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Abstract. It is well known that Riemannian submersions are of interest in physics, owing to

their applications in the Yang-Mills theory, Kaluza-Klein theory, supergravity and superstring

theories. In this paper we give a survey of harmonic maps and Riemannian submersions between

manifolds equipped with certain geometrical structures such as almost Hermitian structures,

contact structures, f -structures and quaternionic structures. We also present some new results

concerning holomorphic maps and semi-Riemannian submersions between manifolds with metric

mixed 3-structures.

1. Introduction. The motivation to study harmonic maps and Riemannian submer-
sions comes from theoretical physics (see e.g. Chapter 8 of [FIP]). Presently, we see
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an increasing interest in harmonic maps between (pseudo-)Riemannian manifolds which
are endowed with certain special geometric structure (like almost Hermitian structures
[Chi1, Kob], almost metric contact structures [BG, BS, Bur], f -structures [BB, Erd, Fet],
quaternionic structures [Sah, SAS, Vil]). In this article we give a survey and some new
results concerning harmonic maps and Riemannian submersions between manifolds en-
dowed with remarkable geometric structures. The paper is organized as follows. In Sec-
tion 2 we recall some definitions and properties of harmonic maps between almost contact
manifolds and a generalization of almost contact structures, namely f .pk-structures. In
Section 3 we recall the notions of quaternionic manifold, quaternionic submersion and
present some properties. In the last two sections of this paper we study holomorphic
maps and semi-Riemannian submersions between manifolds endowed with metric mixed
3-structures.

2. Harmonic maps between almost contact manifolds

2.1. Manifolds endowed with almost contact structures. Let M be a differen-
tiable manifold equipped with a triple (ϕ, ξ, η), where ϕ is a field of endomorphisms of
the tangent spaces, ξ is a vector field and η is a 1-form on M . If

ϕ2 = −Id+ η ⊗ ξ, η(ξ) = 1

then we say that (ϕ, ξ, η) is an almost contact structure on M (see [Bla]). Moreover, if g
is a Riemannian metric associated on M , i.e. a metric satisfying, for any sections X and
Y in Γ(TM),

g(ϕ(X), ϕ(Y )) = g(X,Y )− η(X)η(Y )

then we say that (ϕ, ξ, η, g) is an almost contact metric structure. A manifold equipped
with such a structure is called an almost contact metric manifold.

If the Nijenhuis tensor Nϕ satisfies

Nϕ + 2dη ⊗ ξ = 0

we say that the almost contact metric structure (ϕ, ξ, η, g) is normal.
A contact manifold is a (2n + 1)-dimensional manifold M together with a 1-form η

such that η∧(dη)n 6= 0 everywhere. We say that (M,ϕ, ξ, η, g) is a Sasakian manifold if it
is a normal contact metric manifold such that Φ = dη, where Φ is the second fundamental
form on M defined for any X,Y ∈ Γ(TM) by

Φ(X,Y ) = g(X,ϕY ). (1)

2.2. Holomorphic and harmonic maps. Let ψ : (Mm, g) → (Nn, h) be a smooth
map between two (semi-)Riemannian manifolds. The norm of dψ is given by ‖dψ‖2 :=
Trg(ψ∗h) and the energy density of ψ is a smooth function e(ψ) : M → [0,∞) defined
by e(ψ)x = 1

2‖dψx‖
2 for x ∈M. We will write ψ∗ instead of dψ.

For any compact Ω ⊆M , the energy of ψ over Ω is the integral of its energy density

E(ψ; Ω) =
∫

Ω

e(ψ)ϑg,

where ϑg is the volume measure associated to g. A smooth map ψ : M → N is said to
be a harmonic map if d

dt |t=0E(ψt; Ω) = 0, for all compact domains Ω ⊆ M and for all
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variations {ψt}t∈(−ε,ε) of ψ supported in Ω, such that ψ0 = ψ. Equivalently, the map ψ

is harmonic if the tension field τ(ψ) of ψ vanishes at each point x ∈ M , where τ(ψ) is
defined as the trace of the second fundamental form αψ of ψ, i.e.

τ(ψ)x =
m∑
i=1

εiαψ(ei, ei),

where {e1, e2, . . . , em} is a local pseudo-orthonormal frame of TxM , x ∈ M , with εi =
g(ei, ei) ∈ {±1}. The quantity αψ is defined by

αψ(X,Y ) = ∇̃Xψ∗Y − ψ∗∇XY, (2)

for any vector fields X,Y on M , where ∇ is the Levi-Civita connection of M and ∇̃ is the
pullback of the Levi-Civita connection ∇′ of N to the induced vector bundle f−1(TN),

∇̃Xψ∗Y = ∇′ψ∗Xψ∗Y.

We consider now {ψs,t}s,t∈(−ε,ε) a smooth two-parameter variation of ψ such that
ψ0,0 = ψ and let V,W ∈ Γ(ψ−1(TN)) be the corresponding variational vector fields

V =
∂

∂s
(ψs,t)|(s,t)=(0,0), W =

∂

∂t
(ψs,t)|(s,t)=(0,0).

The Hessian of a harmonic map ψ is defined by

Hψ(V,W ) =
∂2

∂s∂t
(E(ψs,t))|(s,t)=(0,0).

The index of a harmonic map ψ : (M, g) → (N,h) is defined as the dimension of
the largest subspace of Γ(ψ−1(TN)) on which the Hessian Hψ is negative definite. A
harmonic map ψ is said to be stable if the index of ψ is zero and otherwise, is said to be
unstable. Concerning the stability of the identity map on Sasakian manifolds we have the
following result.

Theorem 2.1 (see [GIP]). Let M(ϕ, ξ, η, g) be a Sasakian compact manifold of constant
ϕ-sectional curvature c, such that c ≤ 1. If the first eigenvalue of the Laplacian 4g acting
on C∞(M,R) satisfies

λ1 < c(n+ 1) + 3n− 1,

then the identity map 1|M is a harmonic unstable map.

Definition 2.2 (see [GIP]). A smooth map ψ : (M2m+1, ϕ, ξ, η, g) → (N2n, h, J) from
an almost contact manifold to an almost Hermitian manifold is called (ϕ, J)-holomorphic
if ψ∗ ◦ ϕ = J ◦ ψ∗.

Theorem 2.3 (see [IP2]). Let M(ϕ, ξ, η, g) be a (2n+ 1)-dimensional Sasakian compact
manifold of constant ϕ-sectional curvature c and N(J, h) a Kähler manifold. Then any
nonconstant (ϕ, J)-holomorphic map from M to N is an unstable harmonic map if

c > −3(n− 1)
n+ 1

, n ≥ 1.

Definition 2.4 (see [FIP]). A map ψ : (M,ϕ, ξ, η, g)→ (M ′, ϕ′, ξ′, η′, g′) between almost
contact manifolds is said to be (ϕ,ϕ′)-holomorphic if ψ∗ ◦ ϕ = ϕ′ ◦ ψ∗.
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Theorem 2.5 (see [IP1]). Let M(ϕ, ξ, η, g) and N(ϕ′, ξ′, η′, g′) be almost contact mani-
folds. Then any (ϕ,ϕ′)-holomorphic map ψ : M → N is harmonic.

2.3. A generalization of almost contact structures: f.pk-structures. An f -struc-
ture on a manifold M is a non-vanishing endomorphism of TM , that satisfies f3 + f = 0
and which has constant rank 2n. We have the splitting of the tangent bundle

TM = D ⊕D′ = Imf ⊕Kerf

into two complementary subbundles. The restriction of f to D determines a complex
structure on the subbundle D. The interesting case is when D′ is parallelizable; then
the structure group is U(n) × Is, dimM = 2n + s and f is called an f -structure with
parallelizable kernel (f.pk-structure). In this case there exists a global frame ξi, 1 ≤ i ≤ s,
for the subbundle D′ and 1 - forms ηi, 1 ≤ i ≤ s such that:

f2 = −Id+ ηi ⊗ ξi, ηi(ξj) = δij .

We say that an f -structure is normal if

Nf + 2dηi ⊗ ξi = 0.

A metric f.pk-structure (f, ηi, ξi, g), where the Riemannian metric g satisfies

g(X,Y ) = g(fX, fY ) + ηi(X)ηi(Y )

is called a K-structure if the corresponding 2-form Φ, defined by Φ(X,Y ) = g(X, fY ),
for any vector fields X and Y on M , is closed and the normality condition holds.

An almost C-manifold is a manifold endowed with a metric f .pk-structure with dΦ =
0 and dηi = 0, for any i ∈ {1, . . . , s}. An almost C-manifold with Kählerian leaves is an
almost C-manifold with any leaf of canonical foliation Kählerian (see also [Ols] for the case
of almost cosymplectic manifolds with Kählerian leaves). Concerning (f, J)-holomorphic
maps between an almost C-manifold with Kählerian leaves and a Kähler manifold, we
have the following.

Theorem 2.6 (see [IP2]). Let M(f, ηi, ξi, g) be an almost C-manifold with Kählerian
leaves and N(J, h) a Kähler manifold. Then, any (f, J)-holomorphic map ψ : M → N is
harmonic. Moreover, if M is a compact manifold then ψ is stable.

3. Harmonic maps and submersions between quaternionic manifolds. If (M, g)
and (N, g′) are two Riemannian manifolds, then a surjective C∞-map π : M → N is
said to be a C∞-submersion if it has maximal rank at any point of M . Putting Vx =
Ker π∗x, for any x ∈ M , we obtain an integrable distribution V; it is called the vertical
distribution and corresponds to the foliation of M determined by the fibres of π. The
complementary distribution H of V, determined by the Riemannian metric g, is called
the horizontal distribution. A C∞-submersion π : M → N between two Riemannian
manifolds (M, g) and (N, g′) is called a Riemannian submersion if, at each point x of M ,
π∗x preserves the length of the horizontal vectors (see [ON1]). We recall that the sections
of V, respectively H, are called vertical vector fields, respectively horizontal vector fields.

Definition 3.1 (see [Ish]). An almost quaternionic structure on a differentiable manifold
M of dimension n is a rank 3-subbundle σ of End(TM) such that a local basis {J1, J2, J3}
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exists on sections of σ satisfying for all α ∈ {1, 2, 3}

J2
α = −Id, JαJα+1 = −Jα+1Jα = Jα+2

where the indices are taken from {1, 2, 3} modulo 3. Moreover, (M,σ) is said to be an
almost quaternionic manifold. A Riemannian metric g is said to be adapted to an almost
quaternionic structure σ on a manifold M if

g(JαX, JαY ) = g(X,Y ),∀α ∈ {1, 2, 3}

for all vector fields X,Y on M . In this case (M,σ, g) is said to be an almost quaternionic
Hermitian manifold. Moreover, (M,σ, g) is said to be a quaternionic Kähler manifold if
the bundle σ is parallel with respect to the Levi-Civita connection ∇ of g.

Definition 3.2 (see [IMV3]). Let (M,σ, g) and (N, σ′, g′) be two almost quaternionic
Hermitian manifolds. A map f : M → N is called a (σ, σ′)-holomorphic map at a point
x of M if for any J ∈ σx exist J ′ ∈ σ′f(x) such that f∗ ◦J = J ′ ◦f∗. Moreover, we say that
f is a (σ, σ′)-holomorphic map if f is a (σ, σ′)-holomorphic map at each point x ∈M.

Definition 3.3 (see [IMV2]). Let (M,σ, g) and (N, σ′, g′) be two almost quaternionic
Hermitian manifolds. A Riemannian submersion π : M → N which is a (σ, σ′)-holo-
morphic map is called a quaternionic submersion. Moreover, if (M,σ, g) is a quaternionic
Kähler manifold, then we say that π is a quaternionic Kähler submersion.

Theorem 3.4 (see [IMV3]). Let (M,σ, g) and (N, σ′, g′) be two quaternionic Kähler
manifolds. If f : M → N is a (σ, σ′)-holomorphic map such that, for any local section
J ∈ Γ(σ) and corresponding J ′ ∈ Γ(σ′) one has (∇′f∗XJ

′)◦f∗ = f∗ ◦ (∇XJ), for any local
vector field X on M , then f is a harmonic map.

Corollary 3.5 (see [IMV2]). Any quaternionic Kähler submersion is a harmonic map.

Theorem 3.6 (Stability of (σ, σ′)-holomorphic maps, [IMV3]). Let (M4m, σ, g) and
(N4n, σ′, g′) be two quaternionic Kähler manifolds such that M is compact, N has non
positive scalar curvature and, at any point p ∈ M , there exists a basis {J1, J2, J3} of
σp such that one of J1, J2 or J3 is parallel. If f : M → N is a (σ, σ′)-holomorphic
map such that, for any local section J ∈ Γ(σ) and corresponding J ′ ∈ Γ(σ′) one has
(∇′f∗XJ

′) ◦ f∗ = f∗ ◦ (∇XJ), for any local vector field X on M , then f is stable.

Corollary 3.7 (see [IMV2]). If π : (M,σ, g) → (N, σ′, g′) is a quaternionic Kähler
submersion, then the fibres are totally geodesic quaternionic Kähler submanifolds.

Example 3.8. Let (M,σ, g) be an almost quaternionic hermitian manifold and TM be
the tangent bundle, endowed with the metric:

G(A,B) = g(KA,KB) + g(π∗A, π∗B), ∀A,B ∈ T (TM),

where π is the natural projection of TM onto M and K is the connection map (see [Dom]).
We remark that if X ∈ Γ(TM), then there exists exactly one vector field on TM

called the ”horizontal lift” (resp. ”vertical lift”) of X such that for all U ∈ TM ,

π∗X
h
U = Xπ(U), π∗X

v
U = 0π(U), KX

h
U = 0π(U), KX

v
U = Xπ(U).
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We define three tensor fields J ′1, J
′
2, J
′
3 on TM by the equalities

J ′αX
h = (JαX)h, J ′αX

v = (JαX)v, ∀α ∈ {1, 2, 3},

where {J1, J2, J3} is a canonical local basis of σ.
If we consider now the vector bundle σ′ over TM generated by {J ′1, J ′2, J ′3}, then

we have that (TM, σ′, G) is an almost quaternionic hermitian manifold and the natural
projection π : TM →M is a quaternionic submersion (see [IMV2]).

We note that the results from this section were recently extended to the class of man-
ifolds endowed with quaternionic structures of second kind (paraquaternionic structures)
and compatible metrics in [Cal]. The counterpart in odd dimension of a paraquaternionic
structure, called mixed 3-structure, was introduced in [IMV1]. This concept, which arises
in a natural way on lightlike hypersurfaces in paraquaternionic manifolds, has been re-
fined in [CP], where the authors have introduced positive and negative metric mixed
3-structures. Next we study holomorphic maps from manifolds endowed with such kind
of structures.

4. Holomorphic maps between manifolds endowed with mixed 3-structures
and compatible metrics. Let M be a smooth manifold equipped with a triple (ϕ, ξ, η),
where φ is a field of endomorphisms of the tangent spaces, ξ is a vector field and η is a
1-form on M . If we have:

ϕ2 = Id− η ⊗ ξ, η(ξ) = 1

then we say that (ϕ, ξ, η) is an almost paracontact structure on M (cf. [Sat]).

Definition 4.1 ([CP]). A mixed 3-structure on a smooth manifold M is a triple of
structures (ϕα, ξα, ηα), α ∈ {1, 2, 3}, which are almost paracontact structures for α = 1, 2
and almost contact structure for α = 3, satisfying the following conditions:

ηα(ξβ) = 0,

ϕα(ξβ) = τβξγ , ϕβ(ξα) = −ταξγ , (3)

ηα ◦ ϕβ = −ηβ ◦ ϕα = τγηγ

ϕαϕβ − ταηβ ⊗ ξα = −ϕβϕα + τβηα ⊗ ξβ = τγϕγ , (4)

where (α, β, γ) is an even permutation of (1,2,3) and τ1 = τ2 = −τ3 = −1.
Moreover, if a manifold M with a mixed 3-structure (ϕα, ξα, ηα)α=1,3 admits a semi-

Riemannian metric g such that

g(ϕαX,ϕαY ) = τα[g(X,Y )− εαηα(X)ηα(Y )], (5)

for all X,Y ∈ Γ(TM) and α ∈ {1, 2, 3}, where εα = g(ξα, ξα) = ±1, then we say that M
has a metric mixed 3-structure and g is called a compatible metric.

Remark 4.2. If (M, (ϕα, ξα, ηα)α=1,3, g) is a manifold with a metric mixed 3-structure
then from (3) and (5) we can easily obtain

ηα(X) = εαg(X, ξα), g(ϕαX,Y ) = −g(X,ϕαY ) (6)

and
g(ξ1, ξ1) = g(ξ2, ξ2) = −g(ξ3, ξ3).
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Hence the vector fields ξ1 and ξ2 are both either space-like or time-like and these
force the causal character of the third vector field ξ3. We may therefore distinguish
between positive and negative metric mixed 3-structures, according as ξ1 and ξ2 are
both space-like, or both time-like vector fields. Because at each point of M , there always
exists a pseudo-orthonormal frame field given by {(Ei, ϕ1Ei, ϕ2Ei, ϕ3Ei)i=1,n , ξ1, ξ2, ξ3}
we conclude that the dimension of the manifold is 4n + 3 and the signature of g is
(2n + 1, 2n + 2) if the metric mixed 3-structure is positive (i.e. ε1 = ε2 = −ε3 = 1),
or the signature of g is (2n + 2, 2n + 1) if the metric mixed 3-structure is negative (i.e.
ε1 = ε2 = −ε3 = −1).

Definition 4.3 ([CP]). Let (M, (ϕα, ξα, ηα)α=1,3, g) be a manifold with a metric mixed
3-structure.

(i) If (ϕ1, ξ1, η1, g), (ϕ2, ξ2, η2, g) are para-cosymplectic structures and (ϕ3, ξ3, η3, g) is a
cosymplectic structure, i.e. the Levi-Civita connection ∇ of g satisfies

∇ϕα = 0 (7)

for all α ∈ {1, 2, 3}, then ((ϕα, ξα, ηα)α=1,3, g) is said to be a mixed 3-cosymplectic struc-
ture on M .
(ii) If (ϕ1, ξ1, η1, g), (ϕ2, ξ2, η2, g) are para-Sasakian structures and (ϕ3, ξ3, η3, g) is a
Sasakian structure, i.e.

(∇Xϕα)Y = τα[g(X,Y )ξα − εαηα(Y )X] (8)

for all X,Y ∈ Γ(TM) and α ∈ {1, 2, 3}, then ((ϕα, ξα, ηα)α=1,3, g) is said to be a mixed
3-Sasakian structure on M .

Remark that from (7) it follows that

∇ξα = 0, ∇ηα = 0 (9)

and from (8) we obtain
∇Xξα = −εαϕαX, (10)

for all α ∈ {1, 2, 3} and X ∈ Γ(TM).
We also note that the main property of a manifold endowed with a mixed 3-Sasakian

structure is given by the following theorem (see [CP]).

Theorem 4.4. Any (4n + 3)-dimensional manifold endowed with a mixed 3-Sasakian
structure is an Einstein space with Einstein constant λ = (4n+2)ε, with ε = ∓1, according
as the metric mixed 3-structure is positive or negative, respectively.

Definition 4.5. Let (M, (ϕα, ξα, ηα)α=1,3, g) and (N, (ϕ′α, ξ
′
α, η
′
α)α=1,3, g

′) be two man-
ifolds endowed with metric mixed 3-structures. We say that a smooth map f : M → N

is holomorphic if the equation
f∗ ◦ ϕα = ϕ′α ◦ f∗ (11)

holds for all α ∈ {1, 2, 3}.

Example 4.6. If (M, (ϕα, ξα, ηα)α=1,3, g) is a manifold endowed with a metric mixed
3-structure and M ′ is an invariant submanifold of M (i.e. a non-degenerate submanifold
of M such that ϕα(TpM ′) ⊂ TpM

′, for all p ∈ M ′ and α = 1, 2, 3), tangent to the
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structure vector fields, then the restriction of ((ϕα, ξα, ηα)α=1,3, g) to M ′ is a metric
mixed 3-structure and the inclusion map i : M ′ →M is holomorphic.

Now we are able to state the following.

Theorem 4.7. Let (M, (ϕα, ξα, ηα)α=1,3, g) and (N, (ϕ′α, ξ
′
α, η
′
α)α=1,3, g

′) be two mixed
3-cosymplectic or mixed 3-Sasakian manifolds. If f : M → N is a holomorphic map, then
f is a harmonic map.

Proof. Let {(Ei, ϕ1Ei, ϕ2Ei, ϕ3Ei)i=1,n , ξ1, ξ2, ξ3} be a local pseudo-orthonormal basis
of vector fields tangent to M , with εi = g(Ei, Ei) ∈ {±1}. Then we have from (5) and
(6) that

g(ϕjEi, ϕjEi) = τjεi, j ∈ {1, 2, 3}

and we deduce that the tension field of f is given by

τ(f) =
n∑
i=1

εi[αf (Ei, Ei) +
3∑
j=1

τjαf (ϕjEi, ϕjEi)] +
3∑
j=1

εjαf (ξj , ξj). (12)

We remark now that in both cases (mixed 3-cosymplectic and mixed 3-Sasakian), we
obtain from (9) or (10) that

∇ξjξj = 0, ∇′ξ′jξ
′
j = 0,

since ϕjξj = 0, for all j ∈ {1, 2, 3} (see e.g. [Bla]). Taking into account now that there
exists a positive real number r such that f∗ξj = rξ′j (see [IP1]), we deduce

αf (ξj , ξj) = 0. (13)

Using now (7) or (8), according as the manifold is mixed 3-cosymplectic or mixed
3-Sasakian, we can easily obtain, for all j ∈ {1, 2, 3} and i ∈ {1, . . . , n},

∇Ei
Ei = −τjϕj∇Ei

ϕjEi (14)

and
∇ϕjEi

ϕjEi = ϕj∇ϕjEi
Ei. (15)

From (14) and (15) we derive

∇Ei
Ei + τj∇ϕjEi

ϕjEi = τjϕj [ϕjEi, Ei]. (16)

Similarly, since f is holomorphic, we obtain

∇̃Ei
f∗Ei + τj∇̃ϕjEi

f∗ϕjEi = τjϕ
′
j [f∗ϕjEi, f∗Ei]. (17)

From (2), (16) and (17), taking account of (11), we derive

αf (Ei, Ei) + τjαf (ϕjEi, ϕjEi) = 0, (18)

for all j ∈ {1, 2, 3}.
Applying repeatedly (18) and making use of (4) and (6), we obtain

αf (Ei, Ei) = −αf (ϕ3Ei, ϕ3Ei) = −αf (ϕ2ϕ3Ei, ϕ2ϕ3Ei)

= −αf (−ϕ1Ei − η3(Ei)ξ2,−ϕ1Ei − η3(Ei)ξ2)

= −αf (ϕ1Ei, ϕ1Ei) = −αf (Ei, Ei)
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and so we conclude that
αf (Ei, Ei) = 0. (19)

From (18) and (19) we obtain

αf (ϕjEi, ϕjEi) = 0, j ∈ {1, 2, 3}. (20)

Using now (13), (19) and (20) in (12) we derive τ(f) = 0 and the conclusion follows.

5. Semi-Riemannian submersions from manifolds endowed with metric mixed
3-structures. An almost para-hypercomplex structure on a smooth manifold M is a
triple H = (Jα)α=1,3, where J1, J2 are almost product structures on M and J3 is an
almost complex structure on M , satisfying

JαJβ = −JβJα = τγJγ ,

for every even permutation (α, β, γ) of (1,2,3), where τ1 = τ2 = −τ3 = −1.
A semi-Riemannian metric g on (M,H) is said to be compatible or adapted to the

almost para-hypercomplex structure H = (Jα)α=1,3 if it satisfies

g(JαX,JαY ) = ταg(X,Y )

for all vector fields X,Y on M . Moreover, the triple (M,H, g) is said to be an almost
para-hyperhermitian manifold. If {J1, J2, J3} are parallel with respect to the Levi-Civita
connection of g, then the manifold is called para-hyper-Kähler.

Let (M, g) and (M ′, g′) be two connected semi-Riemannian manifold of index s (0 ≤
s ≤ dimM) and s′ (0 ≤ s′ ≤ dimM ′) respectively, with s′ ≤ s. The concept of semi-
Riemannian submersion was introduced by O’Neill (see [ON2]) as a smooth map π : M →
M ′ which is onto and satisfies the following conditions:

(i) π∗|p is onto for all p ∈M ;
(ii) The fibres π−1(p′), p′ ∈M ′, are semi-Riemannian submanifolds of M ;

(iii) π∗ preserves scalar products of vectors normal to fibres.

A semi-Riemannian submersion π : M → M ′ determines, as in the Riemannian case
(see [ON1]), two (1,2) tensor fields T and A on M , by the formulas

T (E,F ) = TEF = h∇vEvF + v∇vEhF
and respectively

A(E,F ) = AEF = v∇hEhF + h∇hEvF
for any E,F ∈ Γ(TM), where v and h are the vertical and horizontal projection. We
remark that for U, V ∈ Γ(V), TUV coincides with the second fundamental form of the
immersion of the fibre submanifolds.

A horizontal vector field X on M is said to be basic if X is π-related to a vector field
X ′ on M ′. It is clear that every vector field X ′ on M ′ has a unique horizontal lift X to
M and X is basic.

Remark 5.1. If π : M →M ′ is a semi-Riemannian submersion and X,Y are basic vector
fields on M , π-related to X ′ and Y ′ on M ′, then (see [ON2]):

(i) h[X,Y ] is a basic vector field and π∗h[X,Y ] = [X ′, Y ′] ◦ π;
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(ii) h(∇XY ) is a basic vector field π-related to ∇′X′Y ′, where ∇ and ∇′ are the Levi-
Civita connections on M and M ′;

(iii) [E,U ] ∈ Γ(V),∀U ∈ Γ(V) and ∀E ∈ Γ(TM).

Definition 5.2. Let (M, (ϕα, ξα, ηα)α=1,3, g) and (N, (ϕ′α, ξ
′
α, η
′
α)α=1,3, g

′) be two man-
ifolds endowed with metric mixed 3-structures. A semi-Riemannian submersion π : M →
N is said to be a mixed 3-submersion if it is a holomorphic map and the structure vector
field ξα on M is a basic vector field π-related to the structure vector field ξ′α on N , for
all α ∈ {1, 2, 3}.

Using the same techniques as in [Wat] (see also [Chi2, IMV2, TM]), we can prove the
following.

Theorem 5.3. Let π : M → N be a mixed 3-submersion. Then:

(i) The vertical and horizontal distributions induced by π are invariant under each ϕα,
α ∈ {1, 2, 3}.

(ii) The fibres of the submersion are almost para-hyperhermitian manifolds.
(iii) If M is a mixed 3-cosymplectic manifold, then the base space N is also a mixed

3-cosymplectic manifold. Moreover, the fibres are totaly geodesic para-hyper-Kähler
submanifolds.

(iv) If M is a mixed 3-Sasakian manifold, then π is a semi-Riemannian covering map.

Proof. (i) Let V ∈ Γ(V). Then, we have π∗ϕαV = ϕ′απ∗V = 0, and so we conclude that
ϕα(V) ⊂ V. On another hand, for any X ∈ Γ(H) and V ∈ Γ(V), we derive from (6) that
g(ϕαX,V ) = −g(X,ϕαV ) = 0 and thus we obtain ϕα(H) ⊂ H.

(ii) If we denote by Jα the restriction of ϕα to V, then for any vertical vector field V
we have

J2
αV = ϕ2

αV = τα[−V + ηα(V )ξα] = −ταV,

and from (4) we obtain
JαJβV = −JβJαV = τγJγV,

since ξα is horizontal. On the other hand, from (5) we deduce that the restriction of
g to any fibre F is compatible with {Jα}α=1,3 defined above and so we conclude that
(F, {Jα}α=1,3, g|F ) is an almost para-hyperhermitian manifold.

(iii) For any basic vector fields X,Y on M , π-related with X ′ and Y ′ on N , we deduce
from (7) that

π∗(∇XϕαY )− π∗ϕα∇XY = 0, α ∈ {1, 2, 3}.

Since ϕαY is a basic vector field π-related with ϕ′αY
′, using (11) and Remark 5.1 we

obtain
∇′X′ϕ′αY ′ − ϕ′α∇′X′Y ′ = 0, α ∈ {1, 2, 3}

and thus N is a mixed 3-cosymplectic manifold.
Using the Gauss’s formula and (7), by identifying the tangential and normal compo-

nents to a fibre F , we obtain, for any vector fields U, V tangent to F ,

(∇UJα)V = 0 (21)
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and
TUJαV = ϕα(TUV ). (22)

From (21) it follows that (F, {Jα}α=1,3, g|F ) is a para-hyper-Kähler manifold and applying
repeatedly (22) we obtain T = 0. So F is a totaly geodesic submanifold.

(iv) Because dη(V, ϕαV ) = 0, for any vector field V tangent to a fibre F and Φα = dηα,
it follows from (1) that g(V, V ) = 0. Therefore, since g|F is non-degenerate, we obtain
that the fibres are discrete and the conclusion follows.

The proof is now complete.

Corollary 5.4. Any mixed 3-submersion from a mixed 3-cosymplectic manifold is a
harmonic map.

Proof. The statement is obvious since it is well known that a semi-Riemannian submer-
sion is a harmonic map if and only if each fibre is a minimal submanifold (see e.g. [FIP]).

Acknowledgments. This work was partially supported by a CNCSIS PN II IDEI Grant,
no. 525/2009.

References

[BB] C. Bejan and M. Benyounes, f-pluriharmonic maps on manifolds with f-structures,

SUT J. Math. 39 (2003), 161–170.

[Bla] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in

Mathematics 203, Birkhäuser, Boston 2002.
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