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Abstract. We deal with dual complementors on complemented topological (non-normed) al-

gebras and give some characterizations of a dual pair of complementors for some classes of

complemented topological algebras. The study of dual complementors shows their deep connec-

tion with dual algebras. In particular, we refer to Hausdorff annihilator locally C∗-algebras and

to proper Hausdorff orthocomplemented locally convex H∗-algebras. These algebras admit, by

their nature, the same type of dual pair of complementors. Dual pairs of complementors are

also obtained on their closed 2-sided ideals or even on particular 1-sided ideals. If (⊥l,⊥r) de-

notes a pair of complementors on a complemented algebra, then through the notion of a ⊥l (resp.

⊥r)-projection, we get a structure theorem (analysis via minimal 1-sided ideals) for a semisimple

annihilator left complemented Q′-algebra. Actually, such an algebra contains a maximal family,

say (xi)i∈Λ, of mutually orthogonal minimal ⊥l-projections and the respective minimal ideals

(factors of the analysis) are the Exi and xiE, i ∈ Λ. As a consequence, an analysis is given for a

certain locally C∗-algebra. In this case, the respective xi’s are, in particular, projections in both

(left and right) complementors.

1. Introduction and peliminaries. Dual complementors were introduced by B. J.

Tomiuk [16] in the framework of semisimple annihilator Banach complemented algebras.

Here we extend Tomiuk’s point of view, by considering dual complementors on com-

plemented (non-normed) topological algebras (Definition 2.1) and seek the interrelations

between dual algebras and dual complementors. Moreover, we deal with two classes of

involutive topological algebras admitting the same type of dual pair of complementors

(Theorems 3.2, 3.8). Dual pairs of complementors are also obtained on their closed 2-sided

ideals and on particular 1-sided ideals (Proposition 3.5, Theorem 3.8). Finally, a structural

analysis is provided for a semisimple annihilator left complemented Q′-algebra through
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appropriate ⊥l-projections (Theorem 4.4). As a consequence, an analogous analysis is

given for a certain locally C∗-algebra (Corollary 4.5).

Throughout this paper, all algebras are over the field C of complexes. A topological

algebra E (separately continuous multiplication) is called a Q′l (resp. Q′r)-algebra, if every

maximal regular left (resp. right) ideal is closed. E is a Q′-algebra, if it is both a Q′l and

a Q′r-algebra (see [6: p. 148, Definition 1.1 ]). If S is a non-empty subset of an algebra

E, Al(S) (resp. Ar(S)) denotes the left (right) annihilator of S and it is a left (right)

ideal, which, in particular, is 2-sided if S is a left (right) ideal. In the case of a topological

algebra, the previous ideals are closed. Ll(E) ≡ Ll (Lr(E) ≡ Lr, L(E) ≡ L) denotes

the set of all closed left (right, 2-sided) ideals in a topological algebra E. An algebra

E is called left (right) preannihilator if Al(E) = (0) (resp. Ar(E) = (0); in this case,

E is also called proper). If Al(E) = Ar(E) = (0), E is called a preannihilator algebra.

A topological algebra E is said to be an annihilator algebra if it is preannihilator and

satisfies the conditions:

(1.1) If Al(I) = (0) with I ∈ Lr, then I = E,

(1.2) if Ar(J) = (0) with J ∈ Ll, then J = E.

A topological algebra E is called a left (resp. right) dual algebra if I = Al(Ar(I)) for

every I ∈ Ll (resp. J = Ar(Al(J)) for every J ∈ Lr). A left and right dual algebra is

simply called a dual algebra. A topological algebra E such that I ∈ L and I2 = (0) implies

I = (0) is called topologically semiprime. An idempotent (projection) of an algebra E is

an element x ∈ E with x = x2. In particular, x is minimal if it is non-zero and xEx is a

division algebra. Id(E) denotes the non-zero idempotent elements of E. Two idempotents

x, y ∈ E are mutually orthogonal if xy = yx = 0. A family (xi)i∈K of elements in E is

called algebraically orthogonal if for every i 6= j in K, xixj = 0. An algebra E is called

semisimple if its Jacobson radical R(E) is zero. A topological algebra E is called left

complemented if there is a mapping

(1.3) ⊥l: Ll → Ll : I 7→ I⊥l

such that

(1.4) if I ∈ Ll, then E = I ⊕ I⊥l (complementarity)

(I⊥l is called a (left) complement of I in E);

(1.5) if I, J ∈ Ll, I ⊆ J, then J⊥l ⊆ I⊥l (order reversion),

and

(1.6) if I ∈ Ll, then (I⊥l)⊥l = I (reflexivity).

A mapping ⊥l as above is called a left complementor on E.

A right complemented algebra is defined analogously, via a right complementor ⊥r.
A left and right complemented algebra is called a complemented algebra. (E,⊥l) (resp.

(E,⊥r)) denotes a left (resp. right) complemented algebra, while a complemented algebra

is denoted by (E,⊥l,⊥r). A topological algebra E satisfying (1.3), (1.5), (1.6), as well as

(1.7) if I ∈ Ll, then E = I ⊕ I⊥l



DUAL COMPLEMENTORS IN TOPOLOGICAL ALGEBRAS 221

is called a weakly left complemented algebra and I⊥l is a weak (left) complement of I.

In this case, the map ⊥l is called a weak left complementor on E. Analogous notions

are given “on the right” (see [3] and [8]). A topological algebra E is called a left (right)

precomplemented algebra if for every I ∈ Ll (resp. J ∈ Lr) there exists I ′ ∈ Ll (resp.

J ′ ∈ Lr) with E = I ⊕ I ′ (resp. E = J ⊕ J ′). E is a precomplemented algebra if it

is both left and right precomplemented [8]. A locally m-convex algebra is a topological

algebra E whose topology is defined by a family (pα)α∈A (A a directed index set) of

submultiplicative seminorms (see [12] and/or [13]). Such a topological algebra is denoted

by (E, (pα)α∈A). A C∗-seminorm is a seminorm p on an involutive algebra E, satisfying

p(x∗x) = p(x)2 for all x ∈ E (C∗-condition; [15: p. 1, Definition 1]). Such a seminorm

is submultiplicative and ∗-preserving [ibid. p. 2, Theorem 2]. A locally C∗-algebra is an

involutive complete locally (-m) convex algebra (E, (pα)α∈A) such that each pα, α ∈ A
is a C∗-seminorm [11: p. 198, Definition 2.2]. A locally convex H∗-algebra is an algebra

E equipped with a family (pα)α∈A of Ambrose seminorms in the sense that pα, α ∈ A
arises from a positive semi-definite (pseudo-)inner product < , >α such that the induced

topology makes E into a locally convex topological algebra. Moreover, the following

conditions are satisfied:

For any x ∈ E, there is an x∗ ∈ E such that

< xy, z >α = < y, x∗z >α(1.8)

< yx, z >α = < y, zx∗ >α(1.9)

for any y, z ∈ E and α ∈ A. x∗ is not necessarily unique. In case E is proper and Hausdorff,

x∗ is unique and ∗ : E → E : x 7→ x∗ is an involution (see [4: p. 451, Definition 1.1 and

p. 452, Theorem 1.3]). If (E, (pα)α∈A) is a locally convex H∗-algebra, the orthogonal S⊥

of a non-empty subset S of E is

(1.10) S⊥ = {x ∈ E :< x, y >α= 0 for every y ∈ S, α ∈ A},
a closed linear subspace of E. If I ∈ Ll, then I⊥ is a closed left ideal in E. An analogous

result holds for any I ∈ Lr or I ∈ L [ibid. p. 456, Lemma 3.2].

2. Dual pairs of complementors

Definition 2.1. Let (E,⊥l) be a left complemented algebra. We say that the map

(2.1) ⊥r: Lr → Lr with I 7→ I⊥r := Ar[Al(I)⊥l ]

is derived from ⊥l. If ⊥r defines on E a right complementor, in the sense that (E,⊥r) is

a right complemented algebra, then we say that ⊥l is a dual left complementor on E.

If (E,⊥r) is a right complemented algebra, we say that the map

(2.2) ⊥l: Ll → Ll with J 7→ J⊥l := Al[Ar(J)⊥r ]

is derived from ⊥r. If (E,⊥l) is a left complemented algebra, ⊥r is called a dual right

complementor on E.

As we see from the previous definition, if the complementor of a left or right comple-

mented algebra is dual, then this topological algebra is a complemented one.
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In case of a weakly left (resp. right) complemented algebra, we have the analogous

notion of a dual weak left (resp. right) complementor.

Definition 2.2. Let (E,⊥l,⊥r) be a complemented (resp. weakly complemented) alge-

bra. Then the pair (⊥l,⊥r) is called a dual pair of complementors (resp. of weak comple-

mentors) on E if each one of the ⊥l,⊥r is derived from the other.

Example 2.3. Let X be a completely regular k-space and Cc(X) the complete locally

m-convex algebra of all C-valued continuous functions on X with the point-wise defined

operations and the compact open topology. Cc(X) is, in particular, a locally C∗-algebra

under the involution f∗(x) = f(x), f ∈ Cc(X), x ∈ X. By Theorem 3.1 in [12: p. 337],

the points of X correspond to the closed maximal (regular) ideals of Cc(X), so that

Cc(X) is an annihilator algebra (see [8: p. 3724, Example 2.6]). Hence, by [ibid. p. 3724,

Theorem 2.5] and/or [9: p. 198, Theorem 2.4], Cc(X) is a dual complemented algebra with

complementors ⊥l (=⊥r) = ∗ ◦ Ar = ∗ ◦ Al, which are obviously dual. See also Theorem

3.1 below.

As we shall see in the sequel, dual complementors often appear in dual algebras. A

dual algebra is an annihilator one. The converse is not in general true (see the comments

at the end of Section 2 in [6: p. 151]). We provide now necessary and sufficient conditions

under which a semisimple precomplemented Q′l-algebra is a dual or an annihilator algebra.

This is Theorem 2.5 below, in the proof of which we apply the next result stated in [14:

p. 106, Theorem 2.8.29] for semisimple Banach algebras. Its proof also holds in our, more

general, form and thus it is omitted.

Theorem 2.4. Let E be a preannihilator topological algebra which is equal to the topo-

logical sum of a given family (Kα)α∈A of its closed 2-sided ideals (i.e.
∑
α∈AKα is dense

in E). Then

(i) E is an annihilator algebra if each Kα is an annihilator algebra.

(ii) E is a dual algebra if each Kα is a dual algebra and

(2.3) x ∈ Ex ∩ xE for all x ∈ E.
Notice that (2.3) is, for instance, fulfilled for preannihilator precomplemented algebras.

See also [1: p. 34, Lemma 3].

Theorem 2.5. Let E be a semisimple precomplemented Q′l-algebra and (Kα)α∈A the

family of its minimal closed 2-sided ideals. Then the following are equivalent:

1) E is an annihilator (resp. dual) algebra.

2) E is the topological direct sum of the Kα’s (i.e.
⊕

α∈AKα is dense in E) and each

Kα is an annihilator (resp. dual) algebra.

Proof. Apply Theorem 2.4 (see also the comment following it), as well as [6: p. 161,

Theorem 4.12] and [10: Theorem 3.13]. Notice that the assumption that E is a precom-

plemented algebra is used only in the “dual case” of 2)⇒ 1).

In the commutative case, there are semisimple dual (pre)complemented algebras which

are not Q′-algebras. Take, for instance, the algebra Cc(X) with X completely regular,

k-space (non-compact) (see Example 2.3). The spectrum of the algebra Cc(X), being
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identical with X (within a homeomorphism of topological spaces; see, for instance [12:

p. 223, Theorem 1.2]) is non-compact. Hence, by Proposition 1.3 in [6: p. 149] and by

Proposition 1 in [18: p. 296], Cc(X) is not a Q′-algebra.

Lemma 2.6. Let E be a semisimple precomplemented algebra. Suppose that K is a closed

2-sided ideal in E. Then the following are equivalent:

1) K satisfies the relations:

(2.4) KAKl (AKr (I)) ⊆ I for every I ∈ Ll(K)

(here AKl , AKr denote the left and right annihilator on K) and

(2.5) AKr (AKl (J))K ⊆ J for every J ∈ Lr(K).

2) K is a dual algebra.

Proof. 1)⇒ 2): Since R(K) = R(E) ∩K, K is a semisimple algebra (see also [2: p. 126,

Corollary 20]). Since E is, in particular, preannihilator, K is a precomplemented algebra

(see [8: p. 3728, Corollary 3.2; see also the comments preceding it]). Therefore, by (2.3)

and (2.4), we get I ⊆ AKl (AKr (I)) ⊆ KAKl (AKr (I)) ⊆ I for every I ∈ Ll(K). Namely, K

is a left dual algebra. Likewise, K is a right dual algebra.

2)⇒ 1): It is straightforward.

For convenience and based on Lemma 2.6, we set the next

Definition 2.7. A topological algebra E is called a predual algebra if it satisfies the

conditions: (i) EAl(Ar(I)) ⊆ I, I ∈ Ll and (ii) Ar(Al(J))E ⊆ J , J ∈ Lr.
Obviously, a dual algebra is predual.

Theorem 2.8. Let E be a semisimple precomplemented Q′l-algebra. Suppose that every

minimal closed 2-sided ideal in E is a predual algebra. Then E is a dual algebra.

Proof. We first note that E is the topological orthogonal direct sum of its minimal closed

2-sided ideals, each one of which is a semisimple, topologically simple, precomplemented

algebra (see [3: p. 969, Theorem 3.3]). It follows from Lemma 2.6 that the aforementioned

ideals are dual algebras and hence E is a dual algebra, as well (see Theorem 2.4 and the

comment following it).

By the previous proof, we see that each minimal closed 2-sided ideal in E is actually

a preannihilator precomplemented algebra. Hence, the “preduality” implies that these

ideals are dual algebras. Actually, for preannihilator, precomplemented algebras the no-

tions “predual algebra” and “dual algebra” are the same. Namely, we have the next, more

general, result.

Proposition 2.9. Let E be a preannihilator precomplemented algebra. Then the follow-

ing are equivalent:

1) E is a dual algebra.

2) E is a predual algebra.

3) Al(Ar(I)) ∩ I ′ = (0) for every I ∈ Ll and Ar(Al(J)) ∩ J ′ = (0) for every J ∈ Lr.
(I ′ resp. J ′ denotes a complement of I resp. J in E).
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Proof. We prove the assertion for closed left ideals. Analogously, on the “right”.

1)⇒ 2): It is obvious.

2)⇒ 1): Observe that x ∈ Ex∩ xE for every x ∈ E (see the comment after Theorem

2.4). Thus, for any I ∈ Ll, Al(Ar(I)) ⊆ EAl(Ar(I)) ⊆ I and hence Al(Ar(I)) = I.

1)⇔ 3): See [8: p. 3725, Proposition 2.8].

By Lemma 2.6, Theorem 2.8 and Proposition 2.9, we get the next

Corollary 2.10. Every semisimple precomplemented Q′l-algebra is (pre)dual if and only

if every minimal closed 2-sided ideal in E is a (pre)dual algebra.

The following result is stated in [16: p. 816, Proposition 3.1] for semisimple annihilator

complemented Banach algebras (hence dual ones; [ibid. p. 816, Remark]), but its proof

is still valid in the more general case of dual, complemented algebras. Namely, we have

Proposition 2.11. For every dual complemented algebra (E,⊥l,⊥r) the following are

equivalent:

1) ⊥r is derived from ⊥l.
2) ⊥l is derived from ⊥r.
The next result concerns characterizations of dual complementors over all preannihi-

lator, complemented algebras.

Theorem 2.12. Let (E,⊥l,⊥r) be a preannihilator complemented algebra. Then the fol-

lowing are equivalent:

1) The pair (⊥l,⊥r) is dual.

2) E is a dual algebra and [Ar(I)]⊥r = Ar(I⊥l) for all I ∈ Ll.
3) E is a dual algebra and [Al(J)]⊥l = Al(J⊥r) for all J ∈ Lr.

Proof. We only prove that, if the pair (⊥l,⊥r) is dual, then E is a dual algebra. For the

rest of the assertion see the proof of Theorem 3.2 in [16: p. 817]. So, let J be a closed

right ideal in E. Then J⊥r = Ar(Al(J)⊥l) (see Definitions 2.1 and 2.2). Consider the

closed left ideal Al(J). Since E is preannihilator and E = Al(J)⊕Al(J)⊥l , we get

(0) = Ar(Al(J)) ∩ Ar(Al(J)⊥l) = Ar(Al(J)) ∩ J⊥r .
Likewise, Al(Ar(I)) ∩ I⊥l = (0) for every I ∈ Ll. The duality of E follows now from

Proposition 2.9.

By Theorem 2.12 and [8: p. 3726, Proposition 2.11], we get the next.

Corollary 2.13. Let (E,⊥l,⊥r) be a preannihilator complemented algebra, such that

every I ∈ Ll ∪ Lr commutes with its complements in E. Then (⊥l,⊥r) is a dual pair of

complementors and E is a dual algebra.

The following result specializes to [16: p. 817, Theorem 3.2].

Corollary 2.14. Let E be a semisimple complemented Q′l-algebra in which every min-

imal closed 2-sided ideal is a (pre)dual algebra. Then the following are equivalent:

1) (⊥l,⊥r) is a dual pair of complementors.

2) [Ar(I)]⊥r = Ar(I⊥l) for all I ∈ Ll.
3) [Al(J)]⊥l = Al(J⊥r) for all J ∈ Lr.
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Proof. By Theorem 2.8, E is a dual algebra.

1) ⇒ 3): For any J ∈ Lr, J⊥r = Ar(Al(J)⊥l). Hence Al(J⊥r) = Al(Ar(Al(J)⊥l)).
So, since E is a dual algebra, we finally get Al(J⊥r) = [Al(J)]⊥l . See also the proof of

Theorem 3.2 in [16: p. 817].

3)⇒ 1): By the assumption and the duality of E, we get that

J⊥r = Ar(Al(J⊥r)) = Ar(Al(J)⊥l).

Thus, ⊥r is derived from ⊥l. It follows from Proposition 2.11 that ⊥l is derived from ⊥r,
as well.

2)⇔ 3): This is an immediate consequence of the duality of E and Theorem 2.12.

Theorem 2.15. Let (E,⊥l) be a right preannihilator left complemented algebra. Then

the following are equivalent:

1) ⊥l is a dual complementor and E is a predual algebra.

2) E is a dual algebra such that

(2.6) E = Ar(I) +Ar(I⊥l) for every I ∈ Ll.
Proof. 1)⇒ 2): By the comments after Definition 2.1, E is a right complemented algebra

with a right complementor ⊥r given by

(2.7) J⊥r = Ar[Al(J)⊥l ], J ∈ Lr.
Then, by using the reasoning in the proof of Theorem 2.12, we get Ar(Al(J)) = J for

all J ∈ Lr. Namely, E is a right dual algebra. Moreover, for any right preannihilator,

left complemented algebra, we get x ∈ Ex for every x ∈ E (see also the comment after

Theorem 2.4). Thus, by the proof of 2)⇒ 1) in Proposition 2.9 and the fact that E is a

predual algebra, we get that E is a left dual algebra, as well. Consider a closed left ideal

I in E and the closed right ideal K = Ar(I). Then (see also (2.7)),

K⊥r = Ar([Al(Ar(I))]⊥l) = Ar(I⊥l)
and hence (2.6) follows. Actually, E = Ar(I) ⊕ Ar(I)⊥l , since for x ∈ Ar(I) ∩ Ar(I⊥l),
Ex ⊆ Ix+ I⊥lx = (0), and thus x = 0.

2)⇒ 1): Apply a proof analogous to that of Theorem 3.5 in [16: p. 816]. We note that

here the duality of E is not needed in the proof that ⊥r reverses the inclusions.

Concerning the assumption that E of Theorem 2.15 is right preannihilator, we give

an example of a right preannihilator algebra which is not a left preannihilator algebra.

Suppose x = x2 and 0 6= y = xy, yx = 0 and y2 = 0, while if λx+ µy = 0, λ, µ ∈ C,

then λ = µ = 0. Let E = {λx+ µy : λ, µ ∈ C}. Then E is an algebra with Ar(E) = (0)

and Al(E) 6= (0).

Proposition 2.16. Let E be a topological algebra without divisors of zero. Then the

following are equivalent:

1) E is a dual algebra.

2) E is a weakly complemented algebra with weak complementors ⊥l=⊥r= Al(= Ar).
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Proof. We first note that

(2.8) Al(S) = Ar(S) for any subset S of E.

Suppose there exists 0 6= x ∈ Al(S) with Sx 6= {0}. Then xs = 0 and sx 6= 0 for some

0 6= s ∈ S. So, since xsx = 0, x = 0, a contradiction. Thus Al(S) ⊆ Ar(S). Likewise,

Ar(S) ⊆ Al(S). Moreover, a straightforward computation (see also (2.8)) yields

(2.9) S ∩ Al(S) = {0} = S ∩ Ar(S) for any subset S of E.

1) ⇒ 2) : E, as a dual algebra, is an annihilator one. Thus, by Theorem 2.12 in [8:

p. 3726] (see also (2.8)), E = I ⊕Al(I), I ∈ Ll. So, since Al is reflexive and reverses the

inclusions, (E,⊥l= Al) is a weakly left complemented algebra. A similar argument shows

the assertion on the “right”.

2)⇒ 1) : It is obvious.

It follows from Proposition 2.16 (see also the proof of Corollary 2.13) that every

topological algebra E without divisors of zero admits a dual pair of weak complementors

if and only if E is a dual algebra if and only if E satisfies 2) of Proposition 2.16.

3. Dual complementors on topological algebras with an involution. In [8: p.

3724, Theorem 2.5] it was mentioned that a Hausdorff, locally C∗-algebra E is an an-

nihilator algebra if and only if it is a dual algebra, if and only if E is a complemented

algebra with complementor

(3.1) Al = Ar |Ll∪Lr .
The proof of (3.1) was based on Corollary 2.3 [ibid. p. 3723]; we do not know if it is

true for any locally C∗-algebra. Since Theorem 2.5 in [8: p. 3724] is used in the sequel,

we amend (3.1), giving also the relative adapted proof of the theorem concerned. So, we

have the next

Theorem 3.1. Let (E, (pα)α∈A) be a Hausdorff locally C∗-algebra. Then the following

are equivalent:

1) E is an annihilator algebra.

2) E is a dual algebra.

3) E is a complemented algebra with left (resp. right) complementor ⊥l= ∗ ◦Ar (resp.

⊥r= ∗ ◦ Al).

Proof. 1)⇒ 2) : We first prove that

(3.2) E = I ⊕Ar(I)∗, I ∈ Ll.
Indeed, if x ∈ I ∩ Al(I∗), xx∗ = 0, pα(x) = 0 for all α ∈ A and hence x = 0. Thus

I ∩Ar(I)∗ = (0). Moreover, the ideal J = I⊕Ar(I)∗ is closed and Ar(J) = (0): If x ∈ J̄ ,

x = limδ xδ with (xδ)δ∈∆ a net in J and xδ = yδ + zδ, yδ ∈ I, zδ ∈ Al(I∗). Therefore,

xδy
∗
δ = yδy

∗
δ and thus pα(yδ) ≤ pα(xδ), α ∈ A. Hence (yδ)δ∈∆ is a Cauchy net in I and

hence yδ →
δ
y ∈ I. Likewise, zδ →

δ
z ∈ Al(I∗). Thus, x = y + z ∈ J and hence J ∈ Ll.

On the other hand, if x ∈ Ar(J), Jx = {0}, from which, Ix = {0} and Ar(I)∗x = {0}.
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Thus, x∗x = 0 and x = 0. Therefore, Ar(J) = (0) and hence J = E. Similarly,

(3.3) E = K ⊕Al(K)∗, K ∈ Lr.
Thus, for any I ∈ Ll, E = Ar(I) ⊕ (Al(Ar(I)))∗ and E = Ar(I)∗ ⊕ Al(Ar(I)). Since

Ar(I)∗∩ I = (0) (see (3.2)) and I ⊆ Al(Ar(I)), we get that Al(Ar(I)) = I for all I ∈ Ll.
Similarly, Ar(Al(K)) = K for all K ∈ Lr.

2)⇒ 3) : The mapping

(3.4) ⊥l:= ∗ ◦ Ar : Ll → Ll with I 7→ I⊥l := Ar(I)∗

defines on E a left complementor. By the very definitions and the duality of E, we get

I⊥l⊥l = Al(Al(I∗)∗) = Al(Ar(I)) = I,

for all I ∈ Ll. Thus, by (3.2) and the fact that ⊥l reverses the inclusion, we finally get

that (E,⊥l) is a left complemented algebra. Likewise, (E,⊥r) with

(3.5) K⊥r := Al(K)∗, K ∈ Lr
is a right complemented algebra.

3) ⇒ 2) : For any I ∈ Ll, I = [Al(I∗)]⊥l = Al(Ar(I∗∗)) = Al(Ar(I)). Similarly,

K = Ar(Al(K)) for all K ∈ Lr.
2)⇒ 1) : It is obvious.

Theorem 3.2. Every Hausdorff annihilator locally C∗-algebra admits a dual pair of

complementors.

Proof. By Theorem 3.1, an algebra, as in the statement, is dual and complemented with

left and right complementors given by (3.4) and (3.5). Thus, for any I ∈ Ll,
I⊥l = Al(Ar(I⊥l)) = Al([Al(Ar(I))]∗) = Al([Ar(I)]⊥r).

Hence ⊥l is derived from ⊥r. It follows from Proposition 2.11 that the pair (⊥l,⊥r) is

dual.

The existence of a continuous involution in a left or right complemented algebra forces

it to be a complemented algebra, as the following result shows. A similar proof holds by

interchanging “left” by “right”. See also [16: p. 818].

Proposition 3.3. Every left complemented algebra with a continuous involution is a

complemented algebra.

Proof. Let (E,⊥l) be a topological algebra as in the statement and ∗ its involution. For

J ∈ Lr, the left ideal J∗ ≡ I is closed and hence the mapping ⊥r given by

(3.6) J⊥r := (I⊥l)∗, J ∈ Lr,
where J = I∗, I ∈ Ll, is meaningful. Since E = I⊕I⊥l , E = J⊕J⊥r . Moreover, J⊥r⊥r =

[(I⊥l)∗]⊥r . So, if we let K = (I⊥l)∗, then K ∈ Lr and hence [(I⊥l)∗]⊥r = [(I⊥l)⊥l ]∗ = J .

Namely, ⊥r is reflexive. On the other hand, if J1 ⊆ J2 in Lr, then J∗1 ⊆ J∗2 . Since J1 = I∗1 ,

J2 = I∗2 for some I1, I2 ∈ Ll, we get in turn I1 ⊆ I2 and J⊥r2 ⊆ J⊥r1 , which completes the

proof.

Lemma 3.4. Let (E,⊥l,⊥r) be a complemented algebra with an involution ∗ such that

K⊥l := Ar(K)∗, K ∈ Ll and J⊥r := Al(J)∗, J ∈ Lr. Then E is a dual algebra.
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Proof. For K in Ll, K⊥l := Ar(K)∗ = Al(K∗). Namely, K⊥l is a left annihilator ideal.

Thus (cf. also [14: p. 96, Section 8]), K⊥l = Al(Ar(K⊥l)). Moreover, K = Al(K∗)⊥l :=

[Ar(Al(K∗))]∗ = Al(Al(K∗)∗) = Al(Ar(K)). Likewise, J = Ar(Al(J)) for all J ∈ Lr.
From Corollary 2.10 in [11: p. 209] every closed right ideal in a locally C∗-algebra E

has a (self-adjoint) left approximate identity. We do not know if there are closed right

ideals in E having a right approximate identity. In the positive direction, we have (ii) in

the next proposition.

Proposition 3.5. Let E be a Hausdorff annihilator locally C∗-algebra. Then the follow-

ing hold true.

(i) Every closed 2-sided ideal in E is a dual complemented algebra with a dual pair of

complementors.

(ii) Every closed right ideal in E which contains a right (self-adjoint) approximate iden-

tity, with respect to itself, is a dual complemented algebra with a dual pair of com-

plementors.

Proof. (i) Let J be an ideal as in the statement. By Theorem 2.7 in [11: p. 209], J is

self-adjoint and hence by Theorem 3.2 (see also its proof), J⊥r = Al(J)∗ = Ar(J) =

Al(J) = Ar(J)∗ = J⊥l . Thus, E = J ⊕ Al(J) = J ⊕ Ar(J) and hence Ll(J) ⊆ Ll,
Lr(J) ⊆ Lr. Therefore, since E is a dual algebra, J is a dual algebra, as well (apply a

proof analogous to that of Lemma 4.11 in [6: p. 160]. We note that the duality of J is

also justified by Lemma 3.4). Moreover, J is a complemented algebra, under the induced

complementors from E, given by

N cl = Ar(N)∗ ∩ J, N ∈ Ll(J) and M cr = Al(M)∗ ∩ J, M ∈ Lr(J).

See also Theorem 3.1 in [8: p. 3727]. By the very definitions and the duality of J , we get

for any N ∈ Ll(J),

N cl = Ar(N)∗ ∩ J = AJl (AJr (AJl (N∗))) = AJl (Al(AJr (N)∗) ∩ J) = AJl (AJr (N)cr).

Thus, the complementor cl is derived from cr, which by Proposition 2.11, is derived from

cl.

(ii) An ideal, as in the statement, is by [8: p. 3723, Lemma 2.2] self-adjoint and hence

2-sided. The assertion now follows from (i).

There are some classes of topological algebras E (with involution) for which a minimal

right ideal has the form xE with x a non-zero (self-adjoint) idempotent element in E (see

[5: p. 1183, Lemma 4.3], [6: p. 152, Theorem 3.4 and p. 153, Theorem 3.6] and [7: p.

144, Theorem 3.1]). In Proposition 3.7 below, we give a framework in which a dual left

complementor exists. For this we need the next lemma.

Lemma 3.6. Let E be a topological algebra and J a (closed) right ideal in E of the form

J = xE with x ∈ Id(E). Consider the assertions:

1) J is a right complemented algebra.

2) For K ∈ Lr(J)−{(0)}, there exists K ′ ∈ Lr(J)−{(0)} such that J = K ⊕K ′ and

K = yE, K ′ = zE with y ∈ K ∩ Id(E), z ∈ K ′ ∩ Id(E), yz = zy = 0.

3) Lr(J) ⊆ Lr.
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Then 1)⇒ 2)⇒ 3). Also, 3)⇒ 1), if E is moreover a right complemented algebra.

Proof. 1)⇒ 2) : See [8: p. 3728, Lemma 3.7].

2) ⇒ 3) : Let K be a closed right ideal in J . Then K = yE with y ∈ K ∩ Id(E).

Thus, KE = yEE ⊆ K.

3)⇒ 1) : [ibid. p. 3728, Theorem 3.1].

Proposition 3.7. Let (E, (pα)α∈A) be a Hausdorff annihilator locally C∗-algebra. Sup-

pose there is a (closed) minimal right ideal J in E, of the form J = xE with x ∈ Id(E)

and self-adjoint, so that all I ∈ Lr(J) commute with x. Then J is a right dual and

complemented algebra with a dual left complementor.

Proof. By Theorem 3.2, E admits a dual pair of complementors (⊥l,⊥r) given by (3.4)

and (3.5). Since E = J ⊕ J⊥r , we get for any I ∈ Lr(J), IE ⊆ IJ + IAl(J)∗ ⊆
I+ I(1−x)E, where (1−x)E = {t−xt : t ∈ E}. If z ∈ I, z = xz, so that xz(ω−xω) = 0

for all ω ∈ E. Thus I(1 − x)E = (0) and hence IE ⊆ I. Therefore, Lr(J) ⊆ Lr and

(J, cr) is a right complemented algebra with cr given by N cr := Al(N)∗ ∩ J , N ∈ Lr(J).

Moreover, J is a left complemented algebra with a left complementor cl induced by ⊥l
as follows:

Kcl := Ar(< K >l)
∗ ∩ J, K ∈ Ll(J).

Here < K >l denotes the closed left ideal of E, generated by K (see also [8: p. 3727,

Theorem 3.1; see also its proof]). It is easily seen that Ar(K) = Ar(< K >l), so that

Kcl = Ar(K)∗∩J ,K ∈ Ll(J). Since E = < K >l⊕< K >l
⊥l

, J = < K >l∩J+Ar(K)∗∩
J . We claim that < K >l ∩ J = K. We only have to prove that < K >l ∩ J ⊆ K. Thus,

if z ∈ < K >l ∩ J , xz = z = limδ zδ with (zδ)δ∈∆ a net in < K >l (the left ideal of

E, generated by K). Therefore, zδ =
∑n
i=1 λ

δ
iu
δ
i +

∑m
j=1 ω

δ
j v
δ
j , uδi , v

δ
j ∈ K, ωδj ∈ E and

λδi ∈ C, 1 ≤ i ≤ n, 1 ≤ j ≤ m, δ ∈ ∆. Hence

(3.7) xzδ =

n∑

i=1

λδixu
δ
i +

m∑

j=1

xωδjxv
δ
j .

Since the ideal xE is minimal, it follows, by the Gel’fand-Mazur theorem, that xEx = C
within an isomorphism of topological algebras (see [6: p. 155, Theorem 3.11; see also its

proof] as well as [12: p. 52, Lemma 3.1]). Therefore, xωδjx = µδjx, 1 ≤ j ≤ m, δ ∈ ∆. So

(see also (3.7)), xzδ =
∑n

i=1 λ
δ
ixu

δ
i +

∑m
j=1 µ

δ
jxv

δ
j ∈ K, which proves the assertion. The

above argument shows that J = K+Kcl . Now, if t ∈ K and tK∗ = (0), then tt∗ = 0 and

hence t = 0. Therefore, J = K ⊕Kcl . Denote by AJl , AJr the left and right annihilators

on J . Then, for K1 ⊆ K2 in Ll(J), we get

Kcl
2 := AJl (K∗2 ) ⊆ AJl (K∗1 ) = Kcl

1 .

Moreover, for any I ∈ Ll(J), Iclcl = AJl (AJl (I∗)∗) = AJl (AJr (I)). Therefore, I ⊆ Iclcl .

Since J = I ⊕ Icl = Icl ⊕ Iclcl it follows I = Iclcl . Thus, (J, cl, cr) is a complemented

algebra. Moreover, J is a right dual algebra: Let R be a (non-zero) closed right ideal in

J . Then, by Lemma 3.6, R = yE for some y ∈ Id(E) ∩ R. Routine computations show

that Al(yJ) = J(1− y) ≡ {j − jy : j ∈ J}. Thus,

(3.8) AJr (AJl (R)) = AJr (J(1− y)) = AJr (Al(yJ)).
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Moreover, (yx)2 = y2x = yx. If yx = 0, yxy = 0 or y2 = 0, a contradiction. Therefore,

yx is a non-zero idempotent element in E and hence yJ is a closed right ideal in E.

Moreover, Ar(Al(yJ)) = yJ , from which, in connection with (3.8), we get AJr (AJl (R)) ⊆
yJ ⊆ RJ ⊆ R and thus AJr (AJl (R)) = R. It follows, for any N ∈ Lr(J),

N cr = Al(N)∗ ∩ J = AJr (N∗) = AJr (AJl (AJr (N∗))) = AJr (AJl (N)cl).

Theorem 3.8. Let E be a proper Hausdorff orthocomplemented locally convex H∗-algebra.

Then

(i) E has a dual pair of complementors.

(ii) Every closed 2-sided ideal in E is a dual algebra and admits a dual pair of comple-

mentors.

(iii) Every closed left ideal in E which is closed with respect to adjoints is a dual algebra

and admits a dual pair of complementors.

Proof. (i) By [4: p. 457, Lemma 3.3 and p. 458, Lemma 3.7 and Theorem 3.9] E is a

dual, complemented algebra with complementors the orthomaps ⊥l, ⊥r (see also (1.10)),

so that

(3.9) I⊥l = Ar(I)∗, I ∈ Ll and J⊥r = Al(J)∗, J ∈ Lr.
Now, for any I ∈ Ll, Ar(I)⊥r = Ar(Ar(I)∗) = Ar(I⊥l). Moreover, by Theorem 2.12 and

[4: p. 452, Theorem 1.2], (⊥l,⊥r) is a dual pair of complementors.

(ii) Let I be a closed 2-sided ideal in E. By [4: p. 457, Lemma 3.4], I is self-adjoint

and hence it is a proper, Hausdorff, locally convex H∗-algebra [ibid. p. 453, Lemma 1.4].

Moreover, E = I ⊕Al(I) = I ⊕Ar(I). Thus, Ll(I) ⊆ Ll and Lr(I) ⊆ Lr (see also (3.9)

and [8: p. 3725, Theorem 2.9]). So, the mappings p : Ll(I)→ Ll(I) and q : Lr(I)→ Lr(I)

given by Jp := J⊥l ∩ I = Ar(J)∗ ∩ I, J ∈ Ll(I) and Kq := K⊥r ∩ I = Al(K)∗ ∩ I, K ∈
Lr(I) (see (3.9) and [8: p. 3727, Theorem 3.1]) are meaningful and define a left (resp. right)

complementor on I. Moreover, for any J ∈ Ll(I), AIr(J)q = Ar(Ar(J)∗∩I)∩I = AIr(Jp).
The last part of the assertion follows now from Theorem 2.12 and [4: p. 458, Theorem 3.9].

(iii) The assertion follows from (ii), since any ideal, as in the statement, is actually

2-sided.

4. ⊥l and ⊥r-projections. A structure theorem. Let (E,⊥l) be a left comple-

mented algebra and x an idempotent element (projection) in E. If (Ex)⊥l = E(1− x), x

is called a⊥l-projection. If x is, in particular, minimal, it is called a minimal ⊥l-projection.

Analogous notions are given for a right complemented algebra (E,⊥r) (cf. also [17: p.

4]). Since x is idempotent, we have the Peirce decompositions E = Ex ⊕ E(1 − x) and

E = xE ⊕ (1 − x)E. Thus, in a strictly left (resp. right) complemented algebra (viz.

I⊥l is unique, such that E = I ⊕ I⊥l , I ∈ Ll; resp. “on the right”; see [3: p. 963]) all

projections are ⊥l (resp. ⊥r)-projections. Moreover, by [6: p. 153, Theorem 3.6 and p.

155, Corollary 3.10], in a semisimple annihilator Q′-algebra a ⊥l- projection is minimal

if and only if it is a primitive element (viz. it cannot be expressed as the sum of two

orthogonal idempotents).

Concerning the next result see also [17: p. 50, Lemma 3.1]. This is also true, by

interchanging “left” and “right”.
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Lemma 4.1. Let (E,⊥l) be a semisimple annihilator left complemented Q′-algebra. Then

every non-zero left ideal I contains a minimal ⊥l-projection. If I is closed and (xi)i∈Λ is

the family of minimal ⊥l-projections in I, then I =
∑
iExi.

Proof. By [6: p. 153, Theorem 3.6 and p. 154, Corollary 3.7], I contains a minimal left

ideal, say J , which is closed and thus minimal closed. Therefore, J⊥l is a maximal closed

left ideal, which is regular (see [6: p. 152, Theorem 3.4]). Thus, by [8: p. 3729, Theorem

3.9], J contains an idempotent element, say x, so that J = Ex and J⊥l = E(1 − x).

Thus x is a ⊥l-projection, which moreover, by [6: p. 154, Theorem 3.9], is primitive or

equivalently minimal (cf. also the comments preceding Lemma 4.1) and this completes

the first part of the assertion.

Now, if I ∈ Ll, then K ≡ ∑i∈ΛExi ⊆ I. If ω ∈ I, then ω = y + z with y ∈ K,

z ∈ K⊥l . If z 6= 0, then z = ω − y ∈ I ∩K⊥l and hence I ∩K⊥l 6= (0). Thus, the left

ideal I ∩K⊥l contains a minimal ⊥l-projection, say z0. But then z0 /∈ K ⊆ I, which is a

contradiction. So, z = 0 and hence I ⊆ K, which completes the proof.

Proposition 4.2. Let (E,⊥l,⊥r) be a preannihilator complemented algebra, such that

the pair (⊥l,⊥r) is dual. Then an element x ∈ Id(E) is a ⊥l-projection if and only if it

is a ⊥r-projection.

Proof. If x is a ⊥l-projection, then (Ex)⊥l = E(1 − x). Since (⊥l,⊥r) is dual, E is a

dual algebra and [Ar(I)]⊥r = Ar(I⊥l) for all I ∈ Ll (see Theorem 2.12). Thus (xE)⊥r =

[Ar(Al(xE))]⊥r = Ar(E(1−x)⊥l) = (1−x)E. Therefore, x is a ⊥r-projection. A similar

argument establishes the reverse implication.

Topological algebras, as in Lemma 4.1, do have ⊥l and ⊥r-projections (see also the

comment preceding Lemma 4.1). So, we get the next result, that generalizes Proposition

3.3 in [16: p. 817] stated for semisimple, annihilator, bicomplemented Banach algebras

(which are dual ones; [ibid. p. 816, Remark]).

Corollary 4.3. Proposition 4.2 holds true for any semisimple annihilator complemented

Q′l-algebra.

Based on Lemma 4.1, we obtain a structure theorem, employing fewer minimal 1-sided

ideals than those given through the socle. Namely, we have the next

Theorem 4.4. Let (E,⊥l) be a semisimple annihilator left complemented Q′-algebra.

Then

(i) E contains a maximal family (xi)i∈Λ of mutually orthogonal, minimal ⊥l-proje-

ctions.

(ii) E =
∑
i∈Λ Exi =

∑
i∈Λ xiE.

Proof. (i) By [8: p. 3730, Lemma 3.12], E contains a maximal (closed) regular left ideal,

say M . By Lemma 4.1, there exist x ∈ M and y ∈ M⊥l , minimal ⊥l-projections, so

that (Ex)⊥l = E(1− x) and (Ey)⊥l = E(1− y). Therefore, E(1− x)⊥l = Ex ⊆ M and

M⊥l ⊆ E(1− x). Hence y = ω − ωx for some ω ∈ E, so that yx = 0. Likewise, xy = 0.

Namely, x, y are orthogonal. If we get the subsets of the set of all orthogonal mimimal

⊥l-projections of E, we obtain an “inductive” (partially) ordered set, with respect to

inclusion. So, by Zorn’s Lemma, we get the required maximal family.
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(ii) Consider the closed left ideal I ≡∑i∈ΛExi. Obviously, I 6= (0). So, if I is proper,

I⊥l 6= (0). Thus (Lemma 4.1), I⊥l contains a minimal ⊥l-projection, say z. Then z 6= xi
for all i ∈ Λ. Otherwise, z = xj for some j ∈ Λ. Thus z ∈ Exj ⊆ I and hence z = 0, that

is a contradiction. Now, zxi = xiz = 0, i ∈ Λ (cf. the proof of (i)), which contradicts

the maximality of the family (xi)i∈Λ. This finishes the proof of the first equality of the

assertion. Set J =
⋂
i∈ΛE(1 − xi), then Exi = E(1 − xi)⊥l ⊆ J⊥l and hence E = J⊥l .

Consider the closed right ideal L =
∑
i∈Λ xiE. If z ∈ Al(L), then zxi = 0 and hence

z = z − zxi ∈ E(1− xi), i ∈ Λ. Therefore, Al(L) ⊆ J = E⊥l = (0) and hence E = L.

Corollary 4.5. Let E be a Hausdorff annihilator locally C∗-algebra. Then E contains

a maximal family (xi)i∈Λ of mutually orthogonal, minimal, self-adjoint ⊥l (equivalently

⊥r)-projections with respect to the dual pair of complementors (⊥l,⊥r) defined by (3.4)

and (3.5). Moreover,

E =
∑

i∈Λ
Exi =

∑

i∈Λ
xiE.

Proof. By Theorems 3.1 and 3.2, E is a dual, complemented algebra with the dual pair

of complementors (⊥l,⊥r) given by (3.4) and (3.5). Moreover, E is semisimple and by

the argument in the proof of (i) in Theorem 4.4, (Ex)⊥l = E(1 − x) with x a minimal

⊥l-projection in E. Thus, see also (3.4), Ar(Ex)∗ = E(1− x) from which we get in turn

Al(x∗E) = E(1−x∗) = E(1−x),Ar(E(1−x∗)) = Ar(E(1−x)), x∗E = xE. Thus, for any

z ∈ E, xz = x∗xz, so that (x− x∗x)z = 0 for all z ∈ E and hence x = x∗x = x∗. So, by

an analogous proof as in Theorem 4.4, we get a maximal family, say (xi)i∈Λ, of mutually

orthogonal, minimal, self-adjoint ⊥l (equivalently ⊥r)-projections. The assertion now

follows from Proposition 4.2 and the proof of (ii) in Theorem 4.4.
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