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Abstract. In this paper we study properties of the Heisenberg sub-Lorentzian metric on R3.
We compute the conjugate locus of the origin, and prove that the sub-Lorentzian distance in this
case is differentiable on some open set. We also prove the existence of regular non-Hamiltonian
geodesics, a phenomenon which does not occur in the sub-Riemannian case.

1. Introduction

1.1. Statement of the results. There are many papers on the sub-Riemannian geom-
etry, especially those treating a contact case in R3 (see for instance [1], [2] and their
reference sections; see also [5]). On the contrary, the sub-Lorentzian geometry is almost
not known, and [6] seems to be the first paper devoted to this subject.

By a sub-Lorentzian manifold we mean a triple (M,H, h), where M is a smooth (i.e.
of class C∞) manifold, H is a smooth bracket generating distribution of constant rank
(i.e. dimHp = k is independent of a point p; of course only the case 1 < dimHp < dimM

is interesting), and h is a Lorentzian metric on H. We say that (M,H, h) is contact if H
is a contact distribution. Below in Section 1.2 we present, without proofs, a short review
of basic notions and facts on sub-Lorentzian manifolds.

In this paper we deal with the simplest contact sub-Lorentzian manifold; it can be
obtained as follows. Let M = R3 with standard coordinates x, y, z, and let

ω = dz − (y dx− x dy)/2

be the standard contact form on R3. We take H = kerω. Next set

X = ∂/∂x+ (1/2)y ∂/∂z, Y = ∂/∂y − (1/2)x ∂/∂z;
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clearly X and Y form a global basis of H. Now define a Lorentzian metric h on H by
setting

h(X,X) = −1, h(Y, Y ) = 1, h(X,Y ) = 0,

and take X to be a time orientation. By analogy to the sub-Riemannian case we will call
(H,h) the Heisenberg sub-Lorentzian metric on R3.

In Section 2.1 we obtain equations of Hamiltonian geodesics for the Heisenberg metric,
which can be explicitly integrated. In particular we prove that through the origin there
pass only two null Hamiltonian geodesics, from which we find that in the contact sub-
Lorentzian geometry the exponential mapping with the pole, say, p0 is not onto any
neighbourhood of p0 (recall that in the contact sub-Riemannian geometry the exponential
mapping is always onto a certain neighbourhood of its pole).

In Section 2.2 we study the Heisenberg exponential mapping; we also compute the
conjugate locus of the origin, which happens to coincide with the two null Hamiltonian
geodesics passing through this point.

In Section 2.3 we study differential properties of the Heisenberg sub-Lorentzian dis-
tance function. In [6], because of some technical problems, we introduced two additional
assumptions on (M,H, h) (i.e. the condition (A) and points of finite type) to be able to
prove differentiability of the general sub-Lorentzian distance function. It turns out that
we do not need such assumptions in the Heisenberg case, and the distance is smooth on
some open set.

In the sub-Riemannian geometry all geodesics can be of two types: Hamiltonian
geodesics, which can be regular or singular curves, and so-called strictly abnormal ex-
tremals, which are necessarily singular. In particular each geodesic which is a regular
curve is Hamiltonian. In Section 2.4 we prove that in the sub-Lorentzian geometry there
exist non-Hamiltonian geodesics which are regular curves.

1.2. Basic definitions and facts on sub-Lorentzian geometry. See [6] for all details.
Fix a sub-Lorentzian manifold (M,H, h). For each point p ∈M a vector v ∈ Hp is called
horizontal . An absolutely continuous curve which is tangent to H a.e. and has square
integrable derivative is called a horizontal (or admissible) curve.

Unless otherwise specified, all vectors and curves are supposed to be horizontal.

A vector v ∈ Hp is called timelike if h (v, v) < 0, spacelike if h (v, v) > 0 or v = 0,
null if h(v, v) = 0 and v 6= 0, nonspacelike if h(v, v) ≤ 0. A curve is called timelike if
its tangent is timelike almost everywhere; similarly for spacelike, null and nonspacelike
curves .

By a time orientation of (M,H, h) we mean a timelike vector field on M . From now
on we suppose our (M,H, h) to be time-oriented.

If X is a time orientation, then a nonspacelike v ∈ Hp is called future directed if
h(v,X(p)) < 0, and is called past directed if h(v,X(p)) > 0.

Throughout this paper f.d. stands for “future directed”, t. for “timelike”, and nspc. for
“nonspacelike”. So, for instance, a t.f.d. curve is a curve which is horizontal and timelike
future directed.
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By H we will denote the Hamiltonian associated with our sub-Lorentzian metric.
Locally it can be defined as follows: let X0, X1, . . . , Xk be an orthonormal frame for H
defined on an open U with X0 timelike; then

H(x, λ) = −1

2
〈λ,X0〉2 +

1

2

k∑

j=1

〈λ,Xj〉2

on T ∗M |U . By
−→H we denote the corresponding Hamiltonian vector field on T ∗M , and

Φs stands for its flow. Notice that π ◦ Φs(λ) = π ◦ Φ1(sλ) for any covector λ, where
π : T ∗M −→M is the canonical projection.

A curve γ : [α, β] −→ U is called a Hamiltonian geodesic if it is of the form γ(s) =

π ◦Φs(λ). Each Hamiltonian geodesic is either timelike, spacelike or null (i.e. it does not
change its casual character).

For a p ∈M denote by expp the exponential mapping with the pole at p ∈M , which is
defined as follows. Let Dp stand for the set of all covectors λ ∈ T ∗pM such that the curve
s 7→ π ◦ Φs(λ) is defined on the interval [0, 1]. The set Dp is open and expp : Dp −→ M

acts by the formula expp(λ) = π ◦ Φ1(λ).
A point q ∈ M is said to be conjugate to a point p ∈ M if there is a λ ∈ T ∗pM such

that expp(λ) = q and dλ expp is singular. Then we say that q is conjugate to p along a
geodesic γ(t) = expp(tλ).

By the future (resp. past) timelike conjugate locus of a point p we mean the set of all
points conjugate to p along timelike future (resp. past) directed Hamiltonian geodesics;
timelike conjugate locus of p is the union of the timelike future and past conjugate loci
of p. In the similar manner we define spacelike and (future and past) null conjugate loci .
Finally, the conjugate locus of a point p is the union of the timelike, null, and spacelike
conjugate loci of p.

For a nspc. curve γ : [α, β] −→M we define its length to be

L(γ) =

∫ β

α

|h(γ̇, γ̇)|1/2 dt.

Fix an open set U ; a nspc.f.d. curve γ : [α, β] −→ U is called a maximizer with respect
to U , or a U -maximizer , for short, if it is the longest curve from γ(α) to γ(β) among all
nspc.f.d. curves contained in U and joining γ(α) to γ(β). We also use a name U -geodesic
for a curve in U whose each suitably short sub-arc is a U -maximizer (note that in [6] only
timelike curves were used; this is because the condition (A) was assumed).

By a unique U -maximizer (or a unique maximizing U -geodesic) we mean a (nspc.f.d.)
curve γ : [α, β] −→ U such that for each t1, t2 ∈ [α, β] with t1 < t2, the restriction γ|[t1, t2]

is the only U -maximizer between γ(t1) and γ(t2). It can be proved that if γ : [α, β] −→M

is a t.f.d. Hamiltonian geodesic then for each t ∈ (α, β) there is a neighbourhood U of
γ(t) such that γ ∩ U is a unique U -maximizer.

If ϕ : U −→ R is a smooth function on an open U , then its horizontal gradient ∇Hϕ
is, by definition, a vector field on U such that (∂vϕ)(p) = h(v,∇Hϕ(p)) for any v ∈ Hp

and p ∈ U . If ∇Hϕ is unit timelike past directed on U then the trajectories of −∇Hϕ are
unique U -maximizers (indeed, let γ̇ = −∇Hϕ, γ(0) = p, γ(l) = q; take η : [α, β] −→ U
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to be an arbitrary nspc.f.d. curve with η(α) = p, η(β) = q. Now

L(γ) = ϕ(γ(l))− ϕ(γ(0)) = ϕ(η(β))− ϕ(η(α)) =

∫ β

α

d

ds

(
ϕ(η(s)

)
ds

=

∫ β

α

h (η̇,∇Hϕ) ds ≥
∫ β

α

|h(η̇, η̇)|1/2ds = L(η)

by the reverse Schwarz inequality, and L(γ) = L(η) holds if and only if γ and η are
equal up to a change of parameter. See also [3] for the classical case where H = TM and
∇H = ∇).

d[U ]( · , · ) will denote the sub-Lorentzian distance function relative to a set U ⊂ M ,
which is defined as follows. For p, q ∈ U let Ωp,q(U) be the set of all nspc.f.d. curves
contained in U and joining p to q; then

d[U ](p, q) =

{
sup {L(γ) : γ ∈ Ωp,q(U)} in case Ωp,q(U) 6= ∅
0 in case Ωp,q(U) = ∅.

For a general U very little can be said about d[U ]. However for a fixed point p0 one
can construct a family of certain special neighbourhoods called normal neighbourhoods .
If U is such a normal neighbourhood of p0 then one can prove that d[U ] is finite, and
the function p 7→ d[U ](p0, p) is upper semicontinuous on U . It is also continuous along
smooth timelike U -maximizers.

We need some notion of convergence of sequences of curves. Suppose that γν ,γ :

[a, b] −→ M , ν = 1, 2, . . ., are curves in M ; we say that {γν} converges to γ in the
C0 topology on curves if γν(a) −→ γ(a), γν(b) −→ γ(b), and for each open V contain-
ing γ there is an integer Λ such that γν ⊂ V for all ν > Λ. Now, let U be a normal
neighbourhood of p0 and take a sequence γν : [0, l] −→ U of nspc.f.d. curves such that
γν(0) = p0 and their endpoints γν(l) tend to a point p ∈ U . Then it can be proved
that there exists a subsequence {γνi} convergent in the C0 topology to a nspc.f.d. curve
joining p0 to p and contained in U .

Remark that the definition of d[U ] and U -maximizers adopted in this paper is extended
in comparison with [6]—we use nspc.f.d. curves instead of timelike; however the proofs
presented in [6] remain still true.

At the end we introduce a notion of so-called regular curves. Fix a p ∈M , and denote
by Ωp the set of all horizontal curves γ : [0, 1] −→M starting from γ(0) = p. The endpoint
map endp : Ωp −→ M is the mapping that assigns to each curve γ ∈ Ωp its end γ(1).
endp is of class C∞ with respect to the structure of Hilbert manifold on Ωp. Now, a curve
γ ∈ Ωp is said to be regular (resp. singular) if it is a regular (resp. critical) point of endp.
It can be proved that in a contact case only constant curves are singular.

2. Heisenberg sub-Lorentzian metric

2.1. Geodesics. From now on M = R3 and (H,h) is the Heisenberg sub-Lorentzian
metric defined above.

The Hamiltonian associated to our metric is of the form

H = −1

2
f2 +

1

2
g2,
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where the functions f, g : T ∗R3 −→ R are defined by the formulae

f = 〈λ,X〉 , g = 〈λ, Y 〉 ,

λ ∈ T ∗R3. In other words

f(x, y, z, p, q, r) = p+ yr/2, g(x, y, z, p, q, r) = q − xr/2,

where x, y, z are standard coordinates on R3 and p, q, r are dual coordinates. Now one
can easily calculate t.f.d. Hamiltonian geodesics starting from the origin. Considering the
Hamiltonian equations with the function H, first of all we see that r(s) ≡ r(0) = r0.
Next, the equations of geodesics take the form

ẋ = −f, ẏ = g, ż = (yẋ− xẏ)/2,

where

ḟ = r0g, ġ = r0f ,

and the equation for ż simply means horizontality of the solution curves. Since we are
looking for future directed geodesics parametrized by arc-length, we take initial conditions
from the set C−:

C− = {(0, 0, 0,−coshϕ, sinhϕ, r0) : ϕ, r0 ∈ R} ⊂ T ∗0R3.

Solving our equations we get




x(s) =
2

r0
cosh

(
ϕ− r0s

2

)
sinh

(r0s

2

)

y(s) =
2

r0
sinh

(
ϕ− r0s

2

)
sinh

(r0s

2

)

z(s) = − 1

2r2
0

(r0s− sinh(r0s)) ,

(2.1)

for r0 6= 0, and




x(s) = s coshϕ

y(s) = s sinhϕ

z(s) = 0,

(2.2)

for r0 = 0.

Looking at (2.1) and (2.2) one can see that projections on the (x, y)-plane of t.f.d.
Hamiltonian geodesics emanating from zero are either half-lines or segments of hyperbolas
contained in the set

Z = {(x, y, 0) : |y| < |x|, x > 0} .

It should be noted here that timelike Hamiltonian geodesics are the only timelike
geodesics, as can be seen from the Pontryagin Maximum Principle applied to our case.

Next, in a similar way we calculate null and spacelike Hamiltonian geodesics. Thus
we find that there are only two null f.d. geodesics, namely half-lines y = ±x, x > 0, in
the plane {z = 0}, and that, for instance, spacelike geodesics with initial conditions from
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the set {(0, 0, 0, sinhϕ, coshϕ, r0)} are of the form




x(s) = − 2

r0
sinh

(
ϕ+

r0s

2

)
sinh

r0s

2

y(s) =
2

r0
cosh

(
ϕ+

r0s

2

)
sinh

r0s

2

z(s) =
1

2r2
0

(r0s− sinh(r0s)) .

In particular no timelike nor spacelike Hamiltonian geodesic intersects the set
{(x, y) : y = ±x} × R. In this way we obtain

Corollary 2.1. For the Heisenberg sub-Lorentzian metric

0 /∈ Int (exp0 (D0)) .

Remark that such a situation is impossible in the contact sub-Riemannian case; it
is well known that if we take a point p on a contact sub-Riemannian manifold then the
exponential mapping expp is onto a neighbourhood of p (since one can find a neighbour-
hood V of p such that each q ∈ V can be joined to p by a Hamiltonian geodesic contained
in V ).

2.2. Exponential mapping and the conjugate locus. We will compute the conjugate
locus of 0. To this end we must find singularities of exp0 : T ∗0R3 −→ R3. In order to find
the future timelike conjugate locus, we consider the exponential mapping as the mapping

E : (0,∞)× R× R −→ R3,

defined by the formula

E(s, ϕ, r0) = exp0 s(−coshϕ, sinhϕ, r0) = π ◦ Φs(0, 0, 0,−coshϕ, sinhϕ, r0);

here (s, ϕ, r0) ≈ s(−coshϕ, sinhϕ, r0) can be regarded as coordinates on a subset of T ∗0R3

which is diffeomorphic to (0,∞)× C−. Now one can see that

det (dE(s, ϕ, r0)) =
4

r4
0

sinh
r0s

2

(
sinh

r0s

2
− r0s

2
cosh

r0s

2

)

for r0 6= 0, and

det (dE(s, ϕ, 0)) = − 1

12
s4

for r0 = 0. Clearly det (dE(s, ϕ, r0)) vanishes nowhere for s > 0; it means that the future
conjugate locus of 0 is a single point 0. Similar calculations show that the same result
holds for the past timelike and spacelike conjugate locus. On the other hand, it is obvious
that exp0 must be degenerate on the set

{(0, 0, 0, λ,±λ, r0) : λ 6= 0, r0 ∈ R} .
In this way we have obtained

Proposition 2.1. For the Heisenberg sub-Lorentzian metric on R3 the timelike and
spacelike conjugate loci of the origin degenerate to the point 0. It follows that the conju-
gate locus coincides with the null conjugate locus, and the latter is formed by the two null
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Hamiltonian geodesics passing through 0. Moreover, the restriction of E to a neighbour-
hood V ⊂ T ∗0R3 of the set (0,∞) × R × {0} is a diffeomorphism onto a neighbourhood
W ⊂ R3 of the set Z.

Proof. The last statement follows from [4]: the restriction

E : (0,∞)× R× {0} −→ Z

is a diffeomorphism and dE is non-singular on (0,∞)× R× {0}.

2.3. Properties of the distance function. Proposition 2.1 has a few easy interesting
consequences. Let V and W be as in Proposition 2.1, so that (s, ϕ, r0) can be regarded
as coordinates on W .

First of all let us notice that ∂/∂s is a unit t.f.d. vector field on W . Indeed, a curve
γ(s) = exp0 s(−coshϕ, sinhϕ, r0) is a t.f.d. geodesic which is parametrized by arc-length.
In our coordinates γ(s) = (s, ϕ, r0), from which it follows that γ̇(s) = (∂/∂s)γ(s).

Next, let ξ : W −→ R be a function defined by ξ(P ) = s, where E(s, ϕ, r0) = P and
(s, ϕ, r0) ∈ V . We will show that

∇Hξ = −∂/∂s.(2.3)

Let X = ∂/∂s, Y be an orthonormal basis of H over W . Then of course

∇Hξ = −(∂Xξ)X + (∂Y ξ)Y = −∂/∂s+ (∂Y ξ)Y .

We will show that Y can be chosen in the form

Y = A∂/∂ϕ+B ∂/∂r0

for some smooth function A and B. To this end denote by (s̄, ϕ̄, r̄0) the corresponding
coordinates on V ⊂ T ∗0R3; in other words we have

∂

∂ϕ
= (π ◦ Φs)∗

∂

∂ϕ̄
,

∂

∂r0
= (π ◦ Φs)∗

∂

∂r̄0
.

Take λ of the form

(0, 0, 0,−coshϕ, sinhϕ, r0).(2.4)

Let α stand for the Liouville form on T ∗R3. Note that our Hamiltonian H is homogeneous
in p, q, r so the flow Φs preserves the form α restricted to level surfaces of H. Thus we
obtain, using the definition of α

〈
Φs(λ),

∂

∂ϕ

〉
=
〈
α(Φs(λ)),Φs∗

∂

∂ϕ̄

〉
=
〈
λ, π∗

∂

∂ϕ̄

〉
= 0.

Similarly we obtain
〈

Φs(λ),
∂

∂r0

〉
= 0.

Now take a P ∈W ; P = γ(s) = exp0(sλ), where λ is as in (2.4). Then

h(X,Y )γ(s) = A
〈

Φs(λ),
∂

∂ϕ

〉
+B

〈
Φs(λ),

∂

∂r0

〉
= 0,

from which ∂Y ξ = 0 and the proof of (2.3) is over. It follows that ∇Hξ is unit timelike
past directed.
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Let

s0(ϕ, r0) = sup {s : exp0(σ, ϕ, r0) ∈W for all σ ∈ (0, s)} ;

for instance s0(ϕ, 0) =∞. Now t.f.d. Hamiltonian geodesics of the form

s −→ exp0(s, ϕ, r0), 0 < s < s0(ϕ, r0),(2.5)

are trajectories of −∇Hξ.
We will need the following

Lemma 2.1. For any normal neighbourhood U of 0, the half-lines

y = ax, z = 0, −1 < a < 1(2.6)

are unique U -maximizers.

Proof. It suffices to notice that the curves in (2.6) are trajectories of −∇Hϕ, where
ϕ(x, y, z) = (x2 − y2)1/2, |y| < |x|.

Fix a normal neighbourhood U of 0 and set

f [U ](P ) = d[U ](0, P ).

We may suppose that W ⊂ U . We will show that there exists an open W0 with 0 ∈ ∂W0,
Z ⊂ W0 ⊂ W , and such that for each P ∈ W0 there is a U -maximizer joining 0 to P ,
which is contained in W ∪{0}. Suppose that this is not the case. Then for a point P0 ∈ Z
we can find a sequence Pν −→ P0 with the property that there is a U -maximizer γν
joining 0 to Pν , and such that γν\ (W ∪ {0}) 6= ∅. Passing to a subsequence we may
suppose that γν −→ γ in the C0-topology on curves, where γ is nspc.f.d., connects 0

to P0, and γ\ (W ∪ {0}) 6= ∅. But

f [U ](P0) = lim
ν−→∞

f [U ](Pν) = lim
ν−→∞

L(γν) ≤ L(γ)

by upper semicontinuity of sub-Lorentzian arc-length, so γ is a U -maximizer, and hence
(Lemma 2.1) is of the form (2.6). In particular, γ ⊂W ∪{0} which gives a contradiction.

Now it follows that f [U ] coincides with ξ on W0. In this way we have established

Proposition 2.2. Let U be a normal neighbourhood of 0. There exists an open
W0 ⊂ U , 0 ∈ ∂W0, Z ⊂W0, such that t.f.d. Hamiltonian geodesics of the form (2.5) which
are contained in W0 are unique U -maximizers. Moreover the Heisenberg sub-Lorentzian
distance from the origin with respect to U , f [U ], is smooth on W0.

2.4. Existence of regular non-Hamiltonian geodesics. In this subsection we describe
certain phenomena which do not occur in the sub-Riemannian case. It is a simple conse-
quence of the above results.

Proposition 2.3. Let U be a normal neighbourhood of 0. Then there exists a non-
Hamiltonian U -maximizer which is a regular curve.

Proof. Consider the set B = exp0(B0) ∩ U , where

B0 = {(0, 0, 0,−R coshϕ,R sinhϕ, r0) : ϕ, r0 ∈ R, R > 0} ⊂ T ∗0R3.

Evidently, B is an open subset in R3, as it follows from Proposition 2.1. Take a point
P ∈ ∂B which lies neither on ∂U nor on any of the two null Hamiltonian geodesics starting
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from 0. Take a sequence B 3 Pν −→ P . From the properties of normal neighbourhoods
(cf. Proposition 5.3 in [6]) we know that for each ν there exists a U -maximizer γν joining
0 to Pν . After passing to a subsequence we have γν −→ γ in the C0 topology on curves,
where γ is nspc.f.d. and connects 0 to P . It follows that there exists a U -maximizer
joining 0 to P , which is regular (since our distribution is contact), and clearly cannot be
Hamiltonian.
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