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Abstract. When the parameters are real, the hypergeometric equation defines a Schwarz tri-

angle. We study a combinatorial-topological property of the Schwarz triangle when the three

angles are not necessarily less than π.

1. Introduction. Let E(a, b, c) be the hypergeometric differential equation

x(1 − x)u′′ + (c − (a + b + 1)x)u′ − abu = 0,

where a, b and c are real parameters. Its Schwarz map (cf. [Yo]) is defined by

s : X = C − {0, 1} ∋ x 7→ z = u1(x) : u2(x) ∈ Z ∼= P1 := C ∪ {∞},

where u1 and u2 are two linearly independent solutions of E(a, b, c). The image of the

upper half plane X+ = {x ∈ C − {0, 1} | ℑ(x) ≥ 0} is called the Schwarz triangle T . If

|1 − c| < 1, |c − a − b| < 1, |b − a| < 1,

then the Schwarz triangle is indeed a triangle bounded by three arcs with angles |1 −

c|π, |c− a− b|π and |b− a|π, in this order. But otherwise, the Schwarz triangle T may be

fairly complicated and it would cover the sphere Z many times. In this paper, we study

the Schwarz triangle T in a naive topological manner. It is a bit surprising that no one

has ever studied this fundamental problem seriously. As the reader will see, the result is

indeed not so simple. To formulate our problem, we need to fix some notation.

In any case, as far as the parameters are real, the images of the intervals (−∞, 0), (0, 1)

and (1, +∞) under the restriction s|X+ of s are (parts of) circles; we call these circles

C(−∞,0), C(0,1) and C(1,+∞), respectively. If x tends to 0 in X+ then s(x) converges; we
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denote the limit by s(0), which is an intersection point of C(−∞,0) and C(0,1). In the same

way we define s(1) and s(∞). The triangle with vertices {s(0), s(1), s(∞)} is called D.

Note that the three vertices s(0), s(1) and s(∞) are not necessarily ordered positively

around D. In Figures 1, . . . , 4, they are ordered positively; we omit the corresponding

figures when they are ordered negatively.

We assume for a while that each angle, which is by definition a non-negative real

number, of D is non-zero, and that the sum of the three angles of D is greater than π.

Then the three circles divide the sphere Z into eight triangles D, A, B, C, Ā, B̄, C̄, D̄. The

three triangles A, B and C are adjacent to D, and each has two vertices in common with

D: A has vertices {s(1), s(∞)}, B has vertices {s(∞), s(0)}, C has vertices {s(0), s(1)}.

Each of the three triangles Ā, B̄ and C̄ has one vertex in common with D: Ā has vertex

s(0), B̄ has vertex s(1), C̄ has vertex s(∞). The last one D̄ is away from the three

vertices. See Figure 1.
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s(0)

Fig. 1. Three circles bounding D, sum of the angles > π

As the sum of the three angles of D tends to π, the triangle D̄ degenerates to a point,

which is the intersection of the three circles. See Figure 2.
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Ā

B̄ C̄

BC

Fig. 2. Three circles bounding D, sum of the angles = π

As the sum of the three angles of D becomes less than π, once degenerate intersection

point recovers to be a triangle, which we call again D̄; A, B and C are now rectangles,

and Ā, B̄ and C̄ are biangles. See Figure 3.
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Fig. 3. Three circles bounding D, sum of the angles < π

When the angle of D at, say, s(0) is 0, then the biangle C̄ reduces to a point, and the

rectangles A and B become triangles. In particular, when all the angles of D are 0, then

the three biangles Ā, B̄, C̄ disappear, and while D and D̄ remain to be triangles, A, B

and C become biangles. See Figure 4.

D

D̄

AB

Cs(0) s(1)

s(∞)

Fig. 4. Three circles bounding D with zero angles

Now we are ready to formulate our problem. We wish to draw in a disk, identified with

the upper half plane X+, the inverse images under s|X+ of the domains D, A, . . . , C̄, D̄

in Z. We call this drawing the chart X. The chart tells us how the upper half plane

X+ covers the target Z under the Schwarz map s. We identify two charts if they are

homeomorphic.

When we draw pictures, we assume that the sum of the angles of the triangle D is

greater than π. Other cases can be obtained from these by the deformation procedures

described above.

Our strategy is as follows. We first find real numbers ȧ, ḃ and ċ satisfying

0 ≤ 1 − ċ < 1, 0 ≤ ċ − ȧ − ḃ < 1, 0 ≤ ḃ − ȧ < 1,

and

ȧ − a, ḃ − b, ċ − c ∈ Z.

If necessary, we exchange a and b. Then such a triple (ȧ, ḃ, ċ) exists uniquely. Let

ṡ : X → Ż ∼= P1

be the Schwarz map of the equation E(ȧ, ḃ, ċ), and Ṫ its Schwarz triangle. Define circles



260 M. YOSHIDA

Ċ(−∞,0), Ċ(0,1), Ċ(0,∞) and triangles Ḋ, Ȧ, etc. as above. There is (Lemma in §3) a linear

fractional transformation Ż → Z which takes the three circles Ċ(−∞,0), Ċ(0,1), Ċ(0,∞) to

the three circles C(−∞,0), C(0,1), C(0,∞), respectively. The transformation does not neces-

sarily send Ḋ to D, Ȧ to A,. . . Note that Ḋ = Ṫ and that the vertices ṡ(0), ṡ(1) and ṡ(∞)

are ordered positively around Ṫ . We study the Schwarz triangle T by comparing with Ṫ

through the map

s ◦ ṡ−1 : Ż ⊃ Ṫ → T ⊂ Z.

(This map is studied also in [OY].) Note that X+ is homeomorphic to Ṫ under ṡ|X+ .

Let the parameters (a, b, c) and (ȧ, ḃ, ċ) be as above. There are three integers p0, p1

and p∞ satisfying p0 + p1 + p∞ ∈ 2Z such that the exponents of the two equations are

related as follows:

1 − c = 1 − ċ + p0, c − a − b = ċ − ȧ − ḃ + p1, b − a = ḃ − ȧ + p∞.

The chart is denoted by X(p0, p1, p∞). In the following sections, we illustrate X.

2. Result: Illustration of the chart X(p0, p1, p∞). Throughout this paper, we put

∞ at the top of the chart, and the arc 01 at the bottom.

2.1. p0, p1, p∞ ≥ 0. In this subsection, we assume p0, p1, p∞ ≥ 0. We first draw the chart

when

p0 + p1 ≥ p∞, p∞ + p0 ≥ p1, p1 + p∞ ≥ p0,

and next draw the chart when one of the pi’s is greater than the sum of the other two;

without loss of generality, we assume p0 + p1 < p∞.

2.1.1. p0 + p1 ≥ p∞, p∞ + p0 ≥ p1, p1 + p∞ ≥ p0. By the assumption on the pi’s, there

are integers r0, r1, r∞ ≥ 0 in a unique way satisfing

p0 = r1 + r∞, p1 = r∞ + r0, p∞ = r0 + r1;

actually they are given by

r0 =
−p0 + p1 + p∞

2
, r1 =

p0 − p1 + p∞
2

, r∞ =
p0 + p1 − p∞

2
.

The chart X(p0, p1, p∞) consists of D and three parts Y0(r0), Y1(r1) and Y∞(r∞) sur-

rounding D as in the left of Figure 5. The right hand sides of Figures 5 and 6 show

enlargements of Y∞(r∞) for r∞ = 0, 1, 2, . . . For instance, Y∞(0) is just empty, Y∞(1)

consists of C, Ā, D̄ and B̄ (see Figure 12), and Y∞(2) is shown in Figure 13. For later

convenience, the corresponding diagram is also shown on the left of Figure 6. There, two

letters representing two triangles are connected by a segment if they have an edge in

common.

Cyclic changes

A → B → C → A

take Y∞ to Y0 and then to Y1.
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0 1

D∞

0 1

D

X

Y1(r1) Y0(r0)

Y∞(r∞) ...

Y∞

Fig. 5. Y0, Y1, Y∞ and D forming X, contents of Y∞
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C
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r∞ = 0

r∞ = 1

r∞ = 2

B̄ − A

/ | | \

D − C D̄ − C̄ D − C · · ·

\ | | /

Ā − B

...
...

...

0 1 2 = r∞

Fig. 6. Enlargement of Y∞ = Y∞(r∞), and its diagram

2.1.2. p0+p1 < p∞. The chart X(p0, p1, p∞) can be made from X(p0, p1, p0+p1), which

consists of Y1(p1), D and Y0(p0). We add some curves in the D-part starting from ∞ to

make a vertical stripe

D − A − C̄ − B

p∞ − p0 − p1 times as in Figure 7. The simplest case X(0, 0, 2) is shown in Figure 16.

0 1

D

∞

0 1

D

Y1(p1) Y0(p0)

D· · · A C̄ B D

D

B· · ·

∞

Fig. 7. p0 + p1 < p∞: stripe sandwiched by Y1 and Y0
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2.2. When two of the three are negative. If, say, p0 and p1 are negative, then the chart

X(p0, p1, p∞) is homeomorphic to X(q0, q1, q∞), where q0 = −p0 − 1, q1 = −p1 − 1, q∞ =

p∞.

2.3. When one of the three is negative. If, say, p0 < 0, consider the triple (q0, q1, q∞) of

non-negative integers, where q0 = −p0 − 1, q1 = p1, q∞ = p∞. The chart X(p0, p1, p∞)

will be denoted by X[q0, q1, q∞]. Since the sum of the three q’s is now odd, the sum of

two q’s cannot be equal to the third. We first draw the chart when

q0 + q1 > q∞, q∞ + q0 > q1, q1 + q∞ > q0,

and next draw the chart when one of the qi’s is greater than the sum of the other two;

without loss of generality, we assume q0 + q1 < q∞.

In any case, the vertices s(0), s(1) and s(∞) are ordered negatively around D (see

Figure 8).

C̄

D

C

Ā
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Ā

C

B

B̄
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Fig. 8. s(0), s(1) and s(∞) are ordered negatively around D

2.3.1. q0 + q1 > q∞, q∞ + q0 > q1, q1 + q∞ > q0. By the assumption on the qi’s, there

are integers r0, r1, r∞ ≥ 0 in a unique way satisfying

q0 = r1 + r∞ + 1, q1 = r∞ + r0 + 1, q∞ = r0 + r1 + 1;

actually they are given by

r0 =
−q0 + q1 + q∞ − 1

2
, r1 =

q0 − q1 + q∞ − 1

2
, r∞ =

q0 + q1 − q∞ − 1

2
.

The chart X[q0, q1, q∞] consists of the central part shown in Figure 9 and three parts

Z0(r0), Z1(r1) and Z∞(r∞) surrounding the central part as in Figure 10.

The part Z∞(r∞) is given by the following diagram (cf. Figure 6). Cyclic changes

A → B → C → A take Z∞ to Z0 and then to Z1.

A − B̄

/ | | \

C − D C̄ − D̄ C − D · · ·

\ | | /

B − Ā

...
...

...

0 1 2 = r∞
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Fig. 9. X[111], the central part

∞

0 1

Ā
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AB

C
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B̄

Z1 Z0

Z∞

Fig. 10. Three parts Z0(r0), Z1(r1) and

Z∞(r∞) surrounding the central part

2.3.2. q0 + q1 < q∞. The chart X[q0, q1, q∞] can be made from X[q0, q1, q0 + q1 + 1],

which consists of Z1(q1), B−C̄−A and Z0(q0). We add some curves in the C̄-part starting

from ∞ to make a vertical stripe

B − C̄ − A − D − · · · − D − B − C̄ − A

where D appears q∞ − q0 − q1 − 1 times (see Figure 11). The simplest one X(0, 0, 1) is

shown in Figure 17.

0 1
D

∞

0 1

· · · C̄
· · ·

∞

B

A

A

Z1(q0) Z0(q1)

B A B
C̄

Fig. 11. q0 + q1 < q∞, stripe

2.4. When all the three p’s are negative. Put

q0 = −p0 − 1, q1 = −p1 − 1, q∞ = −p∞ − 1;

the chart X(p0, p1, p∞) is homeomorphic to the chart X[q0, q1, q∞], which is studied in

the previous section.

3. Proof. We fix some notaion: For a real number x, there is a unique real number ξ

such that x − ξ ∈ Z and 0 ≤ ξ < 1; this number ξ will be denoted by modp x.

For a triple (a, b, c) of real numbers, we put

λ := 1 − c, µ := c − a − b, ν := b − a.
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Exchanging a and b if necessary, there exists uniquely a triple (ȧ, ḃ, ċ) of real numbers

satisfying

ȧ − a, ḃ − b, ċ − c ∈ Z

such that

λ̇ = modp λ, µ̇ = modp µ, ν̇ = modp ν,

where

λ̇ := 1 − ċ, µ̇ := ċ − ȧ − ḃ, ν̇ := ḃ − ȧ.

We assume

λ̇, µ̇, ν̇ > 0 and λ̇ + µ̇ + ν̇ > 1.

Define the three integers as

p0 := λ − λ̇, p1 := µ − µ̇ and p∞ := ν − ν̇.

As in §1, for a triple of real numbers (a, b, c) we define the three circles C(−∞,0), C(0,1)

and C(0,∞). In the same way, the triple (ȧ, ḃ, ċ) defines the three circles Ċ(−∞,0), Ċ(0,1)

and Ċ(0,∞).

Lemma. There exists a linear fractional transformation which takes C(−∞,0) to Ċ(−∞,0),

C(0,1) to Ċ(0,1), C(0,∞) to Ċ(0,∞), and C(−∞,0)∪C(0,1)∪C(0,∞) to Ċ(−∞,0)∪Ċ(0,1)∪Ċ(0,∞).

Proof. In general two intersecting circles determine two angles, say α and β, satisfying

0 ≤ α, β ≤ π, α + β = π; so we say that two circles intersect with angles {α, β}. The

angles of the triangle Ḋ are {λ̇π, µ̇π, ν̇π}. Note that the triangles A and ¯̇A have angles

{λ̇π, (1− ν̇)π, (1− µ̇)π}, and so on. Since p0, p1 and p∞ are integers, the circles C(−∞,0)

and C(0,1) intersect with angles {λ̇π, (1 − λ̇)π}, the circles C(0,1) and C(1,∞) intersect

with angles {µ̇π, (1 − µ̇)π}, and the circles C(1,∞) and C(−∞,0) intersect with angles

{ν̇π, (1 − ν̇)π}. Since moreover p0 + p1 + p∞ ∈ 2Z, any of the eight triangles cut out

from the three circles C(−∞,0) etc. cannot have angles {(1 − λ̇)π, (1 − µ̇)π, (1 − ν̇)π} or

{(1− λ̇)π, µ̇π, ν̇π} or {λ̇π, (1− µ̇)π, ν̇π} or {λ̇π, µ̇π, (1− ν̇)π}. Thus these eight triangles

have the same angles with the eight triangles cut out from the three circles Ċ(−∞,0) etc.

3.1. When p0, p1, p∞ ≥ 0. We have

modp |λ| = λ̇, modp |µ| = µ̇, modp |ν| = ν̇.

Though this is quite obvious, thanks to this fact, the three angles modulo π of the Schwarz

triangle T are the same as those of Ṫ , and so we have D = Ḋ. We consider the map

f := s ◦ ṡ−1 : D → T ⊂ Z,

and see how T overflows, under f , from D.

(1) When p := (p0, p1, p∞) = (1, 1, 0), then T overflows from D through the side

s(0)s(1) of D, and the image T is bounded by the complementary arc C01 − s(0)s(1), as

is shown in the right of Figure 12. Note that the angle of T at s(0) is greater than that

of D by π.

When p = (2, 2, 0), then the angle of T at s(0) is greater than that of D by 2π.

Though T is bounded by the three sides of D, D is doubly covered as is shown in 13.

When p(r, r, 0) (r ≥ 0), T overflows the side s(0)s(1) as above, and the angle of T at s(0)
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Fig. 12. X(1, 1, 0)
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Fig. 13. X(2, 2, 0)

is greater than that of D by rπ. Now we can readily see that X(r, r, 0) consists of D and

Y∞(r) as is illustrated in Figure 5.

(2) When p = (p0, p1, p0 +p1), since p = (p0, 0, p0)+(0, p1, p1), the image T overflows

through the sides s(∞)s(0) and s(1)s(∞) of D. The situation explained in (1) for the side

s(0)s(1) occurs doubly along the other two sides. A typical example X(1, 1, 2) is shown

in Figure 14.

(3) When

p0 + p1 > p∞, p∞ + p0 > p1, p1 + p∞ > p0,

we have

p = (0, r0, r0) + (r1, 0, r1) + (r∞, r∞, 0),

where p0 = r1 + r∞, p1 = r∞ + r0, p∞ = r0 + r1. Thus the image T overflows through

the three sides of D, and the situation explained in (1) for the side s(0)s(1) occurs triply

along the three sides. A typical example X(2, 2, 2) is shown in Figure 15.

(4) When p0 + p1 < p∞, we have

p = (p0, 0, p0) + (0, p1, p1) + (0, 0, 2r), r = (p∞ − p0 − p1)/2.
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Fig. 14. X(1, 1, 2)
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Ā B̄

C̄

AB

C̄

D̄

C
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Fig. 15. X(2, 2, 2)

As is shown in Figure 16, when p = (0, 0, 2), the image T is just an extension of D around

the vertex s(∞) by 2π. So the chart X(0, 0, 2) is given by the diagram D−A−C̄−B−D.

In this way, the chart X(0, 0, 2r) is an extension of D around the vertex s(∞) by 2rπ; its

corresponding diagram is r times D − A − C̄ − B − D, that is

D − A − C̄ − B − D − · · · − D − A − C̄ − B − D.

The chart X(p) is obtained by replacing the left extreme D of X(0, 0, 2r) by Y1(p0) and

the right extreme D of X(0, 0, 2r) by Y0(p1).

∞

0 1

D

T

D

s(∞)

s(1)

s(0)

X

B

A

C̄
D

A C̄ B

Fig. 16. X(0, 0, 2)

3.2. Otherwise. We define the non-negative integers q0, q1 and q∞ by

qi :=

{

pi if pi ≥ 0,

1 − pi if pi < −1,
i = 0, 1,∞.

If for example p0 is negative, then we have

modp |λ| = 1 − λ̇, and |λ| = |λ̇ + p0| = 1 − λ̇ + q0,

which just implies that, at the vertex s(0), the image T has angle (1 − λ̇ + q0)π. Note

that the parity of q0 + q1 + q∞ matters. If q0 + q1 + q∞ is even, that is, if two of the pi’s
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are negative, then nothing new happens; it reduces to the case treated in the previous

section: the chart X(p0, p1, p∞) is homeomorphic to X(q0, q1, q∞). (Note however that D

is equal to Ȧ, Ḃ or Ċ.) If q0 + q1 + q∞ is odd, that is, if one or all of the pi’s are negative,

then we must study the chart anew. We denote X(p0, p1, p∞) by X[q0, q1, q∞].

(1) We first study the simplest one X(0,−1, 1) = X[0, 0, 1]. Since p0 = 0, the map ṡ

and s are locally isomorphic around z = 0, so the images Ṫ around ṡ(0) and T around

s(0) are locally isomorphic. Since p1 = −1, though q0 = 0, the angle of Ṫ at ṡ(1) and that

of T at s(1) are complementary. Since p∞ = 1, the angle of T at s(∞) is greater than of Ṫ

by π. This argument is illustrated in Figure 17. The vertex s(1) is the intersection of the

two circles C01 and C1∞ other than ṡ(1). Since D is defined as the triangle with vertices

{s(0), s(1), s(∞)}, the triangle Ḃ is called D, the triangle Ḋ is called B, and so on.

∞

0 1

X

A

C̄

B

T

D
s(∞)

s(1)

s(0)
B

A

C̄

Ṫ

Ḋ
ṡ(0)

ṡ(1)

ṡ(∞)

Ȧ
Ḃ

Fig. 17. X(0,−1, 1) = X[0, 0, 1]

When q0 + q1 < q∞, since

q := (q0, q1, q∞) = (q0, 0, q0) + (0, q1, q1) + (0, 0, 2r) + (0, 0, 1),

where r = (q∞ − q0 − q1 − 1)/2, the chart X[q] is made from X[0, 0, 1] by putting Z1(q0)

on the left, Z0(q1) on the right, and put r times the stripe B − C̄ −A−D. For example,

the chart X[0, 1, 2] is shown in Figure 18.

∞

0

1

D
Ā

C̄ A

B

C

B

Fig. 18. X[0, 1, 2]



268 M. YOSHIDA

(2) The chart X[1, 1, 1] is already shown in Figure 9. When

q0 + q1 > q∞, q∞ + q0 > q1, q1 + q∞ > q0,

since

q = (0, r0, r0) + (r1, 0, r1) + (r∞, r∞, 0) + (1, 1, 1),

the chart X[q] is obtained from X[1, 1, 1] by putting Z0(r0) on the right, Z1(r1) on the

left, and Z∞(r∞) at the bottom, as is shown in Figure 10.
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