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Abstract. A dual space of the Tjurina algebra attached to a non-quasihomogeneous uni-

modal or bimodal singularity is considered. It is shown that almost every algebraic local coho-

mology class, belonging to the dual space, can be characterized as a solution of a holonomic

system of first order differential equations.

1. Introduction. Let f be a holomorphic function with an isolated singularity at

the origin. Let HM denote the set of algebraic local cohomology classes with support at

the origin annihilated by partial derivatives of the holomorphic function f . The set HM is

the dual space, via the Grothendieck local duality, of the Milnor algebra associated with

the isolated singularity. In this paper, local cohomology classes in HM are considered in

the context of D-modules.

In [8], T. Yano investigated b-functions by using algebraic local cohomology classes.

In [6], the authors of the present paper showed that if a given holomorphic function f is

quasihomogeneous, an algebraic local cohomology class σ which generates HM over OX,O
is characterized as a solution of a simple holonomic system of first order linear partial

differential equations. We also proved that, in the non-quasihomogeneous cases, none of

the generators σ can be characterized uniquely by means of first order system of linear

partial differential equations (see also [3], [2]).

In this paper, we mainly consider the algebraic local cohomology classes belonging
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to the dual space of the Tjurina algebra, that is, the algebraic local cohomology classes

in HM annihilated by multiplying the function f . The aim is to show that every local co-

homology class τ in the dual space of Tjurina algebra attached to semi-quasihomogeneous

unimodal and bimodal isolated singularities, except the bimodal Z type singularity cases,

has a characterization as the solution of a simple holonomic system of first order par-

tial differential equations. The proofs of these results involve case by case computations,

which are too lengthy to include. Thus, instead of presenting a full account of proof, we

give the main idea and our strategy of the proof.

In Section 2, we consider non-quasihomogeneous cases and analyze an algebraic local

cohomology σ ∈ HM which is not annihilated by the function f . We introduce an ideal

Ann(1)
DX (σ), in the ring DX of linear partial differential operators, generated by partial

differential operators of order at most one which annihilate σ ∈ HM . We show that, by

adopting the same approach as in [3], [2], such local cohomology class σ is not charac-

terized uniquely as a solution of the holonomic system DX/Ann(1)
DX (σ). The statement

amounts to say that the system DX/Ann(1)
DX (σ) is not simple as a DX -module.

In Section 3, we introduce a dual space HT of Tjurina algebra as a subspace of HM .

We give two main theorems of the present paper concerning an algebraic local cohomology

class τ in HT attached to an exceptional unimodal or bimodal singularity.

In Section 4, we analyze properties of first order partial differential operators which

annihilate a zero-dimensional algebraic local cohomology class in general. We provide a

method to describe the solution space of DX/Ann(1)
DX (σ). After that, we consider semi-

quasihomogeneous cases. We present a criterion for the simplicity of the holonomic system

DX/Ann(1)
DX (σ) which is effectively used in proving the main results.

In Section 5, we explain the main idea and describe a strategy of proofs. We present

some results of computations including bimodal Z type cases.

2. Local cohomology classes in the dual space of Milnor algebra. Let X be

an open neighborhood of the origin O in the complex n-dimensional affine space Cn.

Let OX be the sheaf on X of holomorphic functions. For a holomorphic function f =

f(z1, . . . , zn) ∈ OX,O with an isolated singularity at the origin O, let I denote the ideal

in OX,O generated by the partial derivatives fj =
∂f

∂zj
(j = 1, . . . , n) of f :

I = 〈f1, . . . , fn〉O.

Let Hn[O](OX) be the n-th algebraic local cohomology group with support at the

origin O. Denote by HM the vector space consisting of algebraic local cohomology classes

in Hn[O](OX) which are annihilated by every element in I:

HM = {σ ∈ Hn[O](OX) | gσ = 0, g ∈ I}.

Let DX be the sheaf on X of linear partial differential operators. The algebraic local

cohomology group Hn[O](OX) has a structure of coherent DX -module. We denote by

Ann(1)
DX (σ) the left ideal in DX generated by differential operators of order at most

one which annihilate an algebraic local cohomology class σ ∈ HM . The DX -module
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DX/Ann(1)
DX (σ) becomes a holonomic system supported at the origin. As a generalization

of results in [6], we have the following theorem.

Theorem 2.1. Assume that the function f defines a non-quasihomogeneous singu-

larity at the origin. For any class σ in HM which is not annihilated by f ,

dim HomDX
(
DX/Ann(1)

DX (σ),Hn[O](OX)
)
≥ 2.

Proof. Let us denote by F ∈ DX the multiplication operator defined by F = f . Let

P =
∑n
j=1 aj(z)

∂

∂zj
+ a0(z) be an annihilator of the cohomology class σ in HM . Then

P (fσ) = PFσ

= (PF − FP )σ + FPσ

=
n∑

j=1

aj(z)
∂f

∂zj
σ.

Since
∑n
j=1 aj(z)fj ∈ I, P (fσ) = 0 holds. As σ and fσ(6= 0) are linearly independent,

we have

dim HomDX
(
DX/Ann(1)

DX (σ),Hn[O](OX)
)
≥ 2.

Corollary 2.1. Under the same assumption as in Theorem 2.1, the multiplicity of

the holonomic system DX/Ann(1)
DX (σ) at the origin is greater than or equal to two.

Let AnnDX (σ) be the annihilator in DX of σ ∈ HM consisting of linear partial

differential operators which annihilate σ. The following holds.

Corollary 2.2. Under the same assumption as in Theorem 2.1, AnnDX (σ) is not

equal to Ann(1)
DX (σ).

Proof. Since the holonomic system DX/AnnDX (σ) is simple at the origin, the di-

mension of the solution space HomDX
(
DX/AnnDX (σ),Hn[0](OX)

)
is one. Therefore, if

AnnDX (σ) = Ann(1)
DX (σ), then dim HomDX

(
DX/Ann(1)

DX (σ),Hn[O](OX)
)

= 1, which is a

contradiction.

Remark. We have recently shown ([4]) that if f defines an exceptional unimodal

singularity and σ is a generator of HM over OX,O, then

dim HomDX
(
DX/Ann(1)

DX (σ),Hn[O](OX)
)

= 2.

We have also verified that AnnDX (σ) is generated by partial differential operators of

order at most two in this case. Please refer to [3].

3. Tjurina local cohomologies attached to exceptional unimodal and bi-

modal singularities. We define HT to be the subspace of HM consisting of algebraic

local cohomology classes which are annihilated by f :

HT = {τ ∈ HM | fτ = 0} ⊆ HM .
Note that the Grothendieck local duality between OX,O/I and HM naturally induces a

duality between OX,O/〈I, f〉 and the space HT , where 〈f, I〉 is the ideal generated by f

and I. We call elements in HT Tjurina local cohomology classes.
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Let us consider the holonomic system DX/Ann(1)
DX (τ) attached to a Tjurina local

cohomology class τ ∈ HT and the solution space HomDX
(
DX/Ann(1)

DX (τ),Hn[O](OX)
)
.

We present a simple example for illustration.

Example 1. The function f = x4 + y5 + ax2y3 is the normal form of W12 unimodal

singularity at the origin. The Gröbner basis with the lexicographic ordering x � y of I
is {y6, y4x, 5y4 + 3ay2x2, 2x3 + ay3x}.

Let us consider a local cohomology class σ =
[
−2 1

x3y4 + 6
5a

1
xy6 + a 1

x5y

]
in HM . Since

fσ 6= 0, Theorem 2.1 yields dim HomDX
(
DX/Ann(1)

DX (σ),H2
[0](OX)

)
≥ 2. Indeed, the

ideal Ann(1)
DX (σ), generated by

yx
∂

∂x
+ y2 ∂

∂y
+ 7y,

5ay3 ∂

∂x
− 10yx

∂

∂y
+ (−3a2y − 40)x,

y6, y4x, 5y4 + 3ay2x2, 2x3 + ay3x,

defines the holonomic system DX/Ann(1)
DX (σ) which is not simple. In fact, a direct calcu-

lation yields that HomDX
(
DX/Ann(1)

DX (σ),H2
[0](OX)

)
= Span{σ, [1/xy]}, which implies

Ann(1)
DX (σ) 6= AnnDX (σ).

Now let τ be a Tjurina local cohomology class
[

1
x3y3 − 3

5a
1
xy5

]
in HT . Ann(1)

DX (τ) is

generated by a first order differential operator x ∂
∂x +y ∂

∂y +6 and multiplication operators

defined by y5, y3x, 5y3 + 3ayx2 and x3. The solution space of the holonomic system

DX/Ann(1)
DX (τ) is spanned by τ . Thus, AnnDX (τ) = Ann(1)

DX (τ).

For Tjurina local cohomology classes attached to an exceptional unimodal or bimodal

singularity at the origin, we have the following results.

Theorem 3.1. Let f ∈ OX,O be a holomorphic function defining an exceptional uni-

modal singularity at the origin. For a cohomology class τ ∈ HT ,

dim HomDX
(
DX/Ann(1)

DX (τ),Hn[0](OX)
)

= 1.

Theorem 3.2. Let f ∈ OX,O be a holomorphic function defining an exceptional bi-

modal singularity at the origin. For a class τ ∈ HT , the following holds.

dim HomDX
(
DX/Ann(1)

DX (τ),Hn[O](OX)
)
{
≤ 2 if f is of type Z,

= 1 otherwise.

Note that Z type singularities consist of three cases. These normal forms are given by

Z17 : x3y + y8 + (a+ by)xy6, Z18 : x3y + xy6 + (a+ by)y9, Z19 : x3y + y9 + (a+ by)xy7.

Corollary 3.1. For exceptional families of unimodal and bimodal singularities ex-

cept Z type bimodal singularities (i.e., Z17, Z18 and Z19), the annihilator AnnDX (τ)

coincides with Ann(1)
DX (τ) for any τ ∈ HT .
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4. The first order differential operators. Let σ be an algebraic local cohomology

class in Hn[0](OX) supported at the origin. Let I(σ) denote the annihilator in OX,O of σ.

Let H(σ) denote the set of algebraic local cohomology classes generated by σ over OX,O,

i.e., H(σ) = OX,Oσ, which is equal to
(
OX,O/I(σ)

)
σ. Let L(σ) be the set of linear partial

differential operators of order at most one which annihilate σ:

L(σ) =
{
P =

n∑

j=1

aj(z)
∂

∂zj
+ a0(z) |Pσ = 0, aj(z) ∈ OX,O, j = 0, 1, . . . , n

}
.

Then DXL(σ) gives rise to the left ideal Ann(1)
DX (σ).

Lemma 4.1. Let P be a first order linear partial differential operator in L(σ). Then

P (H(σ)) ⊆ H(σ).

Proof. By the definition of H(σ), any class η ∈ H(σ) is written in the form η = hσ

with some holomorphic function h ∈ OX,O. Let vP be the first order part
n∑
j=1

aj(z)
∂

∂zj

of an operator P =
n∑
j=1

aj(z)
∂

∂zj
+ a0(z) in L(σ). Then

P (η) = P (hσ)

= (Ph− hP )σ + hPσ

= vP (h)σ ∈ H(σ).

Thus we have P (H(σ)) ⊆ H(σ).

Let V(σ) denote the set of differential operators of the form
∑n
j=1 aj(z)

∂

∂zj
acting

on H(σ). Then we have

V(σ) =
{
v =

n∑

j=1

aj(z)
∂

∂zj

∣∣∣ vg ∈ I(σ) for all g ∈ I(σ), aj(z) ∈ OX,O, j = 1, . . . , n
}
.

Lemma 4.2. The mapping from L(σ) to V(σ) which associates the first order part

vP ∈ V(σ) to P ∈ L(σ) is surjective.

It follows immediately from the definition of V(σ) that any element v ∈ V(σ) induces

a linear map, denoted by v̄, acting on OX,O/I(σ):

v̄ : OX,O/I(σ)→ OX,O/I(σ).

We define K(σ) to be

K(σ) =
{
h ∈ OX,O/I(σ) | v̄h = 0 for all v ∈ V(σ)

}
.

We have the following result ([6]).

Theorem 4.1. For an algebraic local cohomology class σ ∈ Hn[O](OX),

HomDX
(
DX/Ann(1)

DX (σ),Hn[O](OX)
)

= Span{hσ |h ∈ K(σ)}.
Proof. Regarding each element of I(σ) as a multiplication operator, namely a linear

partial differential operator of order zero, we have DXI(σ) ⊂ Ann(1)
DX (σ). This implies

HomDX
(
DX/Ann(1)

DX (σ),Hn[O](OX)
)
⊂ H(σ).
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Thus any solution in Hn[0](OX) of the holonomic system DX/Ann(1)
DX (σ) can be written

in the form hσ with some h ∈ OX,O/I(σ). If P ∈ L(σ), then P (hσ) = (vPh)σ = 0. Hence

an algebraic local cohomology class hσ is in HomDX
(
DX/Ann(1)

DX (σ),Hn[O](OX)
)

if and

only if v̄Ph = 0, for all P ∈ L(σ), which is equivalent to h ∈ K(σ). This completes the

proof.

Corollary 4.1. The multiplicity of the holonomic system DX/Ann(1)
DX (σ) at the

origin is equal to the dimension of K(σ).

Let us return to the semi-quasihomogeneous isolated singularity cases. Let w =

(w1, . . . , wn) ∈ Nn be a weight vector of the quasihomogeneous part of the semi-quasiho-

mogeneous function f with respect to a coordinate system z = (z1, . . . , zn) ∈ X.

Here we introduce a notion of the weighted degree to algebraic local cohomology

classes with respect to the quasi-weight w.

Definition. For a cohomology class η =
[ ∑
k∈Λ

ck
1

zk

]
∈ Hn[O](OX), we define its

degree dw(η) to be the smallest degree of classes
[ 1

zk

]
in η:

dw(η) = min
{
−〈w,k〉 = −(w1k1 + . . .+ wnkn) |k ∈ Λ

}
,

where Λ is a set of all exponents k = (k1, . . . , kn) ∈ Nn of non-zero term ck
1

zk
in the

above expression of the cohomology class η.

We also define the weighted degree dw(R) of a differential operator R =
n∑
j=1

aj(z)
∂

∂zj
to be min1≤j≤n{dw(aj(z))−wj}, where j runs 1 ≤ j ≤ n with non-zero coefficient aj(z)

and dw(aj(z)) is the weighted degree of the function aj(z). With the aid of the notion of

the weighted degree, one immediately obtains the following lemma.

Lemma 4.3. Let f be a semi-quasihomogeneous holomorphic function with an isolated

singularity at the origin, τ an algebraic local cohomology class in HT . Assume that there

is an operator v in V(τ) satisfying dw(v) = 0. Then, K(τ) = Span{1}.

We call an operator with the weighted degree zero Euler operator.

Combining Theorem 4.1 and Lemma 4.3, we have the following criterion.

Proposition 4.1. Let τ be an algebraic local cohomology in HT attached to semi-

quasihomogeneous isolated singularity. If there are Euler operators in V(τ), then

HomDX
(
DX/Ann(1)

DX (τ),Hn[O](OX)
)

= Span{τ}.

We give an example to illustrate the above results. Actual computations are carried

out on the polynomial ring Q[z] over the field Q of rational numbers and in the Weyl

algebra An := Q[z1, . . . , zn]〈∂/∂z1, . . . , ∂/∂zn〉. For a polynomial f ∈ Q[z], let I be the

primary component of the ideal 〈∂f/∂z1, . . . , ∂f/∂zn〉 in Q[z] corresponding to the origin.

Let HM be the dual space in Hn
[O](OX) = Γ

(
X,Hn[O](OX)

)
of Q[z]/I. For a cohomology

class σ ∈ HM , let I(σ) and AnnAn(σ) denote the annihilator of σ in Q[z] and in An
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respectively. Let V (σ) denote a finite dimensional vector space defined by

V (σ) =
{
v =

n∑

j=1

aj(z)
∂

∂zj

∣∣∣aj(z) ∈ Q[z]/I(σ), vh(z) ∈ I(σ) for all h ∈ I(σ)
}
.

Notice that, in the definition above, all the coefficients aj(z) of v in V (σ) are taken from

the quotient space Q[z]/I(σ). Put

K(σ) = {h(z) ∈ Q[z]/I(σ) | vh(z) ∈ I(σ) for all v ∈ V (σ)}
and H(σ) = Q[z]σ. The results for V(σ), K(σ) and H(σ) presented in this section are

also valid for V (σ), K(σ) and H(σ). Put HT = {σ ∈ HM | fσ = 0} ⊂ HM .

Example 2 (W12 singularity). Let us consider the polynomial f = x4 + y5 + ax2y3

again. The primary decomposition of the ideal 〈∂f/∂x, ∂f/∂y〉 is I∩〈3a2y−10, 27a5x2 +

500〉 where I = 〈y6, y4x, 5y4 + 3ay2x2, 2x3 + ay3x〉. Put σ11 =
[
−2 1

x3y4 + a 1
x5y + 6

5a
1
xy6

]
.

The cohomology class σ11 is in HM \HT and there are no Euler operators in V (σ11). The

operator with the smallest degree in V (σ11) is v = yx∂x + y2∂y with d(5,4)(v) = 4 > 0.

We find K(σ11) = Span{1, y5} and thus, by Theorem 3.1,

dim HomDX
(
DX/Ann(1)

DX (σ11),Hn[O](OX)
)

= 2

(cf. Example 1).

HM consists of linear combinations of τ0 =
[

1
xy

]
, τ1 =

[
1
x2y

]
, τ2 =

[
1
x3y

]
, τ3 =

[
1
xy2

]
,

τ4 =
[

1
x2y2

]
, τ5 =

[
1

x3y2

]
, τ6 =

[
1
xy3

]
, τ7 =

[
1

x2y3

]
, τ8 =

[
1

x3y3 − 3
5a

1
xy5

]
, τ9 =

[
1
xy4

]
,

τ10 =
[
−2 1

x2y4 + a 1
x4y

]
and σ11.

Let τ be the cohomology class τ = τ8 + p7τ7 ∈ HT with a parameter p7. τ7 satisfies

τ7 = xτ8. We have I(τ) = I(τ8) = 〈y4, 2x2 + ay3〉 and an Euler operator 3x∂x + 2y∂y in

V (τ) = V (τ8). From Lemma 4.3, K(τ) = Span{1} and thus

dim HomDX
(
DX/Ann(1)

DX (τ),Hn[O](OX)
)

= 1.

Put τ = p9τ9+p6τ6+p4τ4 ∈ HT with parameters p4, p6 and p9 satisfying p9 6= 0. Then

I(τ) = 〈y4, p2
9x+p6p4y

3−p9p4y
2〉 and V (τ) = Span{y3∂y, 2p4y

3∂x+p9y
2∂y, (−3p6p4y

3 +

2p9p4y
2)∂x + p2

9y∂y}. We use the lexicographical order x � y in computations and we

identify Q[x, y]/I(τ) with Span{1, y, y2, y3}. The operator v = (−3p6p4y
3 +2p9p4y

2)∂x+

p2
9y∂y of weighted degree 0 is an Euler operator in V (τ). Now letG denote the zeroth order

linear partial differential operator defined to be G = p2
9x+ p6p4y

3 − p9p4y
2 ∈ I(τ). The

first order part of the differential operator v+3∂xG becomes (−p9p4y
2 +3p2

9x)∂x+p2
9y∂y

which also acts on Q[x, y]/I(τ). Notice that the term “Euler operators” in this paper is

consistent with the classical one.

5. A strategy of proofs and examples. Theorem 4.1 says that the determination

of the local cohomology solution space of DX/Ann(1)
DX (σ) amounts to the computation of

the space K(σ). It follows immediately from the definition that the space K(σ) depends

only on the annihilator I(σ), namely we have the following.

Lemma 5.1. Let σ and σ′ be two algebraic local cohomology classes in Hn[0](OX).

Assume that I(σ) = I(σ′). Then K(σ) = K(σ′).
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The observation above yields the following strategy to examine the holonomic system

DX/Ann(1)
DX (σ).

Step 1. Classify I(σ).

Step 2. Compute V (σ).

Step 3. Look for Euler operators.

If there are Euler operators, we have

dim HomDX
(
DX/Ann(1)

DX (σ),Hn[O](OX)
)

= 1,

else, compute explicitly K(σ). Then

dim HomDX
(
DX/Ann(1)

DX (σ),Hn[O](OX)
)

= dimK(σ).

We executed the above procedure for the exceptional family of unimodal and bimodal

singularity cases.

Unimodal singularities. There are 14 types of exceptional unimodal singularities.

Computing V (σ) for each normal forms of exceptional unimodal singularities, we have

found Euler operators. Thus we arrived at Theorem 3.1.

In order to illustrate the procedure presented above, we give an example.

Example 3. The function f = x3 + xy5 + ay8 defines E13 unimodal singularity at

the origin (a 6= 0). A basis of the space HT is given by τ0, τ2, . . . , τ11 where τ0 =
[

1
xy

]
,

τ1 =
[

1
x2y

]
, τ2 =

[
1
xy2

]
, τ3 =

[
1

x2y2

]
, τ4 =

[
1
xy3

]
, τ5 =

[
1

x2y3

]
, τ6 =

[
1
xy4

]
, τ7 =

[
1

x2y4

]
,

τ8 =
[

1
xy5

]
, τ9 =

[
−3 1

xy6 + 1
x3y

]
, τ10 =

[
−3 1

xy7 + 1
x3y2

]
, τ11 =

[
−3 1

xy8 + 1
x3y3 + 24

5 a
1

x2y5

]
.

According to the form of the annihilator I(τ), Tjurina local cohomology classes, rep-

resented by linear combinations of τj with parameters pj (j = 0, 1, . . . , 11), fall into

the following 17 cases listed below. There is an Euler operator (i.e., an operator of the

weighted degree 0) in V (τ) for each case (i)–(xvii). This yields

dim HomDX
(
DX/Ann(1)

DX (τ),Hn[O](OX)
)

= 1

for any τ ∈ HT . The computation is carried out with the lexicographical order x � y.

Classification of local cohomology classes in HT .

(i) τ =
∑11

j=0 pjτj with p11 6= 0.

H(τ) = Q[z](p11τ11 + p10τ10 + p7τ7).

I(τ) =
〈
y8,−15p11y

3x+ (24p10a− 5p7)y7 − 24p11ay
6, 3x2 + y5

〉
.

V (τ) = Span
{
y7∂x, y

6∂x, y
5∂x, y

2x∂y, yx∂y, (−44ay2x+ 5y4)∂x+ 5x∂y , y
7∂y, y

6∂y,

y5∂y, y
4∂y, 5y

2x∂x+2y3∂y, ((192a2y2 +125y)x−40ay4)∂x+50y2∂y,(
((−36864p11a

4−19200p10a
2 +4000p7a)y2 +4800p11a

2y+3125p11)x

+(7680p11a
3 +3000p10a−625p7)y4−1000p11ay

3
)
∂x+1250p11y∂y

}
.

(ii) τ =
∑10

j=0 pjτj with p10 6= 0.

H(τ) = Q[z](p10τ10 + p9τ9 + p7τ7 + p5τ5).

I(τ) =
〈
y7, 3p2

10y
2x+ (−p7p9 + p5p10)y6 + p7p10y

5, 3x2 + y5
〉
.
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V (τ) = Span{y6∂x, y
5∂x, yx∂y, 2y

4∂x + 3x∂y, y
6∂y, y

5∂y, y
4∂y, y

3∂y,

(15p10yx− p7y
4)∂x + 6p10y

2∂y,
(
(3p2

7p10y + 45p3
10)x

+ (9p7p10p9 − 9p5p
2
10 + p3

7)y4 − 3p7p
2
10y

3
)
∂x + 18p3

10y∂y}.
(iii) τ =

∑9
j=0 pjτj with p9 6= 0, p7 6= 0.

H(τ) = Q[z](p9τ9 + p8τ8 + p7τ7 + p5τ5).

I(τ) =
〈
y6, 9p2

9y
2x+ (3p5p9 + p8p7)y5 + 3p7p9y

4, 3x2 + y5
〉
.

V (τ) = Span{y5∂x, y
4∂x, yx∂y,−4p7yx∂x+3p9x∂y, y

5∂y, y
4∂y, y

3∂y, 2yx∂x+y2∂y,(
((9p3

9 + 6p7p5p9 + 2p8p
2
7)y + 12p2

7p9)x+ 3p7p
2
9y

3
)
∂x + 6p2

7p9y∂y}.
(iv) τ =

∑9
j=0 pjτj with p9 6= 0, p7 = 0.

H(τ) = Q[z](p9τ9 + p8τ8 + p5τ5 + p3τ3).

I(τ) =
〈
y6, 9p2

9yx+ (3p3p9 + p8p5)y5 + 3p5p9y
4, 3x2 + y5

〉
.

V (τ) = Span{y5∂x, y
4∂x + 3x∂y, y

5∂y, y
4∂y, y

3∂y, p5y
4∂x − p9y

2∂y,(
−15p2

9x+ (3p3p9 + p8p5)y4 + p5p9y
3
)
∂x − 6p2

9y∂y}.
(v) τ =

∑8
j=0 pjτj with p8 6= 0, p7 6= 0.

H(τ) = Q[z](p8τ8 + p7τ7).

I(τ) =
〈
y5, p8y

3x− p7y
4, x2

〉
.

V (τ) = Span{y2x∂x, yx∂x, y
4∂x, y

2x∂y, yx∂y, 4p7x∂x + p8x∂y, y
4∂y, y

3∂y, y
2∂y,

x∂x + y∂y}.
(vi) τ =

∑8
j=0 pjτj with p8 6= 0, p7 = 0, p5 6= 0.

H(τ) = Q[z](p8τ8 + p6τ6 + p5τ5 + p3τ3).

I(τ) =
〈
y5, p2

8yx+ (−p8p3 + p6p5)y4 − p8p5y
3, x2

〉
.

V (τ) = Span{y4∂x, 3p
2
5y

3∂x + p2
8x∂y, y

4∂y, y
3∂y, 2p5y

3∂x + p8y
2∂y,(

2p2
8x+ (p8p3 − p6p5)y3

)
∂x + p2

8y∂y}.
(vii) τ =

∑8
j=0 pjτj with p8 6= 0, p7 = p5 = 0.

H(τ) = Q[z](p8τ8 + p6τ6 + p3τ3 + p1τ1).

I(τ) =
〈
y5, p2

8x+ (−p8p1 + p6p3)y4 − p8p3y
3
〉
.

V (τ) = Span{y4∂y, y
3∂y, 3p3y

4∂x+y2∂y,
(
(4p8p1−4p6p3)y4+3p8p3y

3
)
∂x+p2

8y∂y}.
(viii) τ =

∑7
j=0 pjτj with p7 6= 0. H(τ) = Q[z](τ7).

I(τ) =
〈
y4, x2

〉
.

V (τ) = Span{y3x∂x, y
2x∂x, yx∂x, x∂x, y

3x∂y, y
2x∂y, yx∂y, y

3∂y, y
2∂y, y∂y}.

(ix) τ =
∑6

j=0 pjτj with p6 6= 0, p5 6= 0.

H(τ) = Q[z](p6τ6 + p5τ5).

I(τ) =
〈
y4, p6y

2x− p5y
3, x2

〉
.

V (τ) = Span{yx∂x, y3∂x, yx∂y, 3p5x∂x + p6x∂y, y
3∂y, y

2∂y, x∂x + y∂y}.
(x) τ =

∑6
j=0 pjτj with p6 6= 0, p5 = 0.

H(τ) = Q[z](p6τ6 + p4τ4 + p3τ3 + p1τ1).
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I(τ) =
〈
y4, p2

6x+ (−p6p1 + p4p3)y3 − p6p3y
2
〉
.

V (τ) = Span{y3∂y, 2p3y
3∂x + p6y

2∂y, ((3p6p1 − 3p4p3)y3 + 2p6p3y
2)∂x + p2

6y∂y}.

(xi) τ =
∑5

j=0 pjτj with p5 6= 0.

H(τ) = Q[z](τ5).

I(τ) =
〈
y3, x2

〉
.

V (τ) = Span{y2x∂x, yx∂x, x∂x, y
2x∂y, yx∂y, y

2∂y, y∂y}.

(xii) τ =
∑4

j=0 pjτj with p4 6= 0, p3 6= 0.

H(τ) = Q[z](p4τ4 + p3τ3), p4 6= 0.

I(τ) =
〈
y3, p4yx− p3y

2, x2
〉
.

V (τ) = Span{y2∂x, 2p3x∂x + p4x∂y, y
2∂y, x∂x + y∂y}.

(xiii) τ =
∑4

j=0 pjτj with p4 6= 0, p3 = 0.

H(τ) = Q[z](p4τ4 + p1τ1).

I(τ) =
〈
y3, p4x− p1y

2
〉
.

V (τ) = Span{y2∂y, 2p1y
2∂x + p4y∂y}.

(xiv) τ =
∑3

j=0 pjτj with p3 6= 0.

H(τ) = Q[z](τ3).

I(τ) =
〈
y2, x2

〉
.

V (τ) = Span{yx∂x, x∂x, yx∂y, y∂y}.

(xv) τ =
∑2

j=0 pjτj with p2 6= 0.

H(τ) = Q[z](p2τ2 + p1τ1).

I(τ) =
〈
y2, p2x− p1y

〉
.

V (τ) = Span{p1y∂x + p2y∂y}.

(xvi) τ = p1τ1 + p0τ0 with p1 6= 0.

H(τ) = Q[z](τ1).

I(τ) =
〈
y, x2

〉
.

V (τ) = Span{x∂x}.

(xvii) τ = p0τ0.

H(τ) = Q[z](τ0).

I(τ) =
〈
y, x
〉
.

Bimodal singularities. There are 14 normal forms of exceptional bimodal singularities.

For these normal forms except Z type (i.e., Z17, Z18, Z19), we have found Euler operators

in V (τ) and have verified that the dimension of the solution space of DX/Ann(1)
DX (τ)

equals one. For the case of Z type singularities, we have found that the situation is

a little bit different and subtle. We have explicitly computed K(τ) to determine the

dimension of the solution space of DX/Ann(1)
DX (τ) and we have verified dimK(τ) ≤ 2 by

direct computation. This yields Theorem 3.2.
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Example 4. The polynomial f = x2z + yz2 + xy4 + (a+ by)y6 defines S16 bimodal

singularity at the origin. The following 14 local cohomology classes constitute a basis of

HT : τ0 =
[

1
xyz

]
, τ1 =

[
1

xyz2

]
, τ2 =

[
1

x2yz

]
, τ3 =

[
1

xy2z

]
, τ4 =

[
1
2

1
xy2z2− 1

x3yz

]
, τ5 =

[
1

x2y2z

]
,

τ6 =
[

1
xy3z

]
, τ7 =

[
1
2

1
xy3z2 − 1

x3y2z

]
, τ8 =

[
1

x2y3z

]
, τ9 =

[
1

xy4z

]
, τ10 =

[
1
2

1
xy4z2 − 1

x3y3z

]
,

τ11 =
[
− 1
xyz3 + 1

4
1

x2y4z

]
, τ12 =

[
2 1
xy5z − 1

x2yz2

]
, τ13 =

[
− 1
xy6z + 1

2
1

x2y2z2 + 3
2a

1
x2y4z − 1

x4yz

]
.

Cohomology classes inHT fall into 25 cases and there are Euler operators in each V (τ).

Put, for instance, τ =
∑13
j=0 pjτj , p13 6= 0, p10 6= 0. Then I(τ) =

〈
y6, 4p13y

3x

+ (6p13a + p11)y5, p2
13yx

2 + (−2p10p12 − p7p13)y5 − p10p13y
4,−x3 + y5, x2 + 2zy,

2zx+ y4,−p11y
5 + p13z

2
〉

as the Gröbner basis with the lexicographical order z � x � y.

There is an Euler operator
(
((−48p2

10p
3
13a− 8p10p

4
13 − 8p2

10p11p
2
13 − 24p7p

3
10p13 − 48p12p

4
10)y − 72p4

10p13)x

− 8p3
10p

2
13y

2 + (−72p3
10p

2
13a− 16p2

10p
3
13 − 12p3

10p11p13)z
)
∂x − 48p4

10p13y∂y

+
(
(12p2

10p
3
13a+ 8p2

10p
4
13 − 46p3

10p11p
2
13 + 24p7p

3
10p13 + 48p12p

4
10)x2

+
(
((−48p10p

4
13 + 144p2

10p11p
2
13)a− 12p4

13 + 56p10p11p
3
13 − 48p7p

2
10p

2
13

+(24p2
10p

2
11 − 96p12p

3
10)p13)y2 + 8p3

10p
2
13y
)
x

+
(
(−72p10p

4
13 + 216p2

10p11p
2
13)a2 + (−18p5

13 + 72p10p11p
3
13 − 36p7p

2
10p

2
13

+(72p2
10p

2
11 − 72p12p

3
10)p13)a− 3p11p

4
13 + 14p10p

2
11p

2
13 + 42p7p

2
10p11p13

+(6p2
10p

3
11 + 84p12p

3
10p11)

)
y4 + (−8p2

10p
3
13 + 48p3

10p11p13)y3 − 96p4
10p13z

)
∂z

in V (τ).

Let us see the cases of Z type bimodal singularities Z17, Z18, Z19. We use the lexico-

graphical order with x � y.

Example 5. For the normal form x3y+ y8 + (a+ by)xy6 of bimodal Z17 singularity,

I =
〈
y10,−289a2y6x + 480by9 − 408ay8, 3yx2 + by7 + ay6,−289a2x3 − 1734a3y5x

−3360b2y9 +2856aby8−2312a2y7
〉
. HT has the following 15 cohomology classes as basis:

τ0 =
[

1
xy

]
, τ1 =

[
1
x2y

]
, τ2 =

[
1
x3y

]
, τ3 =

[
1
xy2

]
, τ4 =

[
1

x2y2

]
, τ5 =

[
1
xy3

]
, τ6 =

[
1

x2y3

]
,

τ7 =
[

1
xy4

]
, τ8 =

[
1

x2y4

]
, τ9 =

[
1
xy5

]
, τ10 =

[
1

x2y5

]
, τ11 =

[
1
xy6

]
, τ12 =

[
1
6

1
x2y6 − a 1

x4y

]
,

τ13 =
[
3 1
xy7 − a 1

x3y2

]
, τ14 =

[
−3b 1

xy7 + 3a 1
xy8 − 4 1

x2y6 − a2 1
x3y3

]
.

For each class, K(τj) = Span{1} (j = 0, . . . , 14). However, for τ =
∑14

j=0 pjτj with

p14 6= 0 and p2
12 − 48p14p12 + 576p2

14 6= 0, we have K(τ) = Span{1, y7}. Otherwise,

K(τ) = Span{1}.

Example 6. The polynomial f = x3y+xy6+(a+by)y9 is the normal form of bimodal

Z18 singularity. Then the following 16 local cohomology classes constitute a basis of HT :

τ0 =
[

1
xy

]
, τ1 =

[
1
x2y

]
, τ2 =

[
1
x3y

]
, τ3 =

[
1
xy2

]
, τ4 =

[
1

x2y2

]
, τ5 =

[
1
xy3

]
, τ6 =

[
1

x2y3

]
,

τ7 =
[

1
xy4

]
, τ8 =

[
1

x2y4

]
, τ9 =

[
1
xy5

]
, τ10 =

[
1

x2y5

]
, τ11 =

[
1
xy6

]
, τ12 =

[
1
6

1
x2y6 − 1

x4y

]
,

τ13 =
[
3 1
xy7 − 1

x3y2

]
, τ14 =

[
3 1
xy8 − 1

x3y3

]
, τ15 =

[
3 1
xy9 − 9

2a
1

x2y6 − 1
x3y4

]
.

Although the local cohomology class τ15 satisfies fτ15 = 0, K(τ15) = Span{1, y8}. Put

τ =
∑15
j=0 pjτj . If p15 6= 0, there are no Euler operators in V (τ) and K(τ) = Span{1, y8}.

Even if p15 = 0, if neither p12 nor p14 are equal to zero, there are no Euler operators
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in V (τ) and K(τ) = Span{1, y7}. The condition p15 = p14 = 0 or p15 = p12 = 0 implies

K(τ) = Span{1} and thus dim HomDX
(
DX/Ann(1)

DX (τ),H2
[0](OX)

)
= 1 for this case.

Example 7. The polynomial f = x3y+y9+(a+by)xy7 is the normal form of bimodal

Z19 singularity. A basis of HT is given by the following 17 local cohomology classes.

τ0 =
[

1
xy

]
, τ1 =

[
1
x2y

]
, τ2 =

[
1
x3y

]
, τ3 =

[
1
xy2

]
, τ4 =

[
1

x2y2

]
, τ5 =

[
1
xy3

]
, τ6 =

[
1

x2y3

]
,

τ7 =
[

1
xy4

]
, τ8 =

[
1

x2y4

]
, τ9 =

[
1
xy5

]
, τ10 =

[
1

x2y5

]
, τ11 =

[
1
xy6

]
, τ12 =

[
1

x2y6

]
, τ13 =

[
1
xy7

]
,

τ14 =
[

1
7

1
x2y7 − a 1

x4y

]
, τ15 =

[
3 1
xy8 − a 1

x3y2

]
, τ16 =

[
−3b 1

xy8 + 3a 1
xy9 − 27

7
1

x2y7 − a2 1
x3y3

]
.

Put τ =
∑16
j=0 pjτj . If p16 6= 0 and 729p2

16 − 54p14p16 + p2
14 6= 0, there are no Euler

operators in V (τ) and K(τ) = Span{1, y8}. Otherwise,

dim HomDX
(
DX/Ann(1)

DX (τ),H2
[O](OX)

)
= 1.

Remark that the method given in this paper to examine the solution space

HomDX
(
DX/Ann(1)

DX (σ),Hn[O](OX)
)

is also available for any isolated singularities.
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