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Abstract. It is shown that every unital σ-complete topologically primitive strongly galbed

Hausdorff algebra in which all elements are bounded is central.

1. Introduction

1.1. Let C be the field of complex numbers, N= {0, 1, 2, . . .} the set of natural numbers,

Z+ = {1, 2, . . .} the set of positive integers and l0 the set of all C-valued sequences (αn)

where αm 6= 0 for only a finite number of elements αm. For every k > 0 let lk be the set

of all C-valued sequences (αn) for which the series
∞∑

v=0

|αv|k

converges, l = l1 \ l0, and
l(0,1] =

⋂

k∈(0,1]

lk.

Let A be an associative topological algebra over C with separately continuous multipli-

cation (for short, a topological algebra).

Definition 1. We will say that a topological algebra A is a galbed algebra if there exists

a sequence (αn) ∈ l such that for each neighbourhood O of zero in A there is another

neighbourhood U of zero in A such that
{ n∑

k=0

αkak : a0, . . . , an ∈ U
}
⊂ O

for each n ∈ N.
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Furthermore, if there exists a sequence (αn) ∈ l with α0 6= 0 and

α = inf
n>0
|αn|

1
n > 0

such that the previous condition is true, then we say that A is a strongly galbed algebra.

We call α the ”module of galbness” of A.

In case we have already specified the sequence (αn) ∈ l, then we talk about (αn)-galbed

algebra and strongly (αn)-galbed algebra.

For a linear topological space X, the notions of (αn)-galbed space and galbed space are

defined similarly (see [8]). It is clear, that every (αn)-galbed algebra is an (αn)-galbed

space and every galbed algebra is a galbed space.

Recall that a topological algebra A is locally pseudoconvex if it has a base

{Uλ : λ ∈ Λ} of neighbourhoods of zero consisting of balanced and pseudoconvex sets

(that is, of sets U for which µU ⊂ U , whenever |µ| ≤ 1, and U + U ⊂ ρU for a ρ ≥ 2).

In particular, when every Uλ in {Uλ : λ ∈ Λ} is idempotent (that is, UλUλ ⊂ Uλ), then

A is called a locally m-pseudoconvex algebra, and when every Uλ in {Uλ : λ ∈ Λ} is

A-pseudoconvex (that is, for any a ∈ A there is a µ > 0 such that aUλ, Uλa ⊂ µUλ), then

A is called a locally A-pseudoconvex algebra. It is well known (see [20], p. 4, or [9], p. 189)

that the locally pseudoconvex topology on A can be given by a family {pλ : λ ∈ Λ} of

kλ-homogeneous seminorms, where kλ ∈ (0, 1] for each λ ∈ Λ. The topology of a locally

m-pseudoconvex (A-pseudoconvex) algebra A can be given by a family {pλ : λ ∈ Λ}
of kλ-homogeneous submultiplicative1 (respectively, A-multiplicative2) seminorms, where

kλ ∈ (0, 1] for each λ ∈ Λ. In particular, when kλ = 1 for each λ ∈ Λ, then A is a locally

convex (respectively, locally m-convex and locally A-convex) algebra, and when the topol-

ogy of A has been defined by only one k-homogeneous seminorm with k ∈ (0, 1], then A

is a locally bounded algebra. Moreover, a complete locally bounded Hausdorff algebra A

is a k-Banach algebra for some k ∈ (0, 1], a complete metrizable algebra A is a Fréchet

algebra, a sequentially complete algebra is a σ-complete algebra and a unital topological

algebra A in which the set of all invertible elements is open (the center Z(A) of A is

topologically isomorphic to C) is a Q-algebra (respectively, a central algebra). An algebra

A is an exponentially galbed algebra (see, for example, [1], [2], [3], [4], [5], [6], [18] and

[19]) if for every neighbourhood O of A there is another neighbourhood U of zero such

that { n∑

k=0

ak
2k

: a0, . . . , an ∈ U
}
⊂ O

for each n ∈ N. It is easy to see that every locally pseudoconvex algebra is an exponen-

tially galbed algebra.

Notice that every (2−n)-galbed algebra is an exponentially galbed algebra, every locally

pseudoconvex algebra is an (αn)-galbed algebra if (αn) ∈ l(0,1], and every locally k-convex

algebra is an (αn)-galbed algebra if (αn) ∈ lk. Moreover, every exponentially galbed

algebra is an (αn)-galbed algebra if |αn| ≤ 2−n for each n ∈ N, and every (αn)-galbed

1That is, pλ(ab) ≤ pλ(a)pλ(b) for each a, b ∈ A and λ ∈ Λ.
2That is, for each a ∈ A and each λ ∈ Λ there are numbers N(a, λ) > 0 and M(a, λ) > 0

such that pλ(ab) ≤ N(a, λ)pλ(b) and pλ(ba) ≤M(a, λ)pλ(b) for each b ∈ A.
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algebra is an exponentially galbed algebra if |αn| ≥ 2−n for each n ∈ N. Hence, the class

of galbed algebras is much larger than the class of exponentially galbed algebras.

A topological algebra A is a topologically primitive algebra (see [7]) if {a ∈ A :

aA ⊂M} = {θA} ({a ∈ A : Aa ⊂M} = {θA}) for a closed maximal regular (or mod-

ular) left (respectively, right) ideal M of A (here θA denotes the zero element of A).

Recall that a ring (in particular, algebra) R is primitive if it has a maximal regular

left (respectively, right) ideal M such that {a ∈ R : aR ⊂ M} = {θR} (respectively,

{a ∈ R : Ra ⊂M} = {θR}). An element a in a topological algebra A is bounded if there

exists a number λa ∈ C\{0} such that the set
{(

a

λa

)n
: n ∈ Z+

}

(n ∈ N, if A is unital) is bounded in A. If all elements in A are bounded, then A is a

topological algebra with bounded elements. An element a ∈ A is nilpotent if am = θA for

some m ∈ N. If all elements in A are nilpotent, then A is called a nil algebra.

1.2. It is well known that the center of a primitive ring is an integral domain3 (see

[12], Lemma 2.1.3, p. 45) and any commutative integral domain can be the center of

a primitive ring4 (see [13], Chapter II.6, Example 3, p. 36). Recall that every field is

a commutative integral domain, but a commutative integral domain is not necessarily a

field. In particular (see [7]), when R is a unital primitive locally A-pseudoconvex Hausdorff

algebra or a unital primitive locally pseudoconvex Fréchet Q-algebra, then R is central

(for Banach algebras a similar result is given in [15], Corollary 2.4.5, see also [10], p.

127; [14], Theorem 4.2.11, and [11], Theorem 2.6.26 (ii); for k-Banach algebras in [9],

Corollary 9.3.7; for locally m-convex Q-algebras in [16], Corollary 2, and for locally A-

convex algebras in which all maximal ideals are closed in [17], Theorem 3). In [4] it was

shown that a unital σ-complete topologically primitive exponentially galbed Hausdorff

algebra with bounded elements is central.

In the present paper we will show that a similar result will be true for any unital

σ-complete topologically primitive strongly galbed Hausdorff algebra in which all ele-

ments are bounded.

2. Auxiliary results. Let M be a closed linear subspace of a linear topological space

X. By X/M we denote the quotient space of X with respect to M . To describe the center

of primitive galbed algebras we need the following results.

Proposition 2.1. Let X be a (strongly) galbed space. If M is a closed linear subspace of

X, then X/M is a (strongly) galbed (Hausdorff) space.

Proof. Let τ be the topology on X such that (X, τ) is an (αn)-galbed space. Let M

be a closed linear subspace of X and τM the quotient topology on X/M , defined by τ .

Let π : X → X/M be the canonical homomorphism and O a neighbourhood of zero in

3A ring R is an integral domain, if from a, b ∈ R and ab = θR follows that a = θR or b = θR.
4The author would like to express his gratitude to Professor Laszlo Marki for informing him

about this result.
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(X/M, τM). Then π is continuous and open. Therefore, O′ = π−1(O) is a neighbourhood

of zero in (X, τ) and there exists a neighbourhood V of zero in X such that

{ n∑

k=0

αkvk : v0 . . . , vn ∈ V
}
⊂ O′

for each n ∈ N. Now, U = π(V ) is a neighbourhood of zero in (X/M, τM) such that

{ n∑

k=0

αkuk : u0, . . . , un ∈ U
}
⊂ O

for each n ∈ N. Thus, (X/M, τM) is an (αn)-galbed (Hausdorff) space.

Proposition 2.2. Let A be a unital strongly galbed Hausdorff algebra with bounded ele-

ments, which is also σ-complete or a nil algebra. Moreover, let λ0 ∈ C and a0 ∈ A. Then

there exists a neighbourhood O(λ0) of λ0 such that
∞∑

k=0

(λ− λ0)kak0

converges in A and

(eA + (λ0 − λ)a0)−1 =
∞∑

k=0

(λ− λ0)kak0

for each λ ∈ O(λ0).

Proof. Let A be an (αn)-galbed Hausdorff algebra with bounded elements, α > 0 and O

an arbitrary neighbourhood of zero in A. Then there is a closed and balanced neighbour-

hood O′ of zero in A and a closed neighbourhood O′′ of zero in C such that O′′O′ ⊂ O.

Now O′ yields a balanced neighbourhood V of zero in A such that

{ n∑

k=0

αkvk : v0, . . . , vn ∈ V
}
⊂ O′

for each n ∈ N. Since every element in A is bounded, there is a number

µ0 = µa0
∈ C\{0} such that {(

a0

µ0

)n
: n ∈ N

}

is bounded in A. Therefore, there exists a number ρ0 > 0 such that
(
a0

µ0

)n
∈ ρ0V ∩ ρ0α0V

for each n ∈ N.

Let now a0 ∈ A and λ0 ∈ C be fixed,

Sn(λ) =

n∑

k=0

(λ− λ0)kak0

for each n ∈ N and λ ∈ C,

UC =

{
λ ∈ C : |λ| < α

|µ0|

}
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and O(λ0) = λ0 + UC. Then

Sm(λ)− Sn(λ) =

m∑

k=n+1

(λ− λ0)
k
ak0 =

m−n−1∑

k=0

(λ− λ0)
n+k+1

an+k+1
0

for each n,m ∈ N, whenever m > n and λ ∈ C. If we take

vn,k(λ) = (λ− λ0)k
an+k+1

0

ρ0αkµ
n+1
0

for each n, k ∈ N and λ ∈ C, then

Sm(λ)− Sn(λ) = (λ− λ0)n+1µn+1
0 ρ0

m−n−1∑

k=0

αkvn,k(λ)

for each n,m ∈ N, whenever m > n and λ ∈ C. Now,

vn,0(λ) =
1

ρ0α0

(
a0

µ0

)n+1

∈ V

and

vn,k(λ) =
1

ρ0

(
(λ− λ0)µ0

α

)k
αk

αk

(
a0

µ0

)n+k+1

∈ 1

ρ0

(
(λ− λ0)µ0

α

)k
αk

αk
ρ0V ⊂ V

for each n ∈ N, k ∈ Z+ and λ ∈ O(λ0), because |(λ − λ0)µ0| < α and αk ≤ αk for each

k ∈ Z+. Hence,

Sm(λ)− Sn(λ) ∈ ((λ− λ0)µ0)n+1ρ0O
′,

whenever m > n and λ ∈ O(λ0). Since again |(λ−λ0)µ0| < α < 1, there exists a number

n0 ∈ N such that

((λ− λ0)µ0)n+1 ∈ 1

ρ0
O′′

for each n > n0. Taking this into account,

Sm(λ)− Sn(λ) ∈ 1

ρ0
O′′ρ0O

′ ⊂ O′′O′ ⊂ O,

whenever m > n > n0 and λ ∈ O(λ0), since O′ is balanced. This means that (Sn(λ)) is

a Cauchy sequence in A for each fixed λ ∈ O(λ0).

In the case when A is σ-complete, the sequence (Sn(λ)) converges in A. But if A is

not σ-complete, let A be a nil algebra. Then am+1
0 = θA for some m ∈ N. Hence,

Sn(λ) =

m∑

k=0

(λ− λ0)kak0

for each λ ∈ C, whenever n ≥ m. Consequently, (Sn(λ)) converges in A for each λ ∈ O(λ0)

in both cases.

Because

(eA + (λ0 − λ)a0)
∞∑

k=0

(λ− λ0)kak0 =
∞∑

k=0

(λ− λ0)kak0(eA + (λ0 − λ)a0) = eA,
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we have

(eA + (λ0 − λ)a0)−1 =
∞∑

k=0

(λ− λ0)kak0

for each λ ∈ O(λ0).

Corollary 2.3. Let A be a unital strongly galbed Hausdorff algebra with bounded ele-

ments. If A is a σ-complete or a nil algebra, then for each a0 ∈ A there exists a number

R > 0 such that
∞∑

k=0

ak0
µk+1

converges in A, whenever |µ| > R.

Proof. If we take λ0 = 0 in the previous proposition, then we get that
∞∑

k=0

λkak0

converges in A, whenever |λ| < δ for some δ > 0. If now |µ| > R = δ−1, then |µ−1| < δ

which means that ∞∑

k=0

ak0
µk

converges in A. Hence,
∞∑

k=0

ak0
µk+1

=
1

µ

∞∑

k=0

ak0
µk

converges in A, whenever |µ| > R.

3. Main result. Now, by Proposition 2.2 and Corollary 2.3, we give a description of

the center Z(A) of unital topologically primitive strongly galbed Hausdorff algebras A in

which all elements are bounded.

Theorem 3.1. Let A be a unital σ-complete topologically primitive strongly galbed Haus-

dorff algebra with bounded elements. Then A is a central algebra.

Proof. There exists a sequence (αn) ∈ l such that A is (αn)-galbed with α0 6= 0 and

α = infn>0|αn|
1
n > 0. Let M be a closed maximal left ideal5 in A such that {a ∈ A :

aA ⊂ M} = {θA} (then M ∩ Z(A) = {θA}), πM a canonical homomorphism from A

onto the quotient space A/M of A with respect to M and for each z ∈ Z(A)\{θA} let

Kz = {a ∈ A : az ∈M}. Because mz = zm ∈M for each m ∈M and eAz = z 6∈M , we

have M ⊂ Kz 6= A. Hence, Kz is a left ideal in A. Since the ideal M is maximal, M = Kz

for each z ∈ Z(A)\{θA}.
We will show that for every z ∈ Z(A) there is a number λz ∈ C such that z = λzeA.

If z = θA, then we take λz = 0. Suppose now that there exists a z ∈ Z(A) \ {θA} such

that z(λ) = λeA − z 6= θA for all λ ∈ C. Then z(λ) ∈ Z(A)\{θA} means that z(λ) 6∈ M
for each λ ∈ C, M+Az(λ) is a left ideal in A, M ⊂M+Az(λ) and z(λ) = θA+eAz(λ) ∈

5If M is a closed maximal right ideal, then the proof is similar.
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(M+Az(λ))\M for each λ ∈ C. Since M is a maximal left ideal in A, we have M+Az(λ) =

A for each λ ∈ C. Therefore, for each λ ∈ C, there are m(λ) ∈M and a(λ) ∈ A such that

eA = m(λ)− a(λ)z(λ), because of which a(λ)z(λ) + eA ∈M .

Let a′(λ) ∈ A be another element such that a′(λ)z(λ) + eA ∈M . Then from [a(λ)−
a′(λ)]z(λ) = a(λ)z(λ)− a′(λ)z(λ) ∈M it follows that [a(λ)− a′(λ)] ∈ Kz(λ) = M . Thus,

πM (a(λ)) = πM (a′(λ)) for each λ ∈ C.

Moreover, let λ0 ∈ C and d(λ) = eA + (λ0 − λ)a(λ0) for each λ ∈ C. Then there is

(by Proposition 2.2) a neighbourhood O(λ0) of λ0 such that
∞∑

k=0

(λ− λ0)ka(λ0)k

converges in A and

d(λ)−1 =
∞∑

k=0

(λ− λ0)ka(λ0)k

for each λ ∈ O(λ0). Now

a(λ0)d(λ)−1z(λ) + eA = a(λ0)d(λ)−1z(λ)− [a(λ0)z(λ0)−m(λ0)] =

−a(λ0)d(λ)−1[−z(λ) + d(λ)z(λ0)] +m(λ0) =

−a(λ0)d(λ)
−1

[(z − λeA) + (eA + (λ0 − λ)a(λ0))(λ0eA − z)] +m(λ0) =

−a(λ0)d(λ)
−1

[(λ0 − λ)(eA + a(λ0)z(λ0))] +m(λ0) =

−a(λ0)d(λ)
−1

(λ0 − λ)m(λ0) +m(λ0) ∈M.

Therefore, πM (a(λ)) = πM (a(λ0)d(λ)−1) for each λ ∈ O(λ0).

Let Ψ(λ) = πM (a(λ)) for each λ ∈ C. We will show that Ψ is an (A/M)-valued

analytic function6 on C ∪{∞}. For it, let again λ0 ∈ C. Then Ψ(λ) = πM (a(λ0)d(λ)−1)

for each λ ∈ O(λ0) and there exists a number δ > 0 such that λ0 + λ ∈ O(λ0), whenever

|λ| < δ.

Now,

Ψ(λ0 + h) = πM (a(λ0)d(λ0 + h)
−1

) = πM

(
a(λ0)

∞∑

k=0

hka(λ0)
k
)

=

∞∑

k=0

hkπM (a(λ0)
k+1

),

if |h| < δ, where πM (a(λ0)k+1) ∈ A/M for each k ∈ N.

By Corollary 2.3 there is a number R > 0 such that
∞∑

k=0

zk

λk+1

converges in A, if |λ| > R. Easy calculation shows that

z(λ)
∞∑

k=0

zk

λk+1
=
∞∑

k=0

zk

λk+1
z(λ) = eA.

6That is, if λ0 ∈ C, then there are a number δ > 0 and a sequence (xn) of elements of A/M

such that Ψ(λ0 + λ) =
∑∞
k=0 xkλ

k, whenever |λ| < δ. Otherwise, there are a number R > 0 and

a sequence (yn) of elements of A/M such that Ψ(λ) =
∑∞
k=0 yk/λ

k, whenever |λ| > R.
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Therefore,

z(λ)
−1

=

∞∑

k=0

zk

λk+1
,

whenever |λ| > R. Since z(λ)
−1
z(λ)− eA ∈M for each λ with |λ| > R, we have

Ψ(λ) = πM (z(λ)−1) = πM

( ∞∑

k=0

zk

λk+1

)
=
∞∑

k=0

πM (zk)

λk+1
,

if |λ| > R, where πM (zk) ∈ A/M for each k ∈ N. Consequently, Ψ is an analytic

(A/M)-valued function on C ∪{∞}. Since A/M is a strongly galbed Hausdorff space

by Proposition 2.1, Ψ is a constant map, by Theorem 2.1 from [8].

To show that Ψ(λ) = θA/M for each λ ∈ C, let O be any neighbourhood of zero in A.

Then there exist in A a closed neighbourhood O′ of zero and a balanced neighbourhood

V of zero such that O′ ⊂ O and
{ n∑

k=0

αkvk : v0, . . . , vn ∈ V
}
⊂ O′

for each n ∈ N. Moreover, there are µz ∈ C\{0} and ρV > 0 such that
(
z

µz

)k
∈ ρV V

for each k ∈ N. If now |λ| > max{ |µz |α , ρV ,
ρV
α0
}, then

∣∣∣∣
ρV
λ

αk

αk

(
µz
αλ

)k∣∣∣∣ < 1

for each k ∈ N and

vk(λ) =
zk

αkλk+1
=

1

ρV

ρV
λ

αk

αk

(
µz
αλ

)k(
z

µz

)k
∈ 1

ρV

[
ρV
λ

αk

αk

(
µz
αλ

)k]
ρV V ⊂ V

for each k ∈ N, because V is balanced. Therefore,
n∑

k=0

zk

λk+1
=

n∑

k=0

αkvk(λ) ∈ O′

for each n ∈ N. Since O′ is closed, we have

z(λ)
−1

=

∞∑

k=0

zk

λk+1
= lim

n→∞

n∑

k=0

αkvk(λ) ∈ O′ ⊂ O,

whenever |λ| > max{ |µz |α , ρV ,
ρV
α0
, R}. Hence,

lim
|λ|→∞

z(λ)−1 = θA

and

lim
|λ|→∞

Ψ(λ) = lim
|λ|→∞

πM (z(λ)−1) = πM ( lim
|λ|→∞

z(λ)−1) = θA/M .

Thus, Ψ(λ) = θA/M or a(λ) ∈M for each λ ∈ C. Therefore,

eA = −(a(λ)z(λ)− eA) + a(λ)z(λ) ∈M,
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which is not possible. Consequently, for every z ∈ Z(A) there is a λz ∈ C such that

z = λzeA. Hence, Z(A) is isomorphic to C.

To show that the isomorphism ρ defined by ρ(z) = λz for each z ∈ Z(A) is continuous,

let O be a neighbourhood of zero in C. Then there exists an ε > 0 such that

Oε = {λ ∈ C : |λ| < ε} ⊂ O.
Let λ0 ∈ Oε\{0}. Since A is a Hausdorff space, there exists a balanced neighbourhood V

of zero of A such that λ0eA 6∈ V . But then also

λ0eA 6∈ V ′ = V ∩ Z(A).

If |λz | ≥ |λ0|, then |λ0λ
−1
z | ≤ 1 and therefore, λ0eA = (λ0λ

−1
z )z ∈ V ′ for each z ∈ V ′,

which is not possible. Hence, λz ∈ O for each z ∈ V ′. Thus, ρ is continuous (ρ−1 is contin-

uous because Z(A) is a topological linear space in the subspace topology). Consequently,

A is central.

Remark 3.2. Based on the previous Theorem 3.1 we can use the techniques of [3] to

obtain the description of all closed maximal regular ideals of a unital σ-complete strongly

galbed algebra A in which all elements are bounded (see Theorem 3.6 in [3]). Similarly, by

looking at the framework of Theorem 3.13 in [3], we can also show that such an algebra

can be viewed as a subalgebra of the section algebra.

The author wishes to express his gratitude to Professor Anastasios Mallios for very

useful conversations and terminological recommendations during the writing of the

present article.
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