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Abstract. Connes and Moscovici recently studied “twisted” spectral triples (A,H,D) in which
the commutators [D, a] are replaced by D ◦a−σ(a)◦D, where σ is a second representation of A
on H. The aim of this note is to point out that this yields representations of arbitrary covariant
differential calculi over Hopf algebras in the sense of Woronowicz. For compact quantum groups,
H can be completed to a Hilbert space and the calculus is given by bounded operators. At the
end, we discuss an explicit example of Heckenberger’s 3-dimensional covariant differential calculi
on quantum SU(2).

1. Introduction. One of the basic invariants of Connes’ spectral triples (A,H,D) is
the operator-valued derivation d : a 7→ [D, a]. For Dirac-type operators on manifolds, da
is the differential of a ∈ C∞(X) that acts by Clifford multiplication. Thus one can view
Ω1 := {

∑
i aidbi | ai, bi ∈ A} as an abstract space of 1-forms defined by the triple. Its

elements also play an important role as “gauge transformations” of the triple: perturbing
D to D + ω, ω ∈ Ω1, yields a new spectral triple with similar properties. In particular,
the bimodule Ω1 remains obviously the same as also does the class of d in H1(A,Ω1)
(the space of derivations A → Ω1 modulo inner ones), and it is this class rather than d
itself that enters the homological constructions in noncommutative geometry. Similarly,
the more sophisticated invariants (Chern character, spectral action) are invariant under
the transformation D 7→ D + ω.
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Given an abstract noncommutative algebra A, there is no longer a canonical pair
(Ω1,d) attached to A, and it becomes a rather subtle task to motivate a specific choice.
One possibility suggested by Woronowicz is to take into account Hopf algebra symmetries
of A. This leads to the concept of covariant differential calculi [Wo1, Wo2] that we will
review in some detail in the next section.

Several authors have worked intensively on the classification of these structures. In
particular, Heckenberger has classified the left-covariant calculi of rank 3 over the stan-
dard quantum SU(2) group [He]. The result was that covariance alone does not fix a
particular (Ω1,d): even when requiring the universal differentially graded algebra gener-
ated by (Ω1,d) to resemble the de Rham complex of SU(2), the number of nonisomorphic
calculi reduces only to seven. Furthermore, Schmüdgen has proved the nonexistence of
spectral triples that lead to these calculi [Sch1, Sch2].

The aim of the present note is to remark that this problem naturally points towards
twisted spectral triples as recently introduced by Connes and Moscovici [CM]: here [D, a]
becomes replaced by a twisted commutator D ◦ a − σ(a) ◦D for an automorphism σ ∈
Aut(A), and it was shown in [CM] that some core structures of noncommutative geometry
generalise to this setting which can be classically motivated by considering the effect that
a conformal rescaling of the metric of a spin manifold has on the Dirac operator. We first
strip off all analytical considerations and allow A to be any algebra over a field k, H to
be any A-module and D ∈ Endk(H) be any linear map. Furthermore we consider the
essential step in [CM] to be the appearance of a second representation of A on H that is
linked to the first one by D, that is, we also replace σ ∈ Aut(A) by any homomorphism
σ : A→ Endk(H). Calling such data in full generality twisted spectral triples one easily
proves:

Theorem 1.1. Any covariant differential calculus of finite rank over a Hopf algebra with
invertible antipode can be realised by means of a twisted spectral triple.

Turning then to compact quantum groups we show that here the Haar functional
allows one to introduce Hilbert space structures in such a way that the elements of the
calculi are given by bounded operators:

Theorem 1.2. If A is a compact quantum group, then any covariant differential calculus
of finite rank over A can be realised by a twisted spectral triple on a Hilbert space H with
all elements of the calculus given by bounded operators.

In the last section we study a specific example for SUq(2) in which σ is indeed an
automorphism as in [CM]. This distinguishes one of Heckenberger’s calculi, so it seems an
interesting candidate for further study. However, the operator D that we obtain does not
have compact resolvent, so an immediate application of the analytic techniques from [CM]
is not possible (the same seems to apply to the similarly constructed example from [An]).

2. Covariant differential calculi. In order to fix notations and for the reader’s con-
venience, we survey in this section in some detail Woronowicz’s theory of (first-order)
covariant differential calculi over Hopf algebras [Wo1, Wo2] (see also [KS] for a detailed
account).
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Let A be a Hopf algebra with counit ε, coproduct ∆ and antipode S.

Definition 2.1. A covariant A-module is a (left) A-module and (left) A-comodule M
whose action . : A ⊗M → M and coaction ∆M : M → A ⊗M are compatible in the
sense that ∆M (a . ω) = a1ω−1 ⊗ (a2 . ω0) for all a ∈ A,ω ∈M .

Here and in what follows we use Sweedler’s notation for coproducts and coactions and
write a1⊗a2 and ω−1⊗ω0 for ∆(a) and ∆M (ω), respectively. Throughout, we work over
a field k, and an unadorned ⊗ means tensor product over k.

To a covariant A-module M one attaches the k-vector space of invariant elements

Minv := {ω ∈M |∆M (ω) = 1⊗ ω}. (1)

Conversely, NA := A⊗N becomes for any vector space N through

∆NA(a⊗ n) := a1 ⊗ a2 ⊗ n, a . (b⊗ n) := ab⊗ n (2)

a covariant A-module, and one clearly has N ' (NA)inv as vector spaces. Finally, there
is for any covariant A-module M an isomorphism of covariant A-modules

ξ : M → (Minv)A, ω 7→ ω−2 ⊗ S(ω−1) . ω0, ξ−1(a⊗ ω) = a . ω. (3)

Since both N 7→ NA and M 7→Minv are functorial, this means:

Proposition 2.2. The category A
AMod of covariant A-modules is equivalent to the cat-

egory kMod of k-vector spaces.

In particular, a covariant A-module is always free as an A-module, and any vector
space basis of Minv is simultaneously a module basis of M .

Definition 2.3. A covariant A-bimodule is a covariant A-module and A-bimodule M
whose right A-action / : M⊗A→M is compatible with ∆M in the sense that ∆M (ω/a) =
ω−1a1 ⊗ (ω0 / a2) for all a ∈ A,ω ∈M .

IfM is a covariant bimodule, thenMinv becomes through the adjoint action ad(a)ω :=
S(a1).ω/a2 a right A-module. If N is conversely a right A-module, then the covariant A-
module NA defined above is a covariant bimodule with right action (a⊗n)/b := ab1⊗nb2.
In analogy to Proposition 2.2 this gives:

Proposition 2.4. The category A
AModA of covariant A-bimodules is equivalent to the

category ModA of right A-modules.

If S is invertible, then an isormorphism similar to (3) shows that any vector space
basis of Minv is also a basis of M as right module.

Definition 2.5. An equivariant derivation on A with values in M ∈ A
AModA is an

A-comodule morphism d : A→M satisfying d(ab) = a . db+ (da) / b for a, b ∈ A.

Proposition 2.6. Let d : A → M be an equivariant derivation and consider the right
A-module Minv as bimodule with trivial left action aω := ε(a)ω. Then

dinv : A→Minv, a 7→ S(a1) . da2 (4)

is a derivation, any derivation with values in Minv arises in this way, and d is uniquely
determined by dinv since da = a1 . dinv(a2).
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This correspondence takes inner derivations to inner ones. If we thus denote by
H1
A(A,M) the space of equivalence classes of equivariant derivations modulo inner ones

and take into account the realisation of Hochschild cohomology of a Hopf algebra de-
scribed e.g. on p. 197 in [GK], this gives:

Corollary 2.7. H1
A(A,M) ' H1(A,Minv) ' Ext1A(k,Minv) in kMod.

Here in Ext1A(k,Minv), k is considered with trivial A-action and Minv is a left A-
module with action aω = ad(S(a))ω.

We will be mainly concerned with the case dimkMinv < ∞. Assuming this, fix dual
bases {ωi} and {xi} of Minv and M∗inv = Homk(Minv, k), respectively, and define linear
functionals Xi, f

j
i ∈ A∗ by

Xi(a) := xi(dinv(a)), f ji (b) := xi(ad(b)ωj).

Recall that the Hopf dual A◦ ⊂ A∗ consists of those functionals whose kernel contains
an ideal of finite codimension.

Proposition 2.8. One has Xi, f
j
i ∈ A◦ with ε(Xi) = 0, ε(f ij) = δij and

∆(Xi) =
∑
j

1⊗Xi +Xj ⊗ f ji , ∆(f ij) =
∑
k

f ik ⊗ fkj . (5)

Proof. The f ij belong as matrix coefficients of a finite-dimensional (anti)representation
(namely Minv) to A◦ and have the desired properties,

f ji (ab) = xi(ad(ab)ωj) = xi

(
ad(b)

(∑
k

xk(ad(a)ωj)ωk
))

=
∑
k

f jk(a)fki (b), (6)

and therefore so do the Xi since

Xi(ab) = ε(a)Xi(b) + xi(ad(b)dinv(a)) = ε(a)Xi(b) +
∑
j

Xj(a)f ji (b). (7)

In other words, Td := span {Xi}⊕k ·1 is a unital right coideal of A◦, and this (almost)
determines M and d: the bimodule structure of M is determined by

ωi / a = a1S(a2) . ωi / a3 = a1 . ad(a2)ωi =
∑
j

a1f
i
j(a2) . ωj =

∑
j

(f ij I a) . ωj , (8)

where X I a := a1X(a2) is the canonical left action of A◦ on A, and we also have

da = a1 . dinv(a2) =
∑
i

a1 . xi(dinv(a2))ωi =
∑
i

(Xi I a) . ωi. (9)

However, dinv is in general not surjective (so that xi 7→ Xi is not injective):

Proposition 2.9. im dinv = Ω1
inv ⊂Minv, where Ω1 := {

∑
i aidbi | ai, bi ∈ A} ⊂M .

Proof. “⊂” is clear, and if ω =
∑
i aidbi ∈ Ω1

inv, then ω = dinv(
∑
i ε(ai)bi).

Following Woronowicz we call d : A→ Ω1 a (first order) covariant differential calculus
over A and dimkΩ1

inv its dimension. The above considerations now give:

Proposition 2.10. Finite-dimensional covariant differential calculi over A correspond
bijectively to finite-dimensional unital right coideals of A◦.
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One calls T+
d = Td ∩ ker ε the quantum tangent space of the corresponding calculus.

The calculi with trivial class in Ext1A(k,Ω1
inv) correspond to T+

d with basis of the form
Xi =

∑
j f

j
i − 1, f ji being as in (5) a matrix corepresentation.

Since this will be used below, we remark that any differential calculus over A (co-
variance is irrelevant for this) can be realised as a quotient of a universal one which is
Ω1

univ := A⊗ ker ε with differential duniva := 1⊗ (a− ε(a)). This implies:

Proposition 2.11. Two differential calculi (Ω1
1,d1), (Ω1

2,d2) are isomorphic iff∑
r

ard1br = 0 ∈ Ω1
1 ⇔

∑
r

ard2br = 0 ∈ Ω1
2 ∀

∑
r

ar ⊗ br ∈ A⊗A. (10)

At the end, we briefly consider Hopf ∗-algebras over k = C (see e.g. [KS], Section 1.2.7
for background on such). Then the compatible structures on the various data we studied
above are as follows: on a covariant bimodule M one can consider complex antilinear
involutions ∗ : M → M with (a . ω / b)∗ = b∗ . ω∗ / a∗ and ∆M (ω∗) = ω∗−1 ⊗ ω∗0 .
These restrict to Minv and are compatible with the right adjoint action by (ad(a)ω)∗ =
ad(θ(a))ω∗, where θ = ∗ ◦ S is the Cartan involution of A (recall that θ ◦ θ = id).
Derivations d : A → M can then be required to be ∗-linear, (da)∗ = d(a∗), and this
happens if and only if dinv satisfies dinv(a)∗ = ad(θ(a1))dinv(a∗2). In terms of quantum
tangent spaces, a finite-dimensional covariant differential calculus is ∗ if and only if Td

(or equivalently T+
d ) is invariant under the involution X∗(a) := X ◦ θ which turns A◦

into a Hopf ∗-algebra (see [KS], Proposition 14.6).

3. Realisations by twisted spectral triples. LetH be a k-vector space, A⊂Endk(H)
be a unital associative k-algebra and σ : A→ Endk(H) be a second representation of A
on H. Then Endk(H) becomes an A-bimodule via

a . ω / b := σ(a) ◦ ω ◦ b, a, b ∈ A,ω ∈ Endk(H), (11)

and any D ∈ Endk(H) defines a derivation

d : A→ Endk(H), a 7→ da := D ◦ a− σ(a) ◦D, (12)

so
Ω1

(A,H,σ,D) := spank{a . db ∈ Endk(H) | a, b ∈ A} (13)

becomes a differential calculus over A. We say in this case that (A,H, σ,D) defines a
realisation of this calculus.

For σ = id the above is the algebraic structure underlying A. Connes’ spectral triples,
and the idea to introduce the twist σ appeared recently in [CM] (for the case σ ∈ Aut(A)).
Therein it was shown that some core ideas of noncommutative geometry can be gener-
alised to such “twisted” spectral triples, taking into account as well analytic aspects. In
the present paper we focus mainly on algebraic questions and speak for simplicity of
(A,H, σ,D) in full generality of a twisted spectral triple over A. Our main aim is to
remark that the following fact holds:

Theorem 3.1. Any finite-dimensional covariant differential calculus over a Hopf algebra
with invertible antipode can be realised by means of a twisted spectral triple.
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Proof. Let (Ω1,d) be d-dimensional and {ωi}, {Xi} and f ij be as in the previous section.
We first define

sji := S−1(f ji ), ∂i :=
d∑
j=1

sjiXj ∈ A◦. (14)

Then one has
∆(∂i) = ∂i ⊗ 1 + sji ⊗ ∂j , ∆(sji ) =

∑
k

ski ⊗ s
j
k. (15)

The vector space H will be constructed now as a free module,

H := A⊗ V, (16)

with V a vector space, and the second representation σ and D will be given by

σ(a) =
∑
ij

(sij I a)⊗ Eji , D =
∑
k

∂k ⊗ γk, (17)

where Eji , γ
k are suitable k-linear maps on V . The actions of (sij I a) ∈ A and of ∂k ∈ A◦

on A are given by left multiplication and by I, respectively. One then has

σ(a)σ(b) =
∑
ijmn

(sij I a)(smn I b)⊗ Eji ◦ E
n
m, (18)

so σ will be a representation provided that

Eji ◦ E
n
m = δni E

j
m, (19)

since X I (ab) = (X1 I a)(X2 I b). For example, we can choose

V = Ω1
inv, Eji : ωk 7→ δki ω

j . (20)

Furthermore, we have

D ◦ a− σ(a) ◦D =
∑
k

(∂k I a)⊗ γk

=
∑
k

σ(Xk I a) ◦ (1⊗ γk)

=
∑
k

(Xk I a) . (1⊗ γk), (21)

provided that
Eji ◦ γ

k = δki γ
j . (22)

It now follows from (21), (9) and Proposition 2.11 that the abstract calculus (Ω1,d) we
started with is in this case isomorphic to the one defined by the twisted spectral triple
(A,H, σ,D) as long as the γk are linearly independent over k. For example, (22) follows
from (19) provided that

γk =
∑
n

Ekn ◦ γ̂n, (23)

with arbitrary γ̂n ∈ Endk(V ). Thus we can choose in any case the simple ansatz (20)
with γ̂n = 1 for all n.

The twisted spectral triple from the proof is not really interesting and does not take
into account spinorial effects at all. It lives on H = Ω1 itself with a somehow artificial
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commutator realisation of d that becomes possible as a consequence of (9). On the other
hand, we will see below that for concrete examples of Hopf algebras there are plenty of
possibilites to define more interesting triples realising a given calculus. In particular, if
sij = δijs for some group-like element s ∈ A◦, then the condition on the Eij reduces to∑

ij

Eii ◦ E
j
j =

∑
k

Ekk , (24)

so one can choose e.g. Eij = 1
dδ
i
j . We can simply choose V arbitrary and Eij = 1 in order

to obtain a representation σ on H.

4. Compact quantum groups. A major aim of noncommutative geometry is to obtain
in a Hilbert space framework index formulas for the operator D of a spectral triple. Thus
one usually considers spectral triples only for ∗-algebras A of bounded operators on a
Hilbert space which is a completion of H from the preceding section, and one assumes
that the differentials da, a ∈ A are also given by bounded operators, although D itself is
as an analogue of a first-order differential operator typically unbounded.

If we want to bring our algebraic considerations into contact with these ideas, then
A should resemble from now on an algebra of smooth functions on a compact Lie group.
Woronowicz also developed a suitable framework for this:

Definition 4.1. A compact quantum group is a Hopf ∗-algebra A equipped with a func-
tional h : A→ C satsifying h(a1)a2 = h(a) and h(a∗a) > 0 for all a ∈ A \ {0}.

Thus the ground field becomes restricted to k = C, and A is a ∗-algebra whose
involution a 7→ a∗ is compatible with ∆. The functional h is called the Haar state of A
since it is classically given by integration of a function with respect to Haar measure.
It is unique up to normalisation which we assume to be h(1) = 1, and it also satisfies
a1h(a2) = h(a) for all a ∈ A (for proofs and more details see e.g. [KS]).

Left multiplication in A defines a ∗-representation of A by bounded operators on the
pre-Hilbert space A with Hermitian form given by (see [KS], p. 420-421)

(a, b) := h(a∗b), a, b ∈ A. (25)

Since X(1) = ε(X) for all X ∈ A◦, the defining property of h implies h(X I a) =
ε(X)h(a) for all a ∈ A. Furthermore, the ∗-structure of A induces one on A◦ given
by X∗(a) := X(S(a)∗). Then (X I a)∗ = S(X)∗ I a∗. Finally, one has in any Hopf
∗-algebra S−1 = ∗ ◦ S ◦ ∗ ([KS], Section 1.2.7). Thus

(a,X I b) = h((ε(X1) I a∗)(X2 I b)) = h(((X2S
−1(X1)) I a∗)(X3 I b))

= h(X2 I ((S−1(X1) I a∗)b)) = h((S−1(X) I a∗)b)

= h((X∗ I a)∗b) = (X∗ I a, b). (26)

What we want to point out is that the realisation of covariant differential calculi from
Theorem 3.1 satisfies at least the minimal requirment that one can have:

Theorem 4.2. If A is a compact quantum group, then any finite-dimensional covariant
differential calculus over A can be realised by a twisted spectral triple on a Hilbert space
H with all elements of the calculus given by bounded operators.
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Proof. Use the algebraic realisation as in the previous section and complete H = A⊗ V
to a Hilbert space using (·, ·) on A and any Hermitian product on V . Then the elements
of the calculus act by bounded operators since they are given by finite matrices with
entries in A.

5. Example: Quantum SU(2) [Wo1]. Let A := Cq[SU(2)], q ∈ (0, 1), be the Hopf
∗-algebra with generators a, b, c, d, relations

ab = qba, ac = qca, bd = qdb,

cd = qdc, bc = cb, ad− da = (q − q−1)bc, (27)

ad− qbc = 1, a∗ = d, b∗ = −qc

and the usual Hopf algebra structure, see e.g. [KS]. This is a compact quantum group
and has a Peter-Weyl-type vector space basis

{tlmn ∈ A | l ∈ N/2,m, n = −l, . . . , l} (28)

consisting of the matrix coefficients of the finite-dimensional irreducible corepresentations,
with the Haar functional h given by projection onto t000 = 1.

The Hopf dual A◦ contains the Hopf ∗-subalgebra U := Uq(su(2)) with generators
K±1 = (K±1)∗, E, F = E∗ having relations

KEK−1 = qE, KFK−1 = q−1F, EF − FE =
K2 −K−2

q − q−1
(29)

and coproduct

∆(K±1) = K±1 ⊗K±1, ∆(X) = X ⊗K +K−1 ⊗X, X = E,F. (30)

The nonvanishing pairings of these generators with those of A are

〈K±1, a〉 = 〈K∓1, d〉 = q∓1/2, 〈E, c〉 = 〈F, b〉 = 1. (31)

In [He] Heckenberger classified the 3-dimensional covariant differential calculi over
A = Cq[SU(2)]. Requiring that the universal higher order calculi share some natural pro-
perties with the classical de Rham complex of SU(2) he obtained a list of 7 nonisomorphic
calculi which have essentially all the same algebraic properties.

The aim of this section is to realise one of them, namely No. 10 in Heckenberger’s final
list [He], pp. 234-235, by a twisted spectral triple. The functionals Xi of this calculus are
given by

X1 = X∗1 :=
2

q − q−1
(1−K2), X2 := q−1/2FK, X3 := X∗2 = q−1/2KE, (32)

and the appearing corepresentation of U is simply

f ij = δijK
2. (33)

In other words, one has

∆(Xi) = 1⊗Xi +Xi ⊗K2, i = 1, 2, 3, (34)

and for all a ∈ A,ω ∈ Ω1
inv

ω / a = σ−1(a) . ω, σ(a) := K−2 I a. (35)
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To obtain this calculus as in Section 3 we can use as V the classical spinor space C4,
that is, we set H := A2 whose elements will be written as column vectors ψ =

(
ψ+
ψ−

)
,

ψ± ∈ A. We fix quantum gamma-matrices γi ∈M2(C) as

γ1 := γ0

(
1 0
0 −1

)
, γ2 := λγ0

(
0 1
0 0

)
, γ3 := λ̄γ0

(
0 0
1 0

)
(36)

with

λ ∈ C \ {0}, γ0 :=
(
q−1 0
0 q

)
(37)

and then introduce ∂i ∈ U = Uq(su(2)), i = 1, 2, 3, and D by

∂i := K−2Xi, D :=
3∑
i=1

γi∂i, (38)

where Xi are as in (32). Then by the reasoning in Section 3 the calculus associated to
(A,H,D) is isomorphic to Heckenberger’s abstract one. Note that this is not the calculus
studied in [FP] which is in fact not compatible with the ∗-structure of SUq(2) but rather
with that of SLq(2,R) defined for q ∈ C, |q| = 1. Note further that this calculus is also
different from Woronowicz’s original 3D-calculus.

The explicit form of the gamma-matrices was chosen in particular to have an essen-
tially self-adjoint operator D when turning H into a pre-Hilbert space using

((φ, ψ)) := (φ+, ψ+) + (φ−, ψ−), φ, ψ ∈ H. (39)

In fact, the γi need only to be linearly independent for the differential calculus to be
the one we want to represent, and D is symmetric on H, ((Dφ,ψ)) = ((φ,Dψ)) for all
φ, ψ ∈ H, provided that

(γ1)∗ = γ1, (γ2)∗ = q−2γ3. (40)

If Hl ⊂ H consists of ψ ∈ H whose components are linear combinations of the tlmn ∈ A
from (28) with fixed l, then H =

⊕
lHl, Hl ⊥ Hl′ , dim(Hl) < ∞, and DHl ⊂ Hl. Thus

D is even essentially self-adjoint.
The covariance of the triple (A,H,D) can be implemented in form of a right action

of U = Uq(su(2)) on H that commutes with D. We point out that in order to have
compatibility of the ∗-structure of U with the one arising on EndC(H) from ((·, ·)) one
has to define the right U -action in a nonstandard way: there is a canonical right action
of A◦ on A given by

a J X := a2X(a1), a ∈ A,X ∈ A◦. (41)

However, for this action a computation as in (26) gives

(a, b J X) = h((a∗ J ε(X1))(b J X2)) = h((a∗ J (S(X1)X2))(X3 I b))

= h(((a∗ J S(X1))b) J X2) = h((a∗ J S(X))b)

= h((a J S2(X)∗)∗b) = (a J S2(X)∗, b). (42)

Since S2(X) = K2XK−2 and K = K∗, the twisted right action

π(X)a := a J K−1XK (43)
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thus defines a right ∗-action of U on A and hence on H,

(π(X)a, b) = (a, π(X∗)b) ⇒ ((π(X)φ, ψ)) = ((φ, π(X∗)ψ)). (44)

Since I,J turn A and hence H into a U -bimodule, and since the action of D is based
on I, we have

[D,π(X)] = 0 ∈ EndC(H) ∀X ∈ U. (45)

Since the ∂i commute according to

q∂2∂1 − q−1∂1∂2 = −2∂2,

q−1∂3∂1 − q∂1∂3 = 2∂3, (46)

q−1∂3∂2 − q∂2∂3 = −∂1 −
q − q−1

4
∂2
1 ,

the square of D is given for general γi by

D2 =
(

(γ1)2 − q − q−1

4
qγ3γ2

)
∂2
1 + (γ2)2∂2

2 + (γ3)2∂2
3

+ q−1(qγ1γ2 + q−1γ2γ1)∂1∂2 + q(q−1γ1γ3 + qγ3γ1)∂1∂3

+ (q−1γ2γ3 + qγ3γ2)q∂2∂3 − qγ3γ2∂1 − 2q−1γ2γ1∂2 + 2qγ3γ1∂3.

With our particular ansatz for the γi we have

(γ0)2 = (γ1)2 = [2]qγ0 − 1, (γ2)2 = (γ3)2 = 0,

q−1γ2γ1 = −qγ1γ2 = −γ2, qγ3γ1 = −q−1γ1γ3 = γ3, (47)

qγ3γ2 = −q−1γ2γ3 + |λ|2γ0 =
|λ|2

q − q−1
(qγ0 − 1) =

|λ|2

[2]q
(1− qγ1)

with [n]q := qn−q−n

q−q−1 . Therefore we get

D2 − 2D =
(

(γ1)2 − q − q−1

4
qγ3γ2

)
∂2
1 − (2γ1 + qγ3γ2)∂1 + |λ|2γ0q∂2∂3

=
(

[2]qγ0 − 1− |λ|
2

4
(qγ0 − 1)

)
∂2
1 + |λ|2γ0q∂2∂3

+
(

2
(

[2]q
q − q−1

γ0 − 2
q − q−1

)
− |λ|2

q − q−1
(qγ0 − 1)

)
∂1. (48)

This in turn suggests to take λ = 2 since then the above reduces to

. . . = γ0(q−1γ0∂2
1 − 2∂1 + 4q∂2∂3) = 4γ0K−2

(
C − [2]q

(q − q−1)2

)
, (49)

where

C = EF +
q−1K2 + qK−2

(q − q−1)2
= FE +

qK2 + q−1K−2

(q − q−1)2
(50)

is the quantum Casimir operator of U which is related to the ∂i by

q−1

4
∂2
1 + µ∂1 + q∂2∂3 = K−2

(
C + 2

(q − q−1)µ− q−1

(q − q−1)2

)
− 1 + 2µ
q − q−1

. (51)
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Both C and K−2 act diagonally on the Peter-Weyl basis (28), so (D−1)2 acts diagonally
on the basis of H given by

ψl+mn :=
(
tlmn

0

)
, ψl−mn :=

(
0
tlmn

)
, l ∈ N/2,m, n = −l, . . . , l. (52)

Inserting the explicit formulas for the action of C and K from [KS], pp. 61-62 (note that
there K2 is written as K and that the formulas for C is slightly incorrect),

K I tlmn = qntlmn, C I tlmn =
q2l+1 + q−(2l+1)

(q − q−1)2
tlmn (53)

one obtains the corresponding eigenvalues

λl±mn = 1 +
4q∓1

(q − q−1)2
q−2n((q2l+1 + q−2l−1)− [2]q) (54)

which in the classical limit q → 1 become

lim
q→1

λl±mn = (2l + 1)2. (55)

On the other hand, we have for n = −l

lim
l→∞

λl±m−l = 1 + q±1 4q−1

(q − q−1)2
(56)

so that the resolvent of D is not compact. The analytic theory from [CM] is therefore not
directly applicable to this spectral triple. In a word, we think the mystery in the interplay
between spectral triples and covariant differential calculi on quantum groups will live on.
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