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Abstrat. This note ontains some remarks on the paper of Y. Naito onerning the parabolisystem of hemotaxis and published in this volume.1. Introdution. The aim of this note is to omment on some results of Y	uki Naito in[6℄ and (with oauthors) in [7℄. The author proves that if the total mass 0 ≤ M̂ =

∫
R2 uis small enough, then solutions of the paraboli system of hemotaxis

∂u

∂t
= ∇ · (∇u− u∇v), x ∈ R

2, t > 0,(1)
τ
∂v

∂t
= ∆v + u, x ∈ R

2, t > 0,(2)with τ = 1, f. (1.1) in [6℄, behave asymptotially like self-similar solutions of that system.Here, we onsider a more general system with the parameter τ > 0 as in [7℄.The ase of the paraboli-ellipti system with τ = 0 has been onsidered in [4℄ and[3℄. The authors of [4℄ proved asymptotially self-similar behavior of solutions of (1)�(2)using entropy methods. We studied in [3℄ radially symmetri solutions of that system andproved that for eah 0 ≤ M̂ < 8π (so in the whole range of the existene of self-similarsolutions), the asymptotis of those solutions is determined by the unique self-similarsolution m
M̂

orresponding to the mass M̂ :
lim

t→∞
‖M(·, t) −m

M̂
(t)‖L∞ = 0.Here the umulated density M = M(s, t) is de�ned by M(s, t) =

∫
B(0,

√
s)
u(x, t) dx, andsatis�es the paraboli equation(3) Mt = 4 sMss +

1

π
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34 P. BILERsupplemented with the boundary and initial onditions(4) M(0, t) = 0, M(∞, t) ≡ lim
s→∞

M(s, t) = M̂,(5) M(s, 0) = M0(s),the funtion M0 being a nondereasing ontinuous funtion on (0,∞). The self-similarsolution m = m(s/t) satis�es the equation(6) 4m′′(y) +m′(y) +
1

πy
m(y)m′(y) = 0, m(0) = 0, m(∞) = M̂,where y = s/t, ′ = d/dy. It was proved in [1℄, [3℄ that given 0 ≤ M̂ < 8π self-similarsolutions de�ned in (6) exist, have the �nite derivative at y = 0: m′(0) < ∞, and theyare unique: m = m

M̂
. For M̂ > 8π there are no solutions of (6) nor even global in timesolutions of (3)�(5).For the paraboli system (1)�(2) the determination of the optimal range of M̂ leadingto the existene of self-similar solutions for a given τ and their uniqueness with a given

M̂ seem to be an open problem. They are determined by the equation
Φ′′ +

1

4
Φ′ +

1

2y
Φ′e−τy/4

(∫ y

0

eτz/4Φ′(z) dz

)
= 0,(7)

Φ(0) = 0, Φ(∞) =
M̂

2π
.The best published results in this diretion are in [7℄, where preliminary estimates from[2℄ for τ = 1 are greatly improved. In partiular, the authors of [7℄ proved that

• if 0 < τ ≤ 1/2, then solutions of (7) exist exatly for M̂ ∈ [0, 8π),
• • if τ ∈ (1/2, 1] then M̂ < 4π3/3,
• • • if τ > 1 then M̂ < τ24π3/3.The solutions of (7) are smooth as a onsequene of an analysis of the self-similarsolutions of the original system (1)�(2) without radial symmetry assumptions. In fat,eah self-similar solution of (1)�(2) is radial, [7, Th. 3℄. A di�erent onstrution of self-similar solutions of (1)�(2) was in [2℄.Here we prove in a diret way that Φ′(0) <∞ for solutions of (7); diret means here:not using the orrespondene between the densities (u, v) in (1)�(2) and the umulateddensities (ϕ, ψ) in (8) below. Moreover, we simplify the arguments leading to • (Lemma2.4), and improve • • • (Lemma 2.5).The results in [6, Th. 3℄ are proved using perturbation arguments via the ontrationmapping theorem. This permitted the author to obtain uniqueness of su�iently smallself-similar solutions. The problem of the uniqueness of self-similar solutions is mentionedin [6, Remark 1 (i)℄. Suh a property would permit one to prove a stronger version ofTheorem 3 in [6℄, i.e. the asymptotis of any global in time solution u is desribed bythat of the unique self-similar solution orresponding to the same mass M̂ as that for u,see remarks after Proposition 2.6 below.We believe that this property holds for (7) but this onjeture is far from being obvioussine for some nonlinear paraboli equations there are multiple self-similar solutions, see



A NOTE ON THE PAPER OF Y. NAITO 35e.g. [5℄. Moreover, it was shown in [7, Th. 2℄ that self-similar solutions form a one-parameter family, and their L1 norms tend to 8π as the parameter goes to ∞. Thus, theuniqueness does not hold if there is a self-similar solution for M̂ > 8π.2. Properties of self-similar pro�les. Proeeding similarly to [7℄ or [3℄ we obtain thesystem for the umulated densities
ϕ(s, t) =

1

2π

∫

B(0,
√

s)

u(x, t) dx, ψ(s, t) =
1

2π

∫

B(0,
√

s)

v(x, t) dx,equivalent for su�iently smooth solutions to the original system (1)�(2)(8) ϕt = 4 s ϕss − 2ϕs(sψss),

τψt = 4 s ψss + ϕ,with the boundary onditions
ϕ(0, t) = ψ(0, t) = 0, ϕ(∞, t) =

M̂

2π
.This is, of ourse, a ounterpart of (3) for the paraboli-ellipti system of hemotaxis.A self-similar solution (u, v) of (1)�(2) satisfying the saling property λ2u(λx, λ2t) ≡

u(x, t), v(λx, λ2t) ≡ v(x, t) for eah λ > 0 orresponds to the funtions ϕ(s, t) = Φ(s/t)and ψ(s, t) = tΨ(s/t) solving the system
Φ′′ +

1

4
Φ′ − 2Φ′Ψ′′ = 0,(9)

4 yΨ′′ + τ yΨ′ − τΨ + Φ = 0,(10)where y = s/t. Here, the boundary onditions beome
Φ(0) = Ψ(0) = 0, Φ(∞) =

M̂

2π
.Putting S(y) = Φ(y) − τΨ(y) + τ yΨ′(y) = −4 yΨ′′(y) in (9)�(10) we obtain a simplerequation for Φ, the ounterpart of (6) for m in the ase τ = 0

Φ′′ +
1

4
Φ′ +

1

2y
Φ′S = 0,(11)

S′ +
τ

4
S = Φ′,(12)

Φ(0) = 0, Φ(∞) =
M̂

2π
, S(0) = 0.To justify the boundary ondition for S observe that Φ′(y), Ψ′(y) > 0 for eah y > 0 leadsto lim infy→0 S(y) ≥ 0, and thus, by (12), S(y) > 0 for eah y > 0. Sine by the de�nition(10) S(y) = −4 yΨ′′(y), Ψ is onave, so that 0 < Ψ′(y) ≤ Ψ(y)

y , and limy→0 yΨ′(y) = 0follows. Similarly, the onavity of Φ and the relation(13) lim
y→0

yΦ′(y) = 0are obtained from (11) (a more preise argument repeats the lines of the proof of Lemma4.1 in [3℄).



36 P. BILERThe above system (11)�(12) an be put either in the form of a �rst order di�erentialequation for Φ′ (f. (7)) with the integral term(14) S(y) = e−τy/4

∫ y

0

eτz/4Φ′(z) dz,or a seond order ordinary di�erential equation for S(15) S′′ +
τ + 1

4
S′ +

τ

16
S +

1

2y

(
SS′ +

τ

4
S2

)
= 0.Lemma 2.1. The pro�le Φ satisfying (11) is inreasing, onave, belongs to the spae

C∞((0,∞)) ∩ C1([0,∞)) and satis�es(16) M̂

2π
(1 − e−y/4) ≤ Φ(y) ≤ min

(
4Φ′(0)(1 − e−y/4),

M̂

2π

)

for every y ∈ (0,∞).Proof. First note that S(y) > 0 for eah y > 0. Otherwise for y1 = inf{y > 0 : S(y) = 0}we would have S′(y1) ≤ 0 ontraditing (12). Reall that Φ′′(y) < 0 beause Φ′(y) > 0and S(y) > 0. Sine Φ′ − S′ = τ
4S > 0, S(y) ≤ Φ(y), the funtion S is also stritlyinreasing and onave on a small interval (0, y0) (but not on the whole positive half-line

(0,∞)). Therefore,
Φ(y∗)

y∗
≥
S(y∗)

y∗
≥
S(y)

y
≥ S′(y) > 0for all 0 < y∗ < y ≤ y0. Now, (11) implies the inequality 4Φ′′ + Φ′ + 2Φ′ S(y∗)

y∗

≥ 0. Afterintegration on (y∗, y)(17) 4Φ′(y) + Φ(y)

(
1 + 2

S(y∗)

y∗

)
≥ 4Φ′(y∗) + Φ(y∗)

(
1 + 2

S(y∗)

y∗

)
.Next, onsider the funtion w(y) = Φ(y) − 4 yΦ′(y), w(0) = 0 by (13). Sine w′(y) =

Φ′(y)(−3 + y + 2S(y)), it is lear that w′(y) < 0 for all y ∈ (0, yc) with some yc > 0 and
w′(y) > 0 for large y. Thus we have

S(y∗)

y∗
≤

Φ(y∗)

y∗
≤ 4Φ′(y∗) for each y∗ ∈ (0, yc).As a onsequene of (17) we obtain(18) 4Φ′(y) + Φ(y)(1 + 8Φ′(y∗)) ≥ 4Φ′(y∗)or 4Φ′(y) + Φ(y) ≥ 4Φ′(y∗)(1 − 2Φ(y)). Take y > 0 small enough suh that Φ(y) < 1

2 .Sine Φ′(y) − S′(y) = τ
4S(y) = o(1) as y → 0, passing to the limit y∗ → 0 in (18) we get

limy→0 Φ′(y) = limy→0 S
′(y) ∈ (0,∞).Evidently, it follows from (11) that Φ is a supersolution to the linear problem
−4η′′ − η′ = 0, η(0) = 0, η(∞) =

M̂

2π
,and the omparison priniple ensures that Φ(y) ≥ Φ(∞)(1 − e−y/4). On the other hand,the inequality 4Φ′′ + Φ′ ≤ 0 implies(19) Φ′(y) ≤ Φ′(0)e−y/4,



A NOTE ON THE PAPER OF Y. NAITO 37so in partiular Φ′(y) → 0 as y → ∞. Therefore, the inequality Φ(y) ≤ 4Φ′(0)(1− e−y/4)is satis�ed.A more preise asymptoti formula for Φ′ an be obtained from (11) written as
0 =

Φ′′(y)

Φ′(y)
+

1

4
+
S(y)

2y

=
d

dy

(
log(Φ′(y)) +

y

4
+

∫ y

1

S(z)

2z
dz

)
;note that Φ′(y) > 0 for y > 0. Integrating this on (1, y) we obtain

log(Φ′(y)) +
y

4
=

1

4
+ log(Φ′(1)) −

∫ y

1

S(z)

2z
dz → const as y → ∞.Hene limy→∞ Φ′(y)ey/4 = ℓ ∈ (0,∞), and (16) follows immediately.It is lear from (11)�(12) and (15) that the uniqueness problem for Φ and that for Swith the presribed value of(20) M̂

2π
= Φ(∞) =

τ

4

∫ ∞

0

S(z) dzare equivalent. We reall from [3, Lemma 4.1℄ the idea of proving suh a uniquenessproperty. First, the uniqueness of solutions of the Cauhy problem assoiated with (15)(or (11)) is established. Next, if Φ′
1(0) < Φ′

2(0), then Φ1(y) < Φ2(y) for eah y > 0.Finally, limy→∞ Φ1(y) < limy→∞ Φ2(y) should be proved. Unfortunately, we are not ableto show the last two properties.Despite some singularities of the oe�ients, the uniqueness for the Cauhy problem(15) with a given S′(0) ∈ (0,∞) holds; we reall here [3, (50)℄ where this was the �rststep in the proof in the hain (50)�(55) [3℄.Lemma 2.2. Let S1, S2 be two solutions of (15), S1(0) = S2(0). If S′
1(0) = S′

2(0) ∈

(0,∞), then S1(y) = S2(y) for eah y > 0.The following result, see [3, (53)℄, is the key point in proving Lemma 2.2.If n ∈ C1([0, Y0)) satis�es the linear seond order di�erential equation(21) n′′(y) + a(y)n′(y) + b(y)n(y) = 0 , y ∈ (0, Y0),with a(y) ≥ 0, b ∈ C1((0, Y0)) suh that b(y) ≥ 0, b′(y) ≤ 0, b(y) = O(y−2) as y → 0, and
n(0) = n′(0) = 0, then(22) n(y) = 0 for y ∈ (0, Y0).Indeed, we multiply (21) by n′ and integrate over (0, Y ), 0 < Y < Y0, to obtain

1

2
(n′)2(Y ) +

∫ Y

0

a(z)(n′(z))2 dz +
1

2
b(Y )n2(Y ) −

1

2

∫ Y

0

b′(z)n2(z) dz = 0,the boundary terms at y = 0 vanishing thanks to the assumptions on b and n. Sine both
a and −b′ are nonnegative, we onlude that n′(Y ) = 0 for eah Y ∈ (0, Y0), whene (22).



38 P. BILERNow, putting n = S2 − S1, it follows from (15) that n satis�es n(0) = n′(0) = 0 and
n′′(y) + a(y)n′(y) + b(y)n(y) = 0 with

a(y) =
τ + 1

4
+

(S2 + S1)(y)

4y
and b(y) =

τ

16
+

(S2 + S1)
′(y)

4y
+
τ

4

(S2 + S1)(y)

2y
.Owing to the regularity properties of S1 and S2 already established, a and b ful�ll therequirements needed to apply the previous result (in partiular, b is a sum of produts oftwo stritly dereasing funtions in the neighborhood of y = 0 sine S1, S2 are onavethere), whene the onlusion.Lemma 2.3. For any τ > 0 and eah solution (Φ, S) of (11) we have S(y) < 4.Proof. The ase τ ∈ (0, 1] has already been onsidered in [7, Prop. 6.1℄. The idea was touse the seond equation in (11) represented as in (14). Then the �rst equation in (11)was multiplied by exp(τy/4) to get(23) (eτy/4Φ′(y))′ +

1 − τ

4
eτy/4Φ′(y) +

1

2y
eτy/4Φ′(y)

(
e−τy/4

∫ y

0

eτz/4Φ′(z) dz

)
= 0,and dropping the seond term on the left hand side (whih is positive for τ ≤ 1) weobtain

W ′′(y) +
1

2y
W ′(y)e−τy/4W (y) ≤ 0for the auxiliary funtion W (y) = eτy/4S(y), whih yields(24) S(y) ≤
τy

eτy/4 − 1
< 4, 0 < τ ≤ 1,f. [7, (6.8)℄.If τ > 1, we take into aount the seond term in (23), and rewrite the equation forW

W ′′(y) +
1 − τ

4
W ′(y) +

1

2y
W ′(y)e−τy/4W (y) = 0as

yW ′′(y) +
1 − τ

4
yW ′(y) +

1

4
(W 2(y))′e−τy/4 = 0.Then we integrate the equation and divide by W 2 to obtain

yW ′ −W

W 2
+

1 − τ

4

y

W
−

1

W 2

1 − τ

4

∫ y

0

W (z) dz+
1

4
e−τy/4+

1

W 2

τ

16

∫ y

0

W 2(z)e−τz/4 dz = 0.Dropping the third and the �fth (nonnegative!) terms on the left hand side we arrive at
1

4
e−τy/4 ≤

(
y

W (y)

)′

+
τ − 1

4

(
y

W (y)

)
.Finally, onsidering the quantity R(y) = exp

(
τ−1
4 y

)
y

W (y) , we obtain 1
4e

−y/4 ≤ R′(y),and thus
W (y) ≤

yeτy/4

(1 + 1/Φ′(0))ey/4 − 1
<

yeτy/4

ey/4 − 1from whih(25) S(y) ≤
y

ey/4 − 1
< 4, τ > 1,readily follows.



A NOTE ON THE PAPER OF Y. NAITO 39Lemma 2.4. If τ ∈ [0, 1/2], then M̂
2π < 4.Proof. Consider the funtion L(y) = (Φ(y) − 2)2 + 4 yΦ′(y) reminisent of that in theproof in [1, Prop. 3 (i)℄. L satis�es the relation

L′(y) = 2Φ′(y)

(
Φ(y) − S(y) −

y

2

)

so that
(
M̂

2π

)2

− 4
M̂

2π
= L(∞) − L(0) =

∫ ∞

0

(
Φ(y) −

M̂

2π

)′

(2Φ(y) − 2S(y) − y) dy

= −

∫ ∞

0

(
M̂

2π
− Φ(y)

)(
1 −

τ

2
S(y)

)
dy.Now, for τ ≤ 1/2 the integrand in the last term is stritly positive sine Φ(y) < M̂

2π and
S(y) < 4 by Lemma 2.3, so that Φ(∞) = M̂

2π < 4 follows.Lemma 2.5. If τ ∈ (1/2, 1] then M̂
2π < 2

3π
2. If τ > 1 then M̂

2π < min(τ 2
3π

2, 4(τ + 1)).Proof. Sine (20) holds, (24) yields the relation
M̂

2π
= Φ(∞) < 4

∫ ∞

0

z

ez − 1
dz =

2

3
π2for 1/2 ≤ τ ≤ 1.On the other hand, (25) leads to

M̂

2π
= Φ(∞) <

τ

4

∫ ∞

0

y

ey/4 − 1
dy = τ

2

3
π2for τ > 1, whih improves the estimate M̂

2π < τ2 2
3π

2 in [7, Prop. 6.1℄.Rewrite the �rst equation in (11) in the form(26) (4 yΦ′(y))′ − 4Φ′(y) + yΦ′(y) + 2Φ′(y)S(y) = 0.Integrating the last term in (26) over (0,∞) we obtain using (11)
∫ ∞

0

Φ′S =
4

τ

∫ ∞

0

Φ′(Φ′ − S′) = −
4

τ

∫ ∞

0

Φ′′(Φ − S)

=
4

τ

∫ ∞

0

(
1

4
Φ′ +

1

2y
Φ′S

)
(Φ − S)

=
1

2τ
Φ2

∣∣∣∣
∞

0

−
1

τ

∫ ∞

0

Φ′S +
2

τ

∫ ∞

0

1

y
Φ′S(Φ − S).Sine Φ′(y) > 0, Φ(y) − S(y) = τ

4

∫ y

0
S(z) dz, we arrive at

2

∫ ∞

0

Φ′S ≥

(
1 +

1

τ

)−1
1

τ

(
M̂

2π

)2

= (τ + 1)−1

(
M̂

2π

)2

(this was done integrating (26) over (0,∞) and using (19)). Hene we have −4( M̂
2π ) +

(τ + 1)−1( M̂
2π )2 ≤ 0, that is: M̂

2π ≤ 4(τ + 1) whih is a better bound than M̂
2π < τ2 2

3π
2 for

τ > 4( 2
3π

2 − 4)−1 ≈ 1.5505 . . . .



40 P. BILERUsing essentially the same type of argument as in [3, Proposition 4.2℄ we may obtainthe following result for radially symmetri solutions of the system (1)�(2):Proposition 2.6. Let (ϕ, ψ) be a solution to the problem (8). Then there exists a self-similar solution ϕ∞(s, t) = Φ∞(s/t) with Φ∞ satisfying (11) suh that
lim

t→∞
‖ϕ(t) − ϕ∞(t)‖L∞ = 0.In fat, ϕ∞(s, t) = supλ>0 ϕ(λs, λt).Note that if we had the uniqueness of self-similar solutions of (11), the onlusionmight be strengthened to:For the self-similar solution Φ

M̂
orresponding to the mass M̂ ,

lim
t→∞

‖ϕ(t) − Φ
M̂
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