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Abstract. Isometric automorphisms of normed linear spaces are characterized by suitable con-

cavity properties of powers of operators. Bounded selfadjoint operators in Hilbert spaces are

described by parallel concavity properties of the exponential group. Unbounded infinitesimal

generators of C0-groups of Hilbert space operators having concavity properties are characterized

as well.

1. Introduction. From now on, Z stands for the set of all integers and R for the field

of all real numbers. Recall that a sequence {an}∞n=0 ⊆ R ∪ {−∞} is concave if

1

2
(an + an+2) 6 an+1, n > 0.

A sequence {an}∞n=0 of nonnegative real numbers is logarithmically concave if
√
an · an+2 6 an+1, n > 0,

or equivalently if the sequence {log an}∞n=0 is concave (with the obvious convention

log 0 = −∞). Each concave sequence {an}∞n=0 of nonnegative real numbers is automati-

cally logarithmically concave because

√
an · an+2 6

1

2
(an + an+2) 6 an+1, n > 0.(1.1)

The case of bilateral sequences can be handled in much the same way. Given {an}n∈Z ⊆
[0,∞), we write

∑∞
n=0 a±n = ∞ in case

∑∞
n=0 an = ∞ and

∑∞
n=0 a−n = ∞. Similar

convention applies to the case of the limit limn→∞ a±n.
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Given a (nonzero) normed linear space X , we denote by B(X ) the algebra of all

bounded linear operators on X . We write I for the identity operator on X . If X is

a Banach space and A ∈ B(X ), then r(A) stands for the spectral radius of A. By the

Naimark-Beurling-Gelfand theorem (cf. [12, Section II] for the case of real Banach spaces),

we have

(1.2) r(A) = lim
n→∞

‖An‖1/n.

Paranormal operators were introduced in [10, 9] as generalizations of hyponormal

ones. An operator A ∈ B(X ) is called paranormal if

(1.3) ‖Ax‖2 6 ‖A2x‖ · ‖x‖, x ∈ X .
It turns out that A is paranormal if and only if the sequence {‖Anx‖}∞n=0 is logarith-

mically convex for all x ∈ X . Such operators, even though A−1 ∈ B(X ), are far from

being isometric. The study of seminormal composition operators on L2-spaces with affine

symbols led the authors of [7] to a question how to describe operators A ∈ B(X ) which

satisfy the inequality

(1.4) ‖A2x‖ · ‖x‖ 6 ‖Ax‖2, x ∈ X ,
which is, in a sense, opposite to (1.3). The condition (1.4) is equivalent to requiring

that the sequence {‖Anx‖}∞n=0 is logarithmically concave for all x ∈ X . It was proved

in [7, Lemma 4.1] that if X is a finite dimensional Hilbert space and A ∈ B(X ) is a

bijection satisfying (1.4), then A is a scalar multiple of a unitary operator. We show

that this statement still remains valid for infinite dimensional (real or complex) normed

linear spaces X provided “a unitary operator” is replaced by “an isometric automor-

phism of X” (cf. Theorem 3.3). In other words, the logarithmic concavity of sequences

of the form {‖Anx‖}∞n=0, x ∈ X , completely characterizes scalar multiples of isometric

automorphisms of X amongst all members of the algebra B(X ). This in turn leads to a

characterization of isometric automorphisms of X (cf. Theorem 3.4).

A new class of operators A ∈ B(X ) satisfying the following inequality

(1.5) ‖A2x‖2 + ‖x‖2 6 2‖Ax‖2, x ∈ X ,
has been introduced and studied by Richter in [14] on the occasion of investigation of

invariant subspaces of the Dirichlet shift. Operators A satisfying (1.5) have also appeared

implicitly in [17] on the occasion of investigation of composition operators on L2-spaces

with nonsingular matrix symbols (apply [17, (2.9)] to φ(z) = ez, z ∈ C). The inequality

(1.5) is easily seen to be equivalent to requiring that the sequence {‖Anx‖2}∞n=0 is concave

for all x ∈ X . Such operators are called 2-hyperexpansive (cf. [2]). As noticed in [11,

Remark 6.9], 2-hyperexpansive operators always satisfy (1.4). A very particular case of

Proposition 3.5 (which in turn follows from a much more general result, Proposition 2.4)

shows that a linear bijection A of a normed linear space X onto itself is an isometric

automorphism of X if and only if A satisfies (1.5) (cf. [16, Remark 3] for the case of

bounded Hilbert space operators); in other words, the concavity of sequences of the form

{‖Anx‖2}∞n=0, x ∈ X , completely characterizes isometric automorphisms of X amongst

linear bijections of X onto X . We have decided to include two independent proofs of

Proposition 2.4 one of which is based on an idea found in [14]; another one fits into
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our general scheme presented in Section 2. In fact, this result has nothing to do with

topological and linear structures of X .

Theorem 3.3 enables us to characterize purely imaginary (scalar) translations of

bounded selfadjoint operators: a Hilbert space operator T ∈ B(H) is a purely imagi-

nary translation of a selfadjoint operator if and only if the function R 3 t 7→ log ‖eitTh‖
is concave for all h ∈ H (cf. Theorem 4.1). This leads to a characterization of bounded

selfadjoint operators (cf. Theorem 4.3). Finally, we deduce that for every real p 6= 0, the

concavity of functions of the form R 3 t 7→ ‖eitTh‖p, h ∈ H \ {0}, completely charac-

terizes selfadjoint operators T ∈ B(H) (cf. Theorem 4.4). The content of Section 4 is

closely related to Theorem 2 of [8] (see also [3, 4]) which states that a Hilbert space

operator T ∈ B(H) is normal if and only if the functions R 3 t 7→ log ‖eitTh‖ and

R 3 t 7→ log ‖eitT∗h‖ are convex for all h ∈ H \ {0}. Section 5 extends the results of

Section 4 to the case of unbounded infinitesimal generators of C0-groups of Hilbert space

operators.

2. Preparatory facts. This section deals with mappings on sets which are not assumed

to be normed linear spaces (what is more no linear structure is required). In fact, the

results of this section can be appropriately adapted to the context of real sequences

which are either logarithmically concave (resp. logarithmically convex) or concave (resp.

convex). The details are left to the reader.

Lemma 2.1. Let φ be a positive function on a set Ω and let A : Ω → Ω be a mapping

such that

φ(A2(x)) · φ(x) 6 φ(A(x))2, x ∈ Ω.(2.1)

Then the following conditions are valid:

(i) for every x ∈ Ω, the sequence {φ(An+1(x))
φ(An(x)) }∞n=0 is monotonically decreasing, the

limits limn→∞
φ(An+1(x))
φ(An(x)) and limn→∞ n

√
φ(An(x)) exist and

lim
n→∞

φ(An+1(x))

φ(An(x))
= lim

n→∞
n
√
φ(An(x)) <∞,(2.2)

(ii) the condition (2.1) holds with Ak in place of A for all integers k > 0,

(iii) if x ∈ Ω is such that limn→∞ n
√
φ(An(x)) > 1, then φ(A(x)) > φ(x).

Moreover, if A is a bijection, then

(iv) the condition (2.1) holds with Ak in place of A for all integers k,

(v) if x ∈ Ω is such that 1 limn→∞ n
√
φ(An(x)) · φ(A−n(x)) > 1, then2

φ(An(x)) =

(
φ(A(x))

φ(x)

)n
· φ(x), n ∈ Z,(2.3)

(vi) if φ(A2(x)) · φ(x) = φ(A(x))2 for all x ∈ Ω, then (2.3) holds for all x ∈ Ω and

limn→∞ n
√
φ(An(x)) · φ(A−n(x)) = 1 for all x ∈ Ω,

1 By (i) and (iv) the limit limn→∞ n
√
φ(An(x)) · φ(A−n(x)) always exists.

2 Substituting n = 2 into (2.3), we get φ(A2(x)) · φ(x) = φ(A(x))2.
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(vii) if x ∈ Ω is such that limn→∞ n
√
φ(A±n(x)) > 1, then φ(A(x)) = φ(x).

Proof. (i) Replacing x by An(x) in (2.1) and dividing both sides of the resulting inequality

by φ(An(x)) · φ(An+1(x)), we obtain

0 <
φ(An+2(x))

φ(An+1(x))
6 φ(An+1(x))

φ(An(x))
, n > 0,

which guarantees that the limit limn→∞
φ(An+1(x))
φ(An(x)) exists and is finite. One can show that

this in turn implies3 (2.2).

(ii) If k > 2, then by (i) we have

φ(A2k(x))

φ(Ak(x))
=

φ(A2k(x))

φ(A2k−1(x))
· · · φ(Ak+1(x))

φ(Ak(x))

6 φ(Ak(x))

φ(Ak−1(x))
· · · φ(A(x))

φ(x)
=
φ(Ak(x))

φ(x)
, x ∈ Ω,

which implies that (2.1) holds with Ak in place of A.

(iv) Replacing x by A−2(x) in (2.1), we see that (2.1) holds with A−1 in place of A.

If we combine this with (ii), we get (iv).

(iii) By (i) we have

φ(A(x))

φ(x)
> lim

n→∞
φ(An+1(x))

φ(An(x))
= lim
n→∞

n
√
φ(An(x)) > 1.

(v) Given 0 < θ 6 1 and y ∈ Ω, we denote by Ξy
θ the set of all bijections C : Ω → Ω

satisfying the following two inequalities:

φ(C(x)) · φ(C−1(x)) 6 φ(x)2, x ∈ Ω,(2.4)

φ(C(y)) · φ(C−1(y)) 6 θ · φ(y)2.(2.5)

We show that

C ∈ Ξyθ =⇒ C2 ∈ Ξyθ2 .(2.6)

Indeed, replacing x by C(x) (resp. x by C−1(x)) in (2.4) we get

φ(C2(x)) · φ(x) 6 φ(C(x))2,

φ(x) · φ(C−2(x)) 6 φ(C−1(x))2.

Multiplying the above two inequalities and applying (2.4) we obtain

φ(C2(x)) · φ(C−2(x)) · φ(x)2 6 φ(C(x))2 · φ(C−1(x))2 6 φ(x)4, x ∈ Ω.(2.7)

Since φ(x) > 0 for x ∈ Ω, we conclude that (2.4) is valid if we replace C by C2. It follows

from (2.7) and (2.5) that

φ(C2(y)) · φ(C−2(y)) · φ(y)2 6 φ(C(y))2 · φ(C−1(y))2 6 θ2 · φ(y)4,

which gives us (2.5) with C2 in place of C and θ2 in place of θ. This proves (2.6).

3 Pass to logarithms, then apply the fact that the sequence of arithmetic means of a given

convergent sequence is convergent to the same limit, and finally go back via the exponent func-

tion.
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Replacing x by A−1(x) in (2.1) we see that (2.4) holds for C = A. Take x ∈ Ω such

that limn→∞ n
√
φ(An(x)) · φ(A−n(x)) > 1. We claim that

φ(A(x)) · φ(A−1(x)) = φ(x)2.(2.8)

Indeed, otherwise there exists 0 < θ < 1 such that A ∈ Ξx
θ . It follows from (2.6) that

A2n ∈ Ξx
θ2n for very n > 1, i.e.

φ(A2n(x)) · φ(A−2n(x)) 6 θ2n · φ(x)2.

This and φ(x) > 0 imply

1 6 lim
n→∞

2n
√
φ(A2n(x)) · φ(A−2n(x)) 6 θ · lim

n→∞
2n
√
φ(x)2 = θ < 1,

which is impossible. This proves our claim.

Using (i) and (iv), one can verify that for every integer k, the point xk := Ak(x) has

the same property as x, i.e. limn→∞ n
√
φ(An(xk)) · φ(A−n(xk)) > 1. By what has been

proved in the previous paragraph, we have

φ(A(Ak(x))) · φ(A−1(Ak(x))) = φ(Ak(x))2, k ∈ Z.(2.9)

Substituting k = n+ 1 into (2.9), we deduce that

φ(An+2(x))

φ(An+1(x))
=
φ(An+1(x))

φ(An(x))
, n ∈ Z,

which leads to

φ(An(x)) =
φ(An(x))

φ(An−1(x))
· · · φ(A(x))

φ(x)
· φ(x) =

(φ(A(x))

φ(x)

)n
· φ(x), n > 1.(2.10)

Applying (2.10) to A−1 in place of A (which is possible due to (iv)) and exploiting (2.8),

we conclude that

φ(A−n(x)) =
(φ(A−1(x))

φ(x)

)n
· φ(x) =

(φ(A(x))

φ(x)

)−n
· φ(x), n > 1.

Following the above argument, one can establish (vi).

The condition (vii) is a consequence of (v) (it can be also deduced from (iii) and (iv)).

This completes the proof.

Replacing φ by 1/φ we get the “dual” version of Lemma 2.1 (the “dual” version of

(vi) is not stated explicitly because it coincides with the original one). Notice that (2.1)

corresponds to (1.4) while (2.11) to (1.3).

Lemma 2.2. Let φ : Ω → (0,∞) and A : Ω → Ω be such that

φ(A2(x)) · φ(x) > φ(A(x))2, x ∈ Ω.(2.11)

Then the following conditions are valid:

(i∗) for every x ∈ Ω, the sequence {φ(An+1(x))
φ(An(x)) }∞n=0 is monotonically increasing, the

limits limn→∞
φ(An+1(x))
φ(An(x)) and limn→∞ n

√
φ(An(x)) exist in (0,∞] and

lim
n→∞

φ(An+1(x))

φ(An(x))
= lim
n→∞

n
√
φ(An(x)),

(ii∗) the condition (2.11) holds with Ak in place of A for all integers k > 0,
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(iii∗) if x ∈ Ω is such that limn→∞ n
√
φ(An(x)) 6 1, then φ(A(x)) 6 φ(x).

Moreover, if A is a bijection, then

(iv∗) the condition (2.11) holds with Ak in place of A for all integers k,

(v∗) if x ∈ Ω is such that limn→∞ n
√
φ(An(x)) · φ(A−n(x)) 6 1, then

φ(An(x)) =
(φ(A(x))

φ(x)

)n
· φ(x), n ∈ Z,

(vii∗) if x ∈ Ω is such that limn→∞ n
√
φ(A±n(x)) 6 1, then φ(A(x)) = φ(x).

Remark 2.3. The condition (v) of Lemma 2.1 need not imply φ(A(x)) = φ(x) nor even

φ(A(x)) > φ(x) (cf. Theorem 3.3). The conditions (iii) and (vii) of Lemma 2.1 yield the

following:

(iii′) if x ∈ Ω is such that
∑∞
n=0 φ(An(x)) =∞, then φ(A(x)) > φ(x),

(vii′) if x ∈ Ω is such that
∑∞
n=0 φ(A±n(x)) =∞, then φ(A(x)) = φ(x).

Replacing φ by 1/φ in (2.1) we can formulate the “dual” versions of (iii′) and (vii′).

Proposition 2.4. Let φ be a nonnegative function on a set Ω and let A : Ω → Ω be a

bijection. Then the following two conditions are equivalent:

1◦ φ(A(x)) = φ(x) for every x ∈ Ω,

2◦ φ(A(x)) + φ(A−1(x)) 6 2φ(x) for every x ∈ Ω.

Proof I of Proposition 2.4. The implication 1◦⇒2◦ is obvious.

2◦⇒1◦ Define the function ψ : Ω → [0,∞) by ψ(x) = eφ(x) for x ∈ Ω. Applying part

(vii) of Lemma 2.1 to ψ in place of φ completes the proof.

Proof II of Proposition 2.4. The implication 2◦⇒1◦ of Proposition 2.4 can be also proved

independently of Lemma 2.1 as follows4. Replacing x by A(x) in 2◦, we get φ(A2(x)) +

φ(x) 6 2φ(A(x)) for all x ∈ Ω. This implies

φ(A2(x))− φ(A(x)) 6 φ(A(x))− φ(x), x ∈ Ω.
Replacing x by Ak(x) leads to

φ(Ak+2(x))− φ(Ak+1(x)) 6 φ(Ak+1(x))− φ(Ak(x)), x ∈ Ω, k > 0.

Hence we have

0 6 φ(An(x)) =
n∑

j=1

(φ(Aj(x))− φ(Aj−1(x))) + φ(x)

6 n(φ(A(x))− φ(x)) + φ(x)

= nφ(A(x)) + (1− n)φ(x), x ∈ Ω, n > 1,

which implies

φ(A(x)) > n− 1

n
· φ(x), x ∈ Ω, n > 1.

4 Our proof is based upon an idea found in the proof of [14, Lemma 1].
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Letting n→∞ yields

φ(A(x)) > φ(x), x ∈ Ω.(2.12)

Since 2◦ holds with A−1 in place of A, the above reasoning enables us to write φ(A−1(x))

> φ(x) for x ∈ Ω. Replacing x by A(x) gives us φ(x) > φ(A(x)) for x ∈ Ω, which when

combined with (2.12) completes the proof.

One could expect Lemma 2.1 to be deduced from Proposition 2.4 applied to log φ;

however this is not the case because log φ may not be positive.

3. Isometric automorphisms. A bounded linear operator A on a Banach space X is

called normaloid if r(A) = ‖A‖ (cf. [5]). Before proving the main result of this section,

we will show that a nonzero normaloid A which satisfies (1.4) is a scalar multiple of an

isometry.

Lemma 3.1. If X is a (real or complex) Banach space and A ∈ B(X ) is a nonzero

normaloid which satisfies (1.4), then ‖A‖−1A is an isometry.

Proof. Without loss of generality we can assume that ‖A‖ = 1. Set

Ω = {x ∈ X : Anx 6= 0 for all n > 0}.
It is easily seen that A(Ω) ⊆ Ω and

lim
n→∞

n
√
‖Anx‖ = 0, x ∈ X \Ω.(3.1)

Denote by X0 the set of all x ∈ X such that lim supn→∞
n
√
‖Anx‖ = r(A) = 1. It

follows from (3.1) that X0 ⊆ Ω. Applying parts (i) and (iii) of Lemma 2.1 to the function

φ(x) = ‖x‖, x ∈ Ω, and to the mapping A|Ω , we get

‖Ax‖ > ‖x‖, x ∈ X0.(3.2)

By [6, Theorem, p. 181] (see also [18] and [12, Corollary 1.2]) and [12, Corollary 2.4], the

set X0 is dense in X . This and (3.2) imply that ‖Ax‖ > ‖x‖ for all x ∈ X . Since ‖A‖ = 1,

we conclude that A is an isometry.

Remark 3.2. Notice that every nonzero operator A ∈ B(X ) whose square vanishes

satisfies (1.4), though 0 = r(A) < ‖A‖ and A is not a scalar multiple of an isometry5.

On the other hand, if X is a normed linear space and A : X → X is a linear mapping

satisfying (1.4) and A2 6= 0, then A is an injection. Indeed, taking x, y ∈ X such that

A2x 6= 0 and Ay = 0, we infer from (1.4) that

‖A2x‖ · ‖x+ ty‖ 6 ‖Ax‖2, t ∈ R,
which implies y = 0. Consequently, every linear surjection A : X → X satisfying (1.4)

is a bijection and every operator A ∈ B(X ) with dense range, which satisfies (1.4) is an

injection.

5 One can construct a closed unbounded linear operator A in a Hilbert space H such that

AD(A) ⊆ D(A) and A2x = 0 for all x ∈ D(A), where D(A) is the domain of A (cf. [13]); such

an A satisfies (1.4) with X = D(A).
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Theorem 3.3. If X is a nonzero (real or complex) normed linear space and A : X → X
is a bijection such that either A ∈ B(X ) or A−1 ∈ B(X ), then the following conditions

are equivalent:

(i) there exists a (unique) pair (λ, U) composed of a positive real number λ and an

isometric automorphism U ∈ B(X ) such that A = λ · U ,

(ii) A satisfies (1.4),

(iii) the sequence {log ‖Anx‖}∞n=0 is concave for every x ∈ X \ {0},
(iv) the sequence {log ‖Anx‖}n∈Z is concave6 for every x ∈ X \ {0}.

Proof. The implications (i)⇒(iv), (iv)⇒(iii) and (iii)⇒(ii) are easily seen to be true.

(ii)⇒(i) Notice first that if A ∈ B(X ) is a bijection and X 6= {0}, then

inf
x6=0

‖A−1x‖
‖x‖ =

1

sup
x6=0

‖x‖
‖A−1x‖

=
1

sup
x6=0

‖Ax‖
‖x‖

=
1

‖A‖ .(3.3)

We claim that

if a bijection A ∈ B(X ) satisfies (1.4), then ‖A2n‖ = ‖A‖2n for all n > 0.(3.4)

Indeed, replacing x by A−2x in (1.4), then dividing both sides of so obtained inequality

by ‖x‖2, and finally taking infimum over all x ∈ X \ {0} we get

inf
x6=0

‖A−2x‖
‖x‖ 6

(
inf
x6=0

‖A−1x‖
‖x‖

)2

.

This and (3.3) (applied to A and A2) lead to ‖A‖2 6 ‖A2‖ 6 ‖A‖2. Thus we have

‖A2‖ = ‖A‖2. The latter equality and the fact that (1.4) holds with A2 in place of A (cf.

part (ii) of Lemma 2.1), enable us to proceed by induction. In consequence, we get (3.4).

Suppose now that A ∈ B(X ) is a bijection satisfying (1.4). Let X̄ be a completion

of X and let Ā ∈ B(X̄ ) be a unique (continuous and linear) extension of A. Then (1.4)

holds with X̄ and Ā in place of X and A, respectively. By (3.4) and (1.2), we have

r(Ā) = ‖Ā‖ > 0. Applying Lemma 3.1 completes the proof of the case A ∈ B(X ); the

other oneA−1 ∈ B(X ) can be inferred from the first. The uniqueness of the decomposition

A = λ · U is plain.

We are now in a position to formulate a characterization of isometric automorphisms

of normed linear spaces.

Theorem 3.4. If X is a nonzero (real or complex) normed linear space and A : X → X
is a bijection such that either A ∈ B(X ) or A−1 ∈ B(X ), then the following conditions

are equivalent:

(i) A is an isometric automorphism of X ,

(ii) A satisfies (1.4) and there exists a unit vector ξ ∈ X such that ‖Aξ‖ = 1,

(iii) the sequence {log ‖Anx‖}∞n=0 is concave for every x ∈ X \ {0} and there exists a

unit vector ξ ∈ X such that ‖Aξ‖ = 1,

6 In fact, log ‖Anx‖ is affine in variable n.
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(iv) the sequence {log ‖Anx‖}n∈Z is concave for every x ∈ X \ {0} and there exists a

unit vector ξ ∈ X such that ‖Aξ‖ = 1.

Proof. If (ii) holds, then by Theorem 3.3 there exists λ > 0 and an isometric automor-

phism U ∈ B(X ) such that A = λ · U . Then

1 = ‖Aξ‖ = λ · ‖Uξ‖ = λ · ‖ξ‖ = λ,

which implies A = U .

The next characterization of isometric automorphisms of normed linear spaces is a

direct consequence of Proposition 2.4 (with Ω = X \ {0} and φ(x) = ‖x‖p).
Proposition 3.5. If X is a nonzero (real or complex) normed linear space, A : X → X
is a linear bijection and p is a nonzero real number, then the following conditions are

equivalent:

(i) A is an isometric automorphism of X ,

(ii) A satisfies the following inequality:

‖Ax‖p + ‖A−1x‖p 6 2‖x‖p, x ∈ X \ {0},
(iii) the sequence {‖Anx‖p}∞n=0 is concave for every x ∈ X \ {0},
(iv) the sequence {‖Anx‖p}n∈Z is concave for every x ∈ X \ {0}.

Remark 3.6. If X is a Banach space, A ∈ B(X ) has a dense range and

‖A2x‖p + ‖x‖p 6 2‖Ax‖p, x ∈ X ,
for some p > 0, then ‖Ax‖ > 2−1/p‖x‖ for all x ∈ X , which implies that A is an injection

with closed and dense range. Hence A is a bijection and consequently by Proposition 3.5,

A is an isometric automorphism of X (cf. [16, Remark 3] for the case p = 2).

Remark 3.7. Let X be a nonzero pre-Hilbert space and let A : X → X be a linear

bijection. Define the linear operator T : X → X ⊕X via Tx = Ax⊕A−1x for x ∈ X . By

Proposition 3.5 (with p = 2), the operator A is unitary if and only if ‖T‖ 6
√

2; if this is

the case, then 2−1/2 · T is an isometry.

A version of Proposition 3.5 for p > 0 and for a bijection A ∈ B(X ) can be deduced

from Theorem 3.3 (apply (1.1) to an = ‖Anx‖p). This suggests a question: is Theorem 3.3

true without assuming the continuity of A and A−1? Below we give some partial answers

to the question.

Section 2 enables us to find circumstances under which the inequality (1.4) (or the

inequality (1.3)) turns into the equality.

Proposition 3.8. If X is a nonzero (real or complex) normed linear space and A : X →
X is a bijection such that A(0) = 0, then the following conditions are equivalent:

(i) ‖A2x‖ · ‖x‖ = ‖Ax‖2 for all x ∈ X ,

(ii) A satisfies (1.4) and limn→∞ n
√
‖Anx‖ · ‖A−nx‖ > 1 for all x ∈ X \ {0},

(iii) A satisfies (1.3) and limn→∞ n
√
‖Anx‖ · ‖A−nx‖ 6 1 for all x ∈ X \ {0}.

Proof. Apply Lemmata 2.1 and 2.2 to φ(x) = ‖x‖, x ∈ X \ {0}.
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Notice that if A ∈ B(X ) satisfies the condition (i) of Proposition 3.8, then

0 6 (‖A2x‖ − ‖x‖)2 = ‖A2x‖2 − 2‖Ax‖2 + ‖x‖2, x ∈ X ,
which means that A is a 2-hypercontraction (cf. [1]).

Following Lemmata 2.1 and 2.2, and Remark 2.3, we can characterize isometric auto-

morphisms of normed linear spaces in terms of (1.4) (or (1.3)) and some extra conditions.

Proposition 3.9. If X is a nonzero (real or complex) normed linear space and A : X →
X is a linear bijection, then the following conditions are equivalent:

(i) A is an isometric automorphism of X ,

(ii) A satisfies (1.4) and limn→∞ n
√
‖A±nx‖ > 1 for all x ∈ X \ {0},

(iii) A satisfies (1.4) and
∑∞

n=0 ‖A±nx‖ =∞ for all x ∈ X \ {0},
(iv) A satisfies (1.3) and limn→∞ n

√
‖A±nx‖ 6 1 for all x ∈ X \ {0},

(v) A satisfies (1.3) and
∑∞

n=0 ‖A±nx‖−1 =∞ for all x ∈ X \ {0}.

Notice that the condition (1.3) alone is not sufficient for an invertible element A of the

algebra B(X ) to be a scalar multiple of an isometric automorphism of X (even though

X is a Hilbert space).

One can deduce directly from (1.4) that the sequence {log ‖An‖}n∈Z is convex (see

the proof of Theorem 3.3), i.e.

log ‖An+1‖ 6 1

2
(log ‖An‖+ log ‖An+2‖), n ∈ Z.

Actually, by Theorem 3.3, log ‖An‖ is linear in variable n.

4. Selfadjoint operators—the bounded case. In this section, applying the results of

Section 3, we characterize purely imaginary translations of bounded selfadjoint operators.

Theorem 4.1. If H is a nonzero complex Hilbert space and T ∈ B(H), then the following

conditions are equivalent:

(i) there exists r ∈ R such that the operator T + irI is selfadjoint,

(ii) ‖eitTh‖ · ‖e−itTh‖ 6 ‖h‖2 for all h ∈ H and for all t ∈ R,

(iii) the function R 3 t 7→ log ‖eitTh‖ is concave7 for every h ∈ H \ {0}.

Remark 4.2. A close inspection of the proof of Theorem 4.1 reveals that the conditions

(i), (ii) and (iii) are still equivalent if we allow the real parameter t to run through an

interval (which is independent of h) with 0 in its centre. The same observation can be

made in the context of Theorems 4.3 and 4.4.

Notice also that if for every h ∈ H \ {0}, there exists εh > 0 such that the function

R 3 t 7→ ϕh(t) := log ‖eitTh‖ is concave on the interval (−εh, εh), then the condition (iii)

of Theorem 4.1 holds. Indeed, since ϕg ∈ C∞(R) for every g ∈ H \ {0}, and ϕeisTh is

concave on (−εeisTh, εeisTh), we get ϕ′′h(s) = ϕ′′eisTh(0) 6 0 for every s ∈ R. Hence ϕh is

concave on the whole R. Similar reasoning applies to the condition 3◦ of Theorem 4.4.

7 In fact, the function R 3 t 7→ log ‖eitTh‖ is affine.
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Proof of Theorem 4.1. (i)⇒(iii) By our assumption T is of the form T = S − irI, where

S is a selfadjoint operator on H. Since for every t ∈ R, the operator eitS is unitary, we

see that

log ‖eitTh‖ = log ‖erteitSh‖ = log(ert · ‖h‖) = rt+ log ‖h‖, h ∈ H \ {0}, t ∈ R.
(iii)⇒(ii) Write the definition of concavity of the function t 7→ log ‖eitTh‖ at the points

−t, 0 and t.

(ii)⇒(i) Applying Theorem 3.3 to the operator A = eitT , we find for each t ∈ R a

unique pair (λ(t), U(t)) composed of a positive real number λ(t) and a unitary operator

U(t) ∈ B(H) such that

eitT = λ(t) · U(t), t ∈ R.(4.1)

Set µ(t) = λ(t)2 for t ∈ R. It follows from (4.1) that

eitT e−itT∗ = eitT (eitT )∗ = µ(t)U(t)U(t)∗ = µ(t) · I, t ∈ R.(4.2)

This implies that the real valued function µ is differentiable on R. Differentiating both

sides of (4.2) leads to

iT eitT e−itT∗ − ieitTT ∗e−itT∗ = µ′(t) · I, t ∈ R.(4.3)

Substituting t = 0 into (4.3), we obtain iT − iT ∗ = µ′(0) · I, which means that the

imaginary part of T is equal to −µ
′(0)
2 · I. Hence, we have T = ReT − iµ

′(0)
2 · I, where

ReT = 1
2 (T + T ∗) and µ′(0) ∈ R. This completes the proof.

The following two results characterize bounded selfadjoint operators by suitable con-

cavity properties of the exponential group.

Theorem 4.3. If H is a nonzero complex Hilbert space and T ∈ B(H), then the following

conditions are equivalent:

(i) T is selfadjoint,

(ii) ‖eitTh‖ · ‖e−itTh‖ 6 ‖h‖2 for all h ∈ H and for all t ∈ R, and there exist a unit

vector ξ ∈ H and κ ∈ R \ {0} such that ‖eiκT ξ‖ = 1,

(iii) the function R 3 t 7→ log ‖eitTh‖ is concave for all h ∈ H \ {0}, and there exist a

unit vector ξ ∈ H and κ ∈ R \ {0} such that ‖eiκT ξ‖ = 1.

Proof. We only need to prove that (ii) implies (i). By Theorem 4.1, T is of the form T =

S− irI, where S ∈ B(H) is selfadjoint and r ∈ R. Hence we have f(t) := log ‖eitT ξ‖ = rt

for all t ∈ R. Since f(κ) = 0 and κ 6= 0, we conclude that r = 0, which completes the

proof.

Theorem 4.4. If H is a nonzero complex Hilbert space, p is a nonzero real number and

T ∈ B(H), then the following conditions are equivalent:

1◦ T is selfadjoint,

2◦ ‖eitTh‖p + ‖e−itTh‖p 6 2‖h‖p for all h ∈ H \ {0} and for all t ∈ R,

3◦ the function R 3 t 7→ ‖eitTh‖p is concave for every h ∈ H \ {0}.
Proof. The implications 1◦⇒3◦ and 3◦⇒2◦ are easily seen to be true.
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2◦⇒1◦ By Proposition 3.5 the operator eitT is unitary for each t ∈ R. Applying Stone’s

theorem (or repeating the proof of the implication (ii)⇒(i) of Theorem 4.1 with λ(t) ≡ 1),

we conclude that the operator T is selfadjoint.

It is well-known that a Hilbert space operator T ∈ B(H) is selfadjoint if and only if

‖eitT ‖ = 1 for all t ∈ R. The following is a variant of this characterization.

Corollary 4.5. If H is a nonzero complex Hilbert space, then an operator T ∈ B(H)

is selfadjoint if and only if for every h ∈ H, the function t 7→ ‖eitTh‖ is constant on R
(equivalently: on some neighborhood of 0).

Proof I of Corollary 4.5. Apply Theorem 4.4.

Proof II of Corollary 4.5. We only need to prove the “if” part of the conclusion. Since

the function t 7→ ‖eitTh‖2 = 〈e−itT∗eitTh, h〉 is constant, its derivative vanishes, i.e.

〈(−iT ∗e−itT∗eitT + ie−itT∗T eitT )h, h〉 = 0, h ∈ H, t ∈ R.
Substituting t = 0, we get 〈(iT − iT ∗)h, h〉 = 0 for all h ∈ H, which is equivalent to

T ∗ = T . This completes the proof.

5. Selfadjoint operators—the unbounded case. The results of Section 4 can be

formulated for generators of C0-groups of Hilbert space operators. We begin with a C0-

group analogue of Theorems 4.1 and 4.3.

Theorem 5.1. Let H be a nonzero complex Hilbert space and let T be an infinitesimal

generator of a C0-group {G(t) : t ∈ R} ⊆ B(H). Then the following conditions are

equivalent:

(i) there exists r ∈ R such that the operator i(T + rI) is selfadjoint,

(ii) ‖G(t)h‖ · ‖G(−t)h‖ 6 ‖h‖2 for all h ∈ H and for all t ∈ R,

(iii) the function R 3 t 7→ log ‖G(t)h‖ is concave for every h ∈ H \ {0}.
The operator iT is selfadjoint if and only if either of the conditions (ii) and (iii) holds

and there exist a unit vector ξ ∈ H and κ ∈ R \ {0} such that ‖G(κ)ξ‖ = 1.

Proof. (i)⇒(iii) If T = iS + rI, where S is selfadjoint and r ∈ R, then G(t) = erteitS for

all t ∈ R. In consequence, log ‖G(t)h‖ = rt+ log ‖h‖ for h ∈ H \ {0}.
(ii)⇒(i) By Theorem 3.3, for every t ∈ R there exists a unique pair (λ(t), U(t))

composed of a positive real number λ(t) and a unitary operator U(t) ∈ B(H) such that

G(t) = λ(t) · U(t), t ∈ R.(5.1)

Fix a unit vector ξ in H. According to (5.1) we have

λ(t) = ‖G(t)ξ‖, t ∈ R.(5.2)

Since {G(t) : t ∈ R} is a C0-group, (5.2) guarantees the continuity of R 3 t → λ(t). It

follows from (5.1) and the unitarity of the operators U(s), s ∈ R, that

λ(s+ t) = ‖λ(s+ t)U(s+ t)‖ = ‖G(s+ t)‖ = ‖G(s)G(t)‖
= ‖λ(s)λ(t)U(s)U(t)‖ = λ(s)λ(t), s, t ∈ R.
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By the above and λ(0) = 1, we conclude that λ(t) = ert, where r = log λ(1) ∈ R. This

combined with (5.1) implies that R 3 t → U(t) = e−rtG(t) is a C0-group of unitary

operators. Applying Stone’s theorem (cf. [15, Section 137]) we find a selfadjoint operator

S in H such that U(t) = eitS for all t ∈ R. Hence G(t) = erteitS for all t ∈ R, which

gives (i).

The rest of the proof follows very closely the proof of Theorem 4.3.

Applying Proposition 3.5 and Stone’s theorem (cf. [15, Section 137]) we get a C0-group

analogue of Theorem 4.4.

Theorem 5.2. If H is a nonzero complex Hilbert space, T is an infinitesimal generator

of a C0-group {G(t) : t ∈ R} ⊆ B(H) and p is a nonzero real number, then the following

conditions are equivalent:

1◦ iT is selfadjoint,

2◦ ‖G(t)h‖p + ‖G(−t)h‖p 6 2‖h‖p for all h ∈ H \ {0} and for all t ∈ R,

3◦ the function R 3 t 7→ ‖G(t)h‖p is concave for every h ∈ H \ {0}.
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