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Abstract. Yang–Baxter (YB) map systems (or set-theoretic analogs of entwining YB struc-

tures) are presented. They admit zero curvature representations with spectral parameter de-

pended Lax triples L1, L2, L3 derived from symplectic leaves of 2 × 2 binomial matrices

equipped with the Sklyanin bracket. A unique factorization condition of the Lax triple im-

plies a 3-dimensional compatibility property of these maps. In case L1 = L2 = L3 this property

yields the set-theoretic quantum Yang-Baxter equation, i.e. the YB map property. By considering

periodic ‘staircase’ initial value problems on quadrilateral lattices, these maps give rise to multi-

dimensional integrable mappings which preserve the spectrum of the corresponding monodromy

matrix.

1. Introduction. The connection between set theoretical solutions of the quantum
Yang-Baxter equations and integrable mappings has been recently investigated by many
authors. First Veselov in [12, 13] proved that for such a solution, admitting a Lax ma-
trix, there is a family of commuting transfer maps which preserve the spectrum of the
corresponding monodromy matrix. He also proposed the shorter term ‘Yang Baxter map’
for a set-theoretic solution of the quantum Yang-Baxter equation. In the present article
we present systems of maps that admit a Lax triple of matrices L1, L2, L3. They satisfy
3-dimensional compatibility conditions that constitute set-theoretic analogs of entwining
quantum Yang-Baxter equations. The latter term was introduced in [1] for systems of
quantum YB equations. Such entwining structures for the quantum Yang-Baxter equation
appeared already in [2, 6, 14] and their study continued in [3, 4].

The basic definitions and notations about Lax pairs and integrable mappings are
introduced in section 2. The transfer map and the monodromy matrix are defined for a
periodic ‘staircase’ initial value problem on a lattice for each pair Li, Lj and integrals of
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motion are obtained from the spectrum of the monodromy matrix, which are in involution
with respect to the Sklyanin bracket. Section 3 deals with the 3-d compatibility condition
(entwining Yang-Baxter equation) of maps that admit Lax pairs giving rise to Lax triples.
A construction of Lax triples and their corresponding set theoretical solutions of the
entwining YB equation is presented in section 4, while in the next section the whole
theory is applied to a concrete example. We end in section 6 by giving some conclusions
and perspectives for future work on this subject.

2. Lax pairs and integrable mappings. Let S be the map

S : ((x, α), (y, β)) 7→ ((u, α), (v, β)) = ((u(x, α, y, β), α), (v(x, α, y, β), β)) (1)

where x, y belong to a set X , from our consideration the set X has the structure of an
algebraic variety, and the parameters α, β ∈ Cm. We usually denote S((x, α), (y, β)) by
Sα,β(x, y). We can represent Sα,β(x, y) as a map assigned to the edges of an elementary
quadrilateral as in Fig. 1.

(x; α)

(y; β)

(u; α)

(v; β) Sα,β

Fig. 1. A map assigned to the edges of a quadrilateral

Definition 2.1. The ordered pair of square matrices (L(x, α, ζ),M(x, α, ζ)) that de-
pends on a point x ∈ X , on a parameter α ∈ Cm and on a spectral parameter ζ ∈ C is
called a Lax pair for the parametric map Sα,β , if

L(u, α, ζ)M(v, β, ζ) = M(y, β, ζ)L(x, α, ζ), (2)

for any ζ ∈ C. Furthermore if equation (2) is equivalent to (u, v) = Sα,β(x, y) then we
will call (L(x, α, ζ),M(x, α, ζ)) a strong Lax pair.

We usually omit the spectral parameter ζ and denote the matrices L(x, α, ζ) and
M(x, α, ζ) by L(x;α) and M(x;α) respectively.

Remark. It is instructive to think of a Lax pair as functions L,M : X × Cm →
Mat(k × k). In this consideration if L = M the definition coincides with the defini-
tion of the Lax matrix which is given in [11]. The aim of this work is to study the case
where L 6= M .

Let Sα,β be a map that admits the Lax pair L(x;α), M(x;α). Next we consider
the standard periodic ‘staircase’ initial value problem, as in [7], for integrable lattices
difference equations. Initial values x1, . . . , xn and y1, . . . , yn are assigned to the edges of
a ‘staircase’ on a quadrilateral lattice as in Fig. 2, with periodic boundary conditions
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xn+1 = x1, yn+1 = y1. The edge with the xi value carries the parameter αi, while
the one with the yi value the parameter βi, for i = 1, . . . , n. Now, having in mind the
representation of Sαi,βi to the edges of a quadrilateral as in Fig. 1, we can compute
the values of the next level of the lattice according to Fig. 2. By (x′i, y

′
i) we denote the

values Sαi,βi
(xi, yi) for i = 1, . . . , n, while k-primed variables x(k)

i and y
(k)
i denote the

corresponding values:
(x(k)
i , y

(k)
j ) = Sαi,βj

(x(k−1)
i , y

(k−1)
j )

with j ≡ i+ k − 1 (mod n).

x y

. . . . . .x1 y1 x2 y2 x3 y3 xn yn x1 y1

. . .

y′
1 x′

1 y′
2 x′

2 y′
3 x′

3 y′
n x′

n y′
1 x′

1

y′′
2 x′′

1 y′′
3

x′′
2 y′′

1 x′′
n

Sα1,β1 Sα2,β2

Fig. 2. n-period mapping

For any n-periodic ‘staircase’ initial value problem we define the ‘transfer’ map:

Tn : (x1, . . . , xn, y1, . . . , yn) 7→ (x′1, . . . , x
′
n, y
′
2, . . . , y

′
n, y
′
1)

and the k-‘transfer’ map:

T kn : (x1, . . . , xn, y1, . . . , yn) 7→ (x(k)
1 , . . . , x(k)

n , y
(k)
d+1, . . . , y

(k)
n︸ ︷︷ ︸

n−d

, y
(k)
1 , . . . , y

(k)
d︸ ︷︷ ︸

d

),

with d ≡ k(modn) and T 1
n = Tn. We observe that

Tnn (x1, . . . , xn, y1, . . . , yn) = (x(n)
1 , . . . , x(n)

n , y
(n)
1 , . . . , y(n)

n ).

We also define the monodromy matrix Mn(x1, . . . , xn, y1, . . . , yn) =

x
n∏
i=1

M(yi;βi)L(xi;αi),

where x indicates that the elements M(yi;β)L(xi;α) in the product are arranged from
right to left.

So, for example, for the 1-periodic initial value problem on the lattice the transfer
map will be T1(x, y) = (x′, y′) = Sα,β(x, y), with corresponding monodromy matrix
M1(x, y) = M(y;β)L(x;α), while for the 2-periodic case,

T2(x1, x2, y1, y2) = (x′1, x
′
2, y
′
2, y
′
1),

where x′i and y′i are given by: (x′i, y
′
i) = Sαi,βi

(xi, yi), for i = 1, 2. The monodromy matrix
in this case is M2(x1, x2, y1, y2) = M(y2;β2)L(x2;α2)M(y1;β1)L(x1;α1).

The equivalent proposition to the one in [12] for the n-periodic ‘staircase’ initial value
problem holds.

Proposition 2.2. The transfer map preserves the spectrum of the monodromy matrix.
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Proof. The definition of the transfer map and the monodromy matrix implies:

Mn(Tn(x1, . . . , xn, y1, . . . , yn))M(y′1;β1) = M(y′1;β1)

x
n∏
i=1

L(x′i;αi)M(y′i;βi).

Since L(x;α), M(x;α) is a Lax pair for the map and (x′i, y
′
i) = Sαi,βi(xi, yi) we have that

L(x′i;αi)M(y′i;βi) = M(yi;βi)L(xi;αi), so

Mn(Tn(x1, . . . , xn, y1, . . . , yn))M(y′1;β1) = M(y′1;β1)

x
n∏
i=1

M(yi;βi)L(xi;αi)

= M(y′1;β1)Mn(x1, . . . , xn, y1, . . . , yn),

or Mn(Tn(x1, . . . , xn, y1, . . . , yn)) = M(y′1;β1)Mn(x1, . . . , xn, y1, . . . , yn)M−1(y′1;β1).

Similarly proposition 2.2 holds also for any k-transfer map. So the spectrum of the
monodromy matrix gives integrals of the transfer map. If we derive N functionally inde-
pendent integrals, the transfer map is integrable provided that a symplectic structure ω
exists in a 2N-dimensional phase space such that: i) the transfer map is symplectic with
respect to ω and ii) the integrals are in involution. In the case of polynomial Lax matri-
ces that we are dealing with below, the Sklyanin bracket (11) gives rise to a symplectic
structure after reduction to the symplectic leaves [10].

3. Entwining Yang–Baxter equation and Lax triples. Now we consider three para-
metric maps of the form (1), Sα,β , Rα,β , Tα,β : X ×X → X ×X . In correspondence with
[1] we call the equation

T 23
β,γ ◦R13

α,γ ◦ S12
α,β = S12

α,β ◦R13
α,γ ◦ T 23

β,γ , (3)

the entwining quantum Yang-Baxter equation or just the entwining YB equation. Here by
Sij (respectively T ij and Rij) for i, j = 1, 2, 3, we denote the map that acts as S (resp.
T and R) on the i and j factor of X × X × X and identically on the others.

A Lax triple (resp. strong Lax triple) of three maps (Sα,β , Rα,β , Tα,β) is a triple of
matrices

(L1(x;α), L2(x;α), L3(x;α)),

such that the pairs (L1(x;α), L2(x;α)), (L1(x;α), L3(x;α)), (L2(x;α), L3(x;α)) are Lax
pairs (resp. strong Lax pairs) of the maps Sα,β , Rα,β , Tα,β respectively.

Proposition 3.1. Let (Sα,β , Rα,β , Tα,β) be three maps on X × X that admit the Lax
triple (L1(x;α), L2(x;α), L3(x;α)). If the equation

L1(x̂;α)L2(ŷ;β)L3(ẑ; γ) = L1(x;α)L2(y;β)L3(z; γ) (4)

implies that x̂ = x, ŷ = y and ẑ = z, then Sα,β , Rα,β , Tα,β satisfy the entwining YB
equation (3).
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Proof. Let

S12
α,β(x, y, z) = (x′, y′, z),

R13
α,γ ◦ S12

α,β(x, y, z) = (x′′, y′, z′),

T 23
β,γ ◦R13

α,γ ◦ S12
α,β(x, y, z) = (x′′, y′′, z′′)

We can represent the above maps as consecutive compositions of the maps at the bottom,
back and left face of a cube as in (i) of Fig. 3. All the parallel edges to the x (resp. y, z)
axis carry the parameter α (resp. β, γ).

From the corresponding Lax pairs we have L2(y;β)L1(x;α) = L1(x′;α)L2(y′;β), so
L3(z; γ)L2(y;β)L1(x;α) = (L3(z; γ)L1(x′;α))L2(y′;β) = L1(x′′;α)(L3(z′; γ)L2(y′;β)) =
L1(x′′;α)L2(y′′β)L3(z′′; γ).

We also assume that

T 23
β,γ(x, y, z) = (x, ỹ, z̃),

R13
α,γ ◦ T 23

β,γ(x, y, z) = (x̃, ỹ, ˜̃z),

S12
α,β ◦R13

α,γ ◦ T 23
β,γ(x, y, z) = (˜̃x, ˜̃y, ˜̃z)

These maps are represented at the right, front and top face of the cube as in (ii) of Fig. 3.
Similarly, from the Lax pairs we get L3(z; γ)L2(y;β)L1(x;α) = L1(˜̃x;α)L2(˜̃y;β)L3(˜̃z; γ).
So finally we have

L1(x′′;α)L2(y′′β)L3(z′′; γ) = L1(˜̃x;α)L2(˜̃y;β)L3(˜̃z; γ)

which implies (from the assumptions of the proposition) that x′′ = ˜̃x, y′′ = ˜̃y, z′′ = ˜̃z.
i.e. T 23

β,γ ◦R13
α,γ ◦ S12

α,β = S12
α,β ◦R13

α,γ ◦ T 23
β,γ .

x

y

z

z̃

ỹ

x̃

˜̃z

˜̃y

˜̃x

x

y

z

x′

y′

x′′

z′

y′′

z′′
T 23

β,γ

R13
α,γ

S12
α,β

S12
α,β

R13
α,γ

T 23
β,γ

(i) (ii)

Fig. 3. Cubic representation of the 3-d compatibility condition

Corollary 3.2. If (L1(x;α), L2(x;α), L3(x;α)) is a strong Lax triple that satisfies
Prop. 3.1 and L1(x;α) = L2(x;α) = L3(x;α), then Sα,β : X×X → X×X is a parametric
Yang-Baxter map.
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Proof. Since the Lax pairs (L1(x;α), L2(x;α)), (L1(x;α), L3(x;α)), (L2(x;α), L3(x;α))
of Sα,β , Rα,β and Tα,β are a strong, then for L1 = L2 = L3, Sα,β = Rα,β = Tα,β . So
equation (3) becomes the Yang-Baxter equation

S23
β,γ ◦ S13

α,γ ◦ S12
α,β = S12

α,β ◦ S13
α,γ ◦ S23

β,γ . (5)

In this case the matrix L1(x;α) = L2(x;α) = L3(x;α) is called a (strong) Lax matrix
of the Yang-Baxter map Sα,β [11].

4. Binomial Lax pairs and triples. A matrix re-factorization procedure provides a
way of constructing strong Lax pairs and consequently Lax triples. Following the lines of
[5, 8] we consider the set L2 of first degree 2 × 2 polynomial matrices X − ζA, and we
denote by pAX the polynomial

pAX(ζ) := det(X − ζA) = f2(X;A)ζ2 − f1(X;A)ζ + f0(X;A).

For X = [xij ] and A = [αij ], we have

f0(X;A) = detX, f1(X;A) = a22x11 − a21x12 − a12x21 + a11x22, f2(X;A) = detA.

We also consider the matrix functions Π1, Π2, with

Π1(X,Y ) = f2(X;A)(Y A+BX)− f1(X;A)AB, (6)

Π2(X,Y ) = f2(X;A)Y X − f0(X;A)AB. (7)

Proposition 4.1. Let A, B be invertible 2×2 matrices such that AB = BA and X,Y ∈
Mat(2× 2) with det Π1(X,Y ) 6= 0. Then

(U − ζA)(V − ζB) = (Y − ζB)(X − ζA), (8)

and pAU (ζ) = pAX(ζ) (equivalently pBV (ζ) = pBY (ζ)), if and only if

U = U(X,Y ) := Π2(X,Y )Π1(X,Y )−1A, (9)

V = V (X,Y ) := A−1(Y A+BX − U(X,Y )B). (10)

The proof is given in Appendix A. For A = B, the proof has appeared in [5]. The fact
that pAU (ζ) = pAX(ζ) and pBV (ζ) = pBY (ζ), or equivalently

fi(U ;A) = fi(X;A), fi(V ;B) = fi(Y ;B), for i = 0, 1, 2,

is crucial and leads to the construction of Lax pairs and symplectic solutions of the
entwining YB equation.

A Poisson structure on L2 is defined by the Sklyanin bracket [9]:

{L(ζ) ⊗, L(η)} =
[

r

ζ − η
, L(ζ)⊗ L(η)

]
, (11)

where L(ζ) = X − ζA and r denotes the permutation matrix, r(x ⊗ y) = y ⊗ x. There
are six Casimir functions on L2 which are the elements aij of the matrix A and the
coefficients of the polynomial pAX(ζ), f0(X;A), f1(X;A). For any constant matrix A we
denote by L2

A the level set L2
A = {X − ζA / X ∈Mat(2× 2)}.

By a direct computation we can prove that the map (X,Y ) 7→ (U, V ), for U , V , (9)
and (10) respectively, is a Poisson map L2 × L2 → L2 × L2 (we extend the Sklyanin
bracket to the cartesian product L2 × L2 in the natural way).
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Let A1, A2, A3 be three invertible matrices that commute with each other. We re-
strict to a level set on L2

A1
, of the Casimir functions f0 and f1, by solving the system

f0(X;A1) = α0, f1(X;A1) = α1, with respect to two elements of X. We denote the two
remaining elements of X by x1 and x2. In this way we define the matrix L′1(x1, x2; ᾱ),
with ᾱ = (α0, α1), such that

f0(L′1(x1, x2; ᾱ);A1) = α0 and f1(L′1(x1, x2; ᾱ);A1) = α1

and the two dimensional symplectic leaves of L2
A1

ΣA1(ᾱ) = {L′(x1, x2; ᾱ)− ζA1 / x1, x2 ∈ I ⊂ C},

with respect to the reduced Sklyanin structure (11). In a similar way we define the ma-
trices L′2(x1, x2; ᾱ) and L′3(x1, x2; ᾱ) from the restriction on the level sets of the Casimir
functions on L2

A2
and L2

A3
respectively, i.e.

f0(L′2(x1, x2; ᾱ);A2) = α0, f1(L′2(x1, x2; ᾱ);A2) = α1,

f0(L′3(x1, x2; ᾱ);A3) = α0, f1(L′3(x1, x2; ᾱ);A3) = α1

and the corresponding symplectic leaves ΣA2(ᾱ) and ΣA3(ᾱ).

Theorem 4.2. The equations

(L′i(u
ij
1 , u

ij
2 ; ᾱ)− ζAi)(L′j(v

ij
1 , v

ij
2 ; β̄)− ζAj)

= (L′j(y1, y2; β̄)− ζAj)(L′i(x1, x2; ᾱ)− ζAi), (12)

for i, j = 1, 2, 3, are uniquely solvable with respect to uij1 , u
ij
2 , v

ij
1 and vij2 . The parametric

maps (Sᾱ,β̄ , Rᾱ,β̄ , Tᾱ,β̄), with

Sᾱ,β̄ : ((x1, x2), (y1, y2)) 7→ ((u12
1 , u

12
2 ), (v12

1 , v12
2 )),

Rᾱ,β̄ : ((x1, x2), (y1, y2)) 7→ ((u13
1 , u

13
2 ), (v13

1 , v13
2 )),

Tᾱ,β̄ : ((x1, x2), (y1, y2)) 7→ ((u23
1 , u

23
2 ), (v23

1 , v23
2 ))

are symplectic and admit the strong Lax triple (L1(x1, x2, ᾱ), L2(x1, x2, ᾱ), L3(x1, x2, ᾱ)),
where

Li(x1, x2, ᾱ) = L′i(x1, x2, ᾱ)− ζAi, for i = 1, 2, 3.

Moreover they satisfy the entwining YB equation T 23
β,γR

13
α,γS

12
α,β = S12

α,βR
13
α,γT

23
β,γ .

The proof of this theorem is given in appendix B.
As it is remarked in [5], there are cases where limits of quadrirational YB maps give

rise to new degenerate maps. A similar procedure can be applied here as well. For example
we can consider commuting invertible matrices Ai = Ai(ε), depending on a parameter ε,
such that limε→0 detAi(ε) = 0, for some i ∈ {1, 2, 3}, and construct the corresponding
maps (Sᾱ,β̄(ε), Rᾱ,β̄(ε), Tᾱ,β̄(ε)) that we described. A new solution of the entwining YB
equation can be derived by taking the limit (if it exists) of (Sᾱ,β̄(ε), Rᾱ,β̄(ε), Tᾱ,β̄(ε)) for
ε→ 0.

5. Integrable rational maps on C2 × C2. We give here an example of two solutions
of the entwining YB equation from a pair of commuting matrices.
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We consider X − ζAi ∈ L2
Ai

, for i = 1, 2, with

X =
(
x1 x2

x3 x4

)
, A1 =

(
1 0
0 1

)
and A2 =

(
1 0
0 ε

)
, ε 6= 0.

First we will construct symplectic rational maps on symplectic leaves of L2
A1
× L2

A1
,

L2
A2
× L2

A2
, L2

A1
× L2

A2
and L2

A2
× L2

A1
respectively and their corresponding Lax pairs.

Next by considering two cases A3 = A1 and A3 = A2 we derive two solutions of the
entwining YB equation. All these maps are integrable.

5.1. A Yang-Baxter map on ΣA1(α, 1)× ΣA1(β, 1). The Casimir functions on L2
A1

are
f0(X;A1) = x1x4 − x2x3, f1(X;A1) = x1 + x4.

We set f0(X;A1) = α, f1(X;A1) = 1 and solve with respect to x3 and x4 to get the
matrix

L′1(x1, x2;α) =

(
x1 x2

−α+(x1−1)x1
x2

1− x1

)
(13)

and the Lax matrix
L1(x1, x2;α) = L′(x1, x2;α)− ζA1. (14)

As expected from theorem 4.2 and corollary 3.2, the equation

L1(u′1, u
′
2;α)L1(v′1, v

′
2;β) = L1(y1, y2;β)L1(x1, x2;α)

is uniquely solvable with respect to u′1, u
′
2, v
′
1, v
′
2 and implies the parametric Yang-Baxter

map
Rα,β((x1, x2), (y1, y2)) = ((u′1, u

′
2), (v′1, v

′
2)), (15)

where

u′1 = y1 +
x2y2

N
(α− β)(x1 + y1 − 1),

u′2 =
y2

N

(
α(x2 + y2)2 + (x2(y1 − 1)− x1y2)(x2y1 − x1y2 + y2)

)
,

v′1 = x1 −
x2y2

N
(α− β)(x1 + y1 − 1),

v′2 =
x2

N

(
β(x2 + y2)2 + (x2(y1 − 1)− x1y2)(x2y1 − x1y2 + y2)

)
,

N = αy2
2 + βx2

2 + (α+ β − 1)y2x2 + (x2y1 − x1y2)(x2y1 − x1y2 + y2 − x2).

We can verify that u′1 = U ′11, u′2 = U ′12, v
′
1 = V ′11 and v′2 = V ′12, where U ′ij and V ′ij are

the ij elements of the matrices

U ′ := U(L′(x1, x2;α), L′(y1, y2, β)), V ′ := V (L′(x1, x2;α), L′(y1, y2, β))

defined by (9) and (10) respectively.

5.2. A Yang-Baxter map on ΣA2(α, 1)×ΣA2(β, 1). The construction of the following
Yang-Baxter map appears in [5]. The Casimir functions on L2

A2
are

f0(X;A2) = x1x4 − x2x3, f1(X;A2) = εx1 + x4.
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We set here as well f0(X;A2) = α, f1(X;A2) = 1 and solve with respect to x1, x4. By
performing the change of variables: x2 7→ x1 and x3 7→ x2 we derive the matrix

M ′ε(x1, x2;α) =

(
1−(1−4ε(α+x1x2))1/2

2ε x1

x2
1
2 (1− 4ε(α+ x1x2))1/2 + 1

2

)
(16)

and the corresponding Lax matrix Mε(x1, x2;α) = M ′ε(x1, x2;α) − ζA2. In this way we
obtain the non-degenerate Yang-Baxter map

Rεα,β((x1, x2), (y1, y2)) = ((u1,u2), (v1,v2)), (17)

with u1 = U12, u2 = U21, v1 = V12, v2 = V21 the corresponding elements of U =
U(M ′ε(x1, x2;α),M ′ε(y1, y2;β)), V = V (M ′ε(x1, x2;α),M ′ε(y1, y2;β)). As in [5] we take
the limit of (17), for ε→ 0, in order to derive the degenerate Yang-Baxter map

R̄α,β((x1, x2), (y1, y2)) = lim
ε→0

Rεα,β((x1, x2), (y1, y2)) = ((ū1, ū2), (v̄1, v̄2)) (18)

with

ū1 = y1 −
(α− β)x1

1 + x1y2
, ū2 = y2, v̄1 = x1, v̄2 = x2 +

(α− β)y2

1 + x1y2
,

and strong Lax matrix

L2(x1, x2;α) = lim
ε→0

Mε(x1, x2;α) =
(
x1x2 + α− ζ x1

x2 1

)
. (19)

5.3. The maps on ΣA1(α, 1)×ΣA2(β, 1) and on ΣA2(α, 1)×ΣA1(β, 1). The equation

L1(u1, u2;α)L2(v1, v2;β) = L2(y1, y2;β)L1(x1, x2;α)

with L1, L2 (14) and (19) respectively, yields the unique solution

u1 = y2y1 −
x1y1

x2
+

(α+ β(x2y2 − x1))(x2 + y1)
x2(x2y2 − x1 − β + 1)

,

u2 = −α(x2 + y1)2 + (βx2 + y1y2x2 − x1y1 + y1)(x2(β + y1y2 − 1)− x1y1)
x2(x2y2 − x1 − β + 1)

,

v1 = x2 + y1,

v2 =
x1

x2
− α+ β(x2y2 − x1)
x2(x2y2 − x1 − β + 1)

.

This solution can be obtained as the limit for ε→ 0 of the U11, U12, V12 and V21 elements
of the matrices

U := U(L′1(x1, x2;α),M ′ε(y1, y2, β)), V := V (L′1(x1, x2;α),M ′ε(y1, y2, β)),

defined by (9) and (10) with L′1, M
′
ε (13) and (16) respectively. So the map

Sα,β : ((x1, x2), (y1, y2)) 7→ ((u1, u2), (v1, v2)) (20)

admits the strong Lax pair (L1(x1, x2;α), L2(x1, x2;α)).
Furthermore the twisted equation

L2(ũ1, ũ2;α)L1(ṽ1, ṽ2;β) = L1(y1, y2;β)L2(x1, x2;α)
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implies

ũ1 =
(αx1 − y1x1 − y2)y2

βx1 + (y1 − 1)y1x1 + (α+ y1 − 1)y2
,

ũ2 = x2 −
β + (y1 − 1)y1

y2
,

ṽ1 =
β(αx1 − y2) + (y1x1 − x1 + y2)(αy1 + x2y2) + x1x2

(
x1

(
y1

2 − y1 + β
)

+ y1y2

)
βx1 + (y1 − 1)y1x1 + (α+ y1 − 1)y2

,

ṽ2 = x1 −
(αx1 − y1x1 − y2)y2

βx1 + (y1 − 1)y1x1 + (α+ y1 − 1)y2

and the map
Tα,β : ((x1, x2), (y1, y2)) 7→ ((ũ1, ũ2), (ṽ1, ṽ2)), (21)

with strong Lax pair (L2(x1, x2;α), L1(x1, x2;α)).

5.4. Solutions of the entwining YB equation and integrability. We consider
two cases. First we choose a third matrix A3 = A1 and the corresponding Lax matrix
L3(x1, x2;α) = L1(x1, x2;α). Theorem 4.2 implies that the maps (Sα,β , Rα,β , Tα,β) (20,
15 and 21 respectively) admits the strong Lax triple

(L1(x1, x2;α), L2(x1, x2;α), L1(x1, x2;α))

and satisfy the entwining Yang-Baxter equation

T 23
β,γ ◦R13

α,γ ◦ S12
α,β = S12

α,β ◦R13
α,γ ◦ T 23

β,γ .

Now if choose A3 = A2, L3(x1, x2;α) = L2(x1, x2;α), we derive the strong Lax triple
(L1(x1, x2;α), L2(x1, x2;α), L2(x1, x2;α)) of the maps (Sα,β , Sα,β , R̄α,β), from (20) and
(18), that satisfy the entwining YB equation

R̄23
β,γ ◦ S13

α,γ ◦ S12
α,β = S12

α,β ◦ S13
α,γ ◦ R̄23

β,γ .

The map Sα,β (20) is symplectic with respect to the reduced Sklyanin bracket on
ΣA1(α, 1)× ΣA2(β, 1):

{x1, x2} = −x2, {y1, y2} = 1, {xi, yj} = 0, i, j = 1, 2 (x2 6= 0). (22)

For the 1-periodic ‘staircase’ initial value problem the trace of the corresponding mon-
odromy matrix, M1(x,y) = L2(y1, y2;β)L1(x1, x2;α), gives the two first integrals:

Js1 (x1, x2, y1, y2) = x2y2 + x1(y1y2 + β − 1)− y1

x2
(x2

1 − x1 + α),

Js2 (x1, x2, y1, y2) = x1 + y1y2,

which are in involution with respect to the Poisson bracket (22).
Similarly R̄α,β , Tα,β are integrable and Rα,β is an involution i.e. Rα,β ◦Rα,β = Id. The

reduced Sklyanin bracket on the corresponding symplectic leaves is given by the brackets
of the coordinates

{x1, x2} = −x2, {y1, y2} = −y2, {xi, yj} = 0, on ΣA1(α, 1)× ΣA1(β, 1), (23)

{x1, x2} = 1, {y1, y2} = 1, {xi, yj} = 0, on ΣA2(α, 1)× ΣA2(β, 1), (24)

{x1, x2} = 1, {y1, y2} = −y2, {xi, yj} = 0, on ΣA2(α, 1)× ΣA1(β, 1). (25)
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The corresponding integrals of the YB map R̄α,β are

J R̄1 = αy1y2 + bx1x2 + (x2y1 + 1)(x1y2 + 1), J R̄2 = x1x2 + y1y2,

and of the map Tα,β are

JT1 = x2y2 + y1(x1x2 + α− 1)− x1

y2
(y2

1 − y1 + β), JT2 = y1 + x1x2.

The integrals of each pair are in involution with respect to the Poisson brackets (24) and
(25) respectively.

6. Perspectives. We presented the construction of entwining Yang-Baxter maps fol-
lowing the procedure of using Lax matrices as symplectic leaves of the Sklyanin bracket
of polynomial matrices. These maps give rise to, in principle, asymmetric discrete inte-
grable systems on the 2-dimensional integer lattice. We believe an extensive study as well
as their relation to scalar asymmetric integrable systems on quad-graphs deserves more
attention.

7. Appendix A. The proof of proposition 4.1.

Proof. From equation (8) we derive the system:

UV = Y X, UB +AV = Y A+BX (26)
which implies

(UA−1)2AB = UA−1(Y A+BX)− Y X. (27)

Since pAU (ζ) = pAX(ζ), then fi(U ;A) = fi(X;A) so from the Cayley-Hamilton theorem we
have

f2(X;A)(UA−1)2 − f1(X;A)UA−1 + f0(X;A)I = 0. (28)

By solving (27) and(28) with respect to U we get that:

U = (f2(X;A)Y X − f0(X;A)AB)(f2(X;A)(Y A+BX)− f1(X;A)AB))−1A

and from (26) that V = A−1(Y A+BX − U(X,Y )B).
On the other hand let us assume that U and V are given by (9) and (10). By per-

forming some calculations we have that

Π2(X,Y ) = Π2(X,Y ) + Π1(X,Y )A−1X −Π1(X,Y )A−1X

= Π1(X,Y )A−1X −BA(f2(X;A)(A−1X)2 − f1(X;A)A−1X + f0(X;A)I)

= Π1(X,Y )A−1X −BApAX(A−1X).

The Cayley-Hamilton theorem states that pAX(A−1X) = 0 so Π2(X,Y ) = Π1(X,Y )A−1X

and from (9) we get UA−1 = Π1A
−1XΠ−1

1 which means that fi(U ;A) = fi(X;A) or
pAU (ζ) = pAX(ζ) and pBV (ζ) = pBY (ζ). Also from (9) and (10) we derive that UB + AV =
Y A+BX and

UA−1(f2(X;A)(UB +AV )− f1(X;A)AB) = f2(X;A)Y X − f0(X;A)AB
or

(f2(X;A)(UA−1)2 − f1(X;A)UA−1 + f0(X;A)I)AB = f2(X;A)(Y X − UV ).

Since fi(X;A) = fi(U ;A) from the Cayley-Hamilton theorem we get UV = Y X.
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8. Appendix B. The proof of theorem 4.2.

Proof. The proof of the existence and uniqueness of the solutions of (12) is a consequence
of the construction of the matrices L′i(x1, x2, ᾱ) in addition with Prop. 4.1, for X =
L′i(x1, x2, ᾱ), Y = L′j(x1, x2, ᾱ), A = Ai and B = Aj . The elements uij1 , u

ij
2 , v

ij
1 and vij2

can be determined by the corresponding elements of the matrices

U(L′i(x1, x2; ᾱ), L′j(y1, y2, β̄)), V (L′i(x1, x2; ᾱ), L′j(y1, y2, β̄)),

of (9) and (10). Since the map of Prop. 4.1, (X,Y ) 7→ (U, V ), is Poisson, the reduced map
Sᾱ,β̄ : ΣA1(ᾱ)×ΣA2(β̄)→ ΣA1(ᾱ)×ΣA2(β̄) is symplectic (resp. the maps Rᾱ,β̄ and Tᾱ,β̄).
In order to prove the entwining YB property it suffices to show that the equation

(L′1(x′1, x
′
2; ᾱ)− ζA1)(L′2(y′1, y

′
2; β̄)− ζA2)(L′3(z′1, z

′
2; γ̄)− ζA3)

= (L′(x1, x2; ᾱ)− ζA1)(L′2(y1, y2; β̄)− ζA2)(L′3(z1, z2; γ̄)− ζA3) (29)

implies that x′i = xi, y
′
i = yi, z

′
i = zi, for i = 1, 2, then the proof follows from Prop. 3.1.

We set

X = L′1(x1, x2; ᾱ), Y = L′2(y1, y2; β̄), Z = L′3(z1, z2; γ̄),

X ′ = L′1(x′1, x
′
2; ᾱ), Y ′ = L′2(y′1, y

′
2; β̄), Z ′ = L′3(z1, z2; γ̄),

and XY Z = K, XY A3 + XA2Z + A1Y Z = L, XA2A3 + A1Y A3 + A1A2Z = M .
Substituting to (29) we derive the system

X ′Y ′Z ′ = K, X ′Y ′A3 +X ′A2Z
′ +A1Y

′Z ′ = L, X ′A2A3 +A1Y
′A3 +A1A2Z

′ = M

which implies that

(X ′A−1
1 )3A1A2A3 − (X ′A−1

1 )2M +X ′A−1
1 L = K. (30)

Since
det(X ′ − ζA1) = det(X − ζA1) = α2ζ

2 − α1ζ + α0,

with α2 = f2(X;A1), α1 = f1(X;A1), α0 = f0(X;A1), from the Cayley-Hamilton
theorem we have that

pA1
X′(X ′A−1

1 ) = α2(X ′A−1
1 )2 − α1(X ′A−1

1 ) + α0I = 0.

By evaluating the powers of X ′A−1
1 from the last equation, equation (30) becomes

X ′A−1
1 [α2

2L− α2α1M + (α2
1 − α2α0)A1A2A3] = α2

2K − α2α0M + α1α0A1A2A3

= XA−1
1 [α2

2L− α2α1M + (α2
1 − α2α0)A1A2A3] +Q (31)

where

Q = α2
2K − α2α0M + α1α0A1A2A3 −XA−1

1 [α2
2L− α2α1M + (α2

1 − α2α0)A1A2A3].

If we replace again K,L,M by XY Z, XY A3+XA2Z+A1Y Z, XA2A3+A1Y A3+A1A2Z

respectively, we can factorize Q as follows:

Q = (α2(XA−1
1 )2 − α1XA

−1
1 + α0I)(α1A1A2A3 − α2(A1Y A3 +A1A2Z))

= pA1
X (XA−1

1 )(α1A1A2A3 − α2(A1Y A3 +A1A2Z))

and since pA1
X (XA−1

1 ) = 0, Q = 0. So from (31) we conclude that X ′ = X. In a similar
way we can prove that Z ′ = Z which means that also Y ′ = Y .
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