant scalar curvature. Thus we obviously have

Lemma 3. Every Riemannian manifold with parallel Ricci tensor is of harmonic cur-

vature and every Riemannian manifold with harmonic curvature is of constant scalar

curvature.

Of course, the condition of constant scalar curvature is less restrictive than that of

harmonic curvature. Recalling Theorem 1 and Theorem 2, we hope that one might be

able to prove that both conditions are equivalent for Blaschke hyperovaloids.

Remark 1. In general, the conditions on harmonic curvature and having that of parallel

Ricci tensor are quite different. In fact, A. Derdzinski obtained the following results in

[D1, D2]:

(i) For each n ≥ 3, there exist Riemannian manifolds (Mn, g) having harmonic curvature

whereas the Ricci tensor of g is not parallel, and consequently (Mn, g) is not Einstein.

Such examples exist for both Mn being compact and non-compact.

(ii) If Mn is compact, all known examples in (i) are manifolds Mn that are not simply

connected.

3. Proof and remark of the results

Proof of Theorem 3. If (Mn, G) is conformally flat and has constant scalar curvature, then

from the fact that Mn is compact and simply connected and by Lemma 1 and Lemma

2, (Mn, G) must be conformorphic to (Sn(1), g) and have constant sectional curvature.

From Theorem 1, x(M) must be an ellipsoid.

Remark 2. The main interest in Theorem 3 is that the conformal flatness is an assump-

tion on the class of relative metrics, not specifically on the Blaschke metric. Thus this

result leads to another class of problems: Consider a hyperovaloid with a conformally

flat class of relative metrics. Under which further assumptions, depending only on the

class of relative geometries and not on a specific relative geometry, can one characterize

hyperellipsoids? That one needs further assumptions besides conformal flatness is clear

from known results: For a non-degenerate hypersurface of revolution the class of relative

metrics is conformally flat. For related results we refer to [B-K] and [S].

Proof of Theorem 4. (M3, G) has harmonic curvature, so we have ∇iRjk = ∇jRik and

R = const.
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We note that a 3-dimensional Riemannian manifold is conformally flat if and only if

the Schouten tensor satisfies

Cijk := Rij,k − Rik,j +
1

4
(gikR,j − gijR,k) = 0.

Now, we can see that harmonic curvature implies that (M3, G) is conformally flat. Then

the conclusion follows from Theorem 3.

In [D-G], the authors proved the following

Theorem 5. Let M be an n-dimensional, compact, connected and nonnegatively curved

Riemannian manifold of constant scalar curvature. If the Ricci tensor of M satisfies

(∇Ric)(X, Y, Z) = (∇Ric)(Y, X, Z), X, Y, Z ∈ Γ(TM)

and I0(M) 6= C0(M), then M is isometric to Sn. Here I0(M) and C0(M) are the identity

components of the isometry group I(M) of M and the group of conformal transformations

C(M) of M , respectively.

From the proof of Theorem 5, we know that if (Mn, g) is a compact, connected and

nonnegatively curved Riemannian manifold of constant scalar curvature, then the condi-

tion of harmonic curvature is equivalent to the condition that the Ricci curvature tensor

is parallel. Combining this fact with Theorem 2, we obtain immediately the following

Theorem 6. Let x : Mn → An+1(n ≥ 3) be an ovaloid and assume that the Blaschke

metric G of x(M) is harmonic and has nonnegative sectional curvature. Then x(M) must

be an ellipsoid.

Finally, one can deduce immediately from the proof of Theorem 4 the following

Theorem 7. Let M3 be compact and have finite fundamental group, then a Riemannian

metric g on M3 is harmonic if and only if it has constant sectional curvature.

Proof. Assume that (M3, g) is harmonic. Let M̃3 be the universal covering of M3, since

M has finite fundamental group, M̃3 is compact. Denote by g̃ the lifting of g in M̃ . Then

(M̃, g̃) is locally isometric to (M3, g) and has harmonic curvature, thus g̃ has constant

sectional curvature by the same argument as in the proof of Theorem 4. Therefore, g has

constant sectional curvature. The converse is trivial.

Remark 3. As a comparison with Theorem 7, we note that A. Derdzinski had con-

structed many compact examples (M3, g) with the properties that δR = 0 but ∇kRij 6= 0,

in all his examples, M3 has infinite fundamental group and is diffeomorphic to S1 × N

and N is a compact and simply connected manifold.
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