
TOPOLOGICAL ALGEBRAS, THEIR APPLICATIONS,
AND RELATED TOPICS

BANACH CENTER PUBLICATIONS, VOLUME 67
INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES
WARSZAWA 2005

BOURGAIN ALGEBRAS OF G-DISC ALGEBRAS

T. TONEV and K. YALE

The University of Montana, Missoula, MT 59803, U.S.A.

E-mails: tonevtv@mso.umt.edu, ikyale@msn.com

1. Introduction. The norm topology of a commutative Banach algebra A is too rough

to reflect some of the delicate properties of A. Weaker topologies are consequently of

importance and they can be used to construct algebras associated to A and which contain

important information about A. Bourgain algebras were introduced by J. Cima and

R. Timoney [2] in their study of Dunford-Pettis property (DPP ) for a certain class of

function algebras. In effect, the algebra A has the DPP whenever its Bourgain algebra is

as large as possible. In this paper we determine the Bourgain algebras related with some

G-disc algebras.

Given a commutative Banach algebra A, let cτo(A) denote the family of all sequences

of elements in A which tend to 0 with respect to a given topology τ on A. For the

weak topology w, cwo (A) is the set of all weakly null sequences of elements ϕn in A, i.e.

sequences {ϕn} such that L(ϕn)→ 0 as n→∞ for any bounded linear functional on A.

Let A ⊂ B be two commutative Banach algebras and let the norm ‖ · ‖A be the

restriction of the norm ‖ · ‖B to A. The Bourgain algebra ABb of A with respect to B is

the set of all f in B such that for every weakly null sequence {ϕn}n in A there exist a

sequence {gn}n in A such that ‖fϕn − gn‖B → 0 as n→∞ [2].

Let πA : B → B/A be the natural projection of B onto B/A. For every fixed f ∈ B
let Pf : A→ fA ⊂ B be the multiplication by f ∈ B on A. Denote Sf = πA ◦ Pf : A→
(fA + A)/A ⊂ B/A the Hankel type operator Sf : g 7→ πA(fg). Note that πA and Sf
both are bounded linear maps onto B/A and onto (fA+A)/A ⊂ B/A correspondingly.

Observe that f ∈ ABb if Sf maps every weakly null sequence of A onto a null sequence

with respect to the quotient norm topology of πA(fA) ⊂ B/A. Thus f ∈ ABb if the

operator Sf is completely continuous, i.e. Sf (ϕn) = πA(fϕn) → 0, n → ∞ for every
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weakly null sequence {ϕn}n in A. Equivalently, f ∈ ABb if and only if Sf (cwo (A)) ⊂
c
‖ · ‖
o (B/A).

Let ABwc be the set of all f in B such that Sf is weakly compact (rather than completely

continuous). In a uniform algebra setting, B. Cole and T. W. Gamelin [3] introduced the

notion of tightness related with the space ABwc. A precise connection between ABb and

ABwc is not known (cf. [9]).

2. Hankel type operators and Bourgain algebras of G-disc algebras. Let A ⊂ B
be two uniform algebras on a compact Hausdorff setX and letABb be the Bourgain algebra

of A with respect to B.

Proposition 1. If the range Sf (A) = πA(fA) of the Hankel type operator Sf for an

f ∈ B is finite dimensional then f ∈ ABb .

Proof. If {ϕn}n is a weakly null sequence in A then {fϕn}n is weakly null in B, and

therefore {πA(ϕn)}n is a weakly null sequence in πA(fA) ⊂ B/A. Hence {πA(ϕn)}n ∈
c
‖ · ‖
0 (πA(fA)) ⊂ c‖ · ‖0 (B/A), since πA(fA) is finite dimensional. Consequently f ∈ ABb .

The range of the completely continuous operator Sf need not be finite-dimensional.

The following example is due to S. Saccone.

Example 1. Let A = A(T) be the disc algebra on the unit circle T and let B = C(T).

Consider the function

f(z) =
∞∑

k=1

1

k2zk
.

Since f ∈ C(T), it certainly belongs to ABb . We claim that the range of the Hankel type

operator of f is infinite dimensional. Indeed, let cn = ‖znf + A‖B/A, and let gn(z) =

(1/cn)zn. Clearly, gn ∈ A, and ‖gnf + A‖B/A = 1. To see that πA(fA) is not finite

dimensional it is enough to show that gnf + A converges weakly to zero in B/A.

The value of the (−m)-th Fourier coefficient of the function gnf is
∫

T
gn(z) f(z) zm dz =

1

cn(n+m)2
, m, n ≥ 1.

Hence,

cn ≥ ‖znf +H2‖L2/H2 =

√√√√
∞∑

k=1

1

(n+ k)4
,

thus
1

n2cn
≤ 1√

n4
∞∑
k=1

1
(n+k)4

.

Furthermore,
∞∑

k=1

1

(n+ k)4
≥
∫ ∞

n+1

1

x4
dx =

1

3(n+ 1)3
,
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so

n4
∞∑

k=1

1

(n+ k)4
→∞

as n→∞. Hence, lim
n→∞

1/(n2cn) = 0, and therefore we have

lim
n→∞

∫

T
gn(z) f(z) zm dz = lim

n→∞
1

cn(n+m)2
= 0

for all m ∈ N. It now follows that if p is any polynomial with p(0) = 0, then

lim
n→∞

∫

T
gn(z) f(z) p(z) dz = 0.

Recall that if X is a Banach space and {xn}n is a bounded sequence in X tending to zero

on a norm-dense set of the dual space X∗, then {xn}n is weakly null. Since the space H1
0

is isometrically isomorphic to (C(T)/A(T))∗, and the polynomials p with p(0) = 0 are

dense in H1
0 , gnf +A converges weakly to zero in B/A, as claimed.

Let G be a compact abelian group with identity e and let S ⊂ Ĝ ⊂ C(G) be a

subsemigroup of the dual group Ĝ containing the unit 1Ĝ = 1S . For a fixed character

χ ∈ Ĝ denote by Pχ the set χS \ S. The uniform algebra on G generated linearly by the

semigroup S will be denoted by AS . Functions in AS are called S-functions on G ([4, Ch.

VII], [5], [6, Ch. II]).

Proposition 2. Any character χ ∈ Ĝ for which Pχ is finite belongs to (AS)
C(G)
b .

Proof. Note that the characters on G are linearly independent in C(G). Since the algebra

AS is generated linearly by S ⊂ C(G), the sets Pχ and πAS (Pχ) have the same cardinality.

Therefore,

dim
(
Sχ(AS)

)
= dim

(
πAS (χAS)

)
= card (πAS (Pχ)) = card (Pχ) <∞.

By Proposition 1 the Hankel type operator Sχ is completely continuous. Hence χ belongs

to (AS)
C(G)
b as claimed.

Note that for any χ ∈ S the set Pχ has the same cardinality as χPχ = S \χS = {γ ∈
S : γ /∈ χS}, which is the set of all predecessors of χ in S, i.e. of all elements γ in S which

precede χ with respect to the ordering on Ĝ determined by S. If, in addition, S −S = Ĝ

and every χ ∈ S has finitely many predecessors in S then every character χ ∈ Ĝ has

finitely many predecessors in S. As it follows from Proposition 2, then (A
C(G)
S )b = C(G),

and therefore the corresponding algebra AS possesses the Dunford-Pettis property.

Corollary 1. If χ ∈ S be such that S \ {1S} ⊂ χS, then χ ∈ (AS)
C(G)
b .

Proof. Since χPχ = S \ χS = ({1S} ∪ (S \ {1S})) \ χS ⊂ ({1S} ∪ χS) \ χS = {1S}, we

obtain that Pχ = {χ}. Hence χ ∈ (AS)
C(G)
b by Proposition 2.

Corollary 2. If AS is a maximal algebra and the set Pχ is finite for some character

χ ∈ Ĝ \ S, then (AS)
C(G)
b = C(G).

Proof. Indeed, χ ∈ (AS)
C(G)
b by Proposition 2. Since χ /∈ S, then χ /∈ AS and conse-

quently (AS)
C(G)
b = C(G) by the maximality of A.
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Example 2. If H is a finite group, G = (H ⊕ Z)̂ and S ∼= H ⊕ Z+, then (AS)
C(G)
b =

C(G).

Indeed, for every character χ(h,n) ∈ Ĝ, where h ∈ H and n ∈ Z, we have

card(Pχ(h,n)
) = card ((h, n)(H ⊕ Z+) \H ⊕ Z+) =

card ((hH ⊕ (n+ Z+)) \H ⊕ Z+) = card ((H ⊕ (n+ Z+)) \H ⊕ Z+) =

card (H ⊕ ((n+ Z+) \ Z+)) = cardH + n <∞.
By Proposition 2 we see that χ(h,n) ∈ (AS)

C(G)
b for every h ∈ H and n ∈ Z. Consequently

Ĝ = H ⊕ Z ⊂ (AS)
C(G)
b , wherefrom (AS)

C(G)
b = C(G).

In the sequel we will assume that S ∪ (−S) = Ĝ = {χa}a∈Γ , for some subgroup

Γ ⊂ R that is dense in R, and that S ∼= Γ+ = Γ ∩ [0,∞). In this case AS is called the

G-disc algebra (or, the big disc algebra), and the elements of AS are called also generalized

analytic functions on G. The following theorem identifies the algebra (AS)
C(G)
b for some

G-disc algebras.

Theorem 1. If G is a compact abelian group whose dual group Ĝ ∼= Γ is dense in R
and is divisible by an integer n ∈ Γ , then the Bourgain algebra (AΓ+

)
C(G)
b of the G-disc

algebra AΓ+
coincides with AΓ+

.

Without loss of generality we can assume that 1 ∈ Γ+, thus 1/n ∈ Γ+, i.e. χ
1
n ∈ Ĝ+.

Clearly, Γ+ is a subset of (AΓ+
)
C(G)
b . First we will prove two preliminary lemmas.

Lemma 1. The sequence of real valued functions ϕn(x) =
∣∣∣ 1+ei

x
n

2

∣∣∣
2n

converges pointwise

to 1 as n→∞ for every x ∈ R.

Proof. Fix an x ∈ R. Since ei
x
n 6= −1 for n big enough, we have

ϕn(x) =

(∣∣∣∣
1 + ei

x
n

2

∣∣∣∣
2)n

=

(
2 + 2 cos xn

4

)n
= cos2n x

2n
→ 1

as n→∞.

Note that the convergence in Lemma 1 is not uniform since, say, ϕn(x) = 0 if x = πn

for any integer n.

Lemma 2. Under the setting of Theorem 1 the functions ψn(g) =

∣∣∣∣
1+χ

1
n (g)
2

∣∣∣∣
2n

converge

pointwise to 1 as n→∞ for every g ∈ G.

Proof. Let je : R→ G be the standard embedding of the real line onto a dense subgroup

of G such that je(0) = e (cf. [4, Ch. VII], [6, Ch. II]). Then χ
1
n (je(x)) = ei

x
n and

ψn(je(x)) = ϕn(x) for every real x. Hence ϕn(x)→ 1 as n→∞ by Lemma 1.

Consider the following neighborhood U of e : U = (χ1)−1{eit, −π/4 < t < π/4} ⊂
G. Note that if n

√
[ · ] is the principal value of the n-th root considered on the set

{eit, −π/4 < t < π/4}, then χ
1
n (h) = n

√
χ1(h) on U . For a given g ∈ G there is a

hg ∈ U such that g = jhg (x) for some x ∈ R, where jh = hje is the standard dense
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embedding of R into G with jh(0) = h. Hence χ
1
n (hg) = ei

s
n if χ1(hg) = eis for some

s, −π/4 < s < π/4, and therefore,

ψn(g) = ψn(jhg (x)) =

∣∣∣∣
1 + χ

1
n (jhg (x))

2

∣∣∣∣
2n

=

∣∣∣∣
1 + χ

1
n (hg)χ

1
n (je(x))

2

∣∣∣∣
2n

=

∣∣∣∣
1 + ei

s+x
n

2

∣∣∣∣
2n

.

Consequently, by Lemma 1, ψn(g) = ϕn(s+ x)→ 1 as n→∞.

The remark after Lemma 1 indicates that the convergence in Lemma 2 might not be

uniform.

Proof of Theorem 1. Suppose that χ3 ∈ (AΓ+
)
C(G)
b , and consider the sequence ξn(g) =

ψn(g) − 1, where ψn is the function in Lemma 2. The sequence {χ1ξn}n converges

pointwise to 0 on the compact group G, and therefore it is weakly null in AΓ+
. Since

χ3 ∈ (AΓ+
)
C(G)
b , there are functions hn ∈ AΓ+

such that ‖χ3χ1ξn − hn‖ < 1/n for every

n, where ‖ · ‖ is the sup norm on G. By integrating over Ker (χ
1
n ), if necessary, we can

assume that hn = qn(χ
1
n ) for some polynomial qn. Since

(χ1ψn)(g) = (χ
1
n (g))n

(
1 + χ

1
n (g)

2

)n(
1 + χ

1
n (g)

2

)n
= pn(χ

1
n (g)),

where pn is the polynomial pn(z) = ( 1+z
2 )2n, we have that χ1ψn ∈ AΓ+

, and therefore,

ξn ∈ AΓ+
too. For j = 2n the j-th Cesàro mean

σpnj =
S0 + S1 + · · ·+ Sj

j + 1

of pn, where Sk is the k-th partial sum of pn, becomes

σpn2n(z) =
1

4n(2n+ 1)

2n∑

k=0

(2n− k + 1)

(
2n

k

)
zk.

Hence

4n(2n+ 1)σpn2n(z) =
2n∑

k=0

(
2n

k

)
zk +

2n−1∑

k=0

(2n− k)

(
2n

k

)
zk =

(1 + z)2n + 2n(1 + z)2n−1 = (2n+ 1 + z)(1 + z)2n−1.

Now

‖χ3χ1ξn − hn‖ = max
g∈G
|(χ3χ1ξn)(g)− hn(g)|

= max
g∈G
|(χ1ξn)(g)− (χ3hn)(g)| = max

g∈G
|(χ1ψn)(g)− χ1(g)− χ3(g)hn(g)|

= max
g∈G
|pn(χ

1
n (g))− χ1(g)− (χ

1
n (g))3nqn(χ

1
n (g))|

= max
z∈T
|pn(z)− zn − z3nqn(z)|.

Note that σ
pn(z)−zn
2n (z) = σ

pn(z)−zn−z3nqn(z)
2n (z) because the Cesàro mean σ2n depends

only on the first 2n terms of the Taylor series. Since maxz∈T |σfn(z)| ≤ maxz∈T |f(z)|
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holds for every f ∈ A(T), we obtain

max
z∈T
|σpn(z)−zn

2n (z)| = max
z∈T
|σpn(z)−zn−z3nqn(z)

2n (z)| ≤

max
z∈T
|pn(z)− zn − z3nqn(z)| = ‖χ3χ1ξn − hn‖ < 1/n,

i.e. ‖σpn(z)−zn
2n ‖ → 0 as n→∞. However, σ

pn(z)−zn
2n (z) = σ

pn(z)
2n (z)− zn(n+ 1)/(2n+ 1),

and thus σ
pn(z)−zn
2n (−1)→ 1/2 as n→∞ for odd n, contrary to ‖σpn(z)−zn

2n ‖ → 0. Hence

‖χ3χ1ξn−hn‖ 6→ 0 for any hn ∈ AΓ+
, and therefore χ3 /∈ (AΓ+

)
C(G)
b . The maximality of

AΓ+
implies that (AΓ+

)
C(G)
b = AΓ+

, as desired.

Thanks are due to J. Cima, K. Stroethoff and S. Saccone for stimulating discussions.
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