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Abstract. The main facts about unbounded C*-seminorms on partial *-algebras are reviewed

and the link with the representation theory is discussed. In particular, starting from the more

familiar case of *-algebras, we examine C*-seminorms that are defined from suitable families of

positive linear or sesquilinear forms, mimicking the construction of the Gelfand seminorm for

Banach *-algebras. The admissibility of these forms in terms of the (unbounded) C*-seminorms

they generate is characterized.

1. Introduction. As is well known, C*-seminorms give a deep insight into the structure

of Banach *-algebras [13, Ch. V.39] in particular for the close relationship they have with

positive linear functionals [14]. Their role is also crucial for the study of *-representations,

since through them the representation theory of C*-algebras can be invoked and provides

a full amount of information on the representations of the starting algebra. To be more

precise, if A0 is a *-algebra and p a C*-seminorm on A0, then every *-representation of

the Hausdorff completion of (A0, p) defines a bounded *-representation of A0 in Hilbert

space [12].

The notion of C*-seminorms has been first considered by Fell [16] and Effros [15]

and researches on this topic have been undertaken in several different directions, accord-

ing to the various situations where they arise. Some geometric aspects of the collection

of all C*-seminorms defined on a Banach *-algebra are summarized in [13, Ch. V.39].

Also extensions of this notion to at least two more general cases have been considered.

The first one, [25, 12] consists in considering unbounded C*-seminorms on a *-algebra

A0, i.e. C*-seminorms p defined only on a *-subalgebra D(p) of A0. The interest for

non-everywhere defined C*-seminorms comes from the fact that they appear in many

mathematical [19, 25] and physical applications [1, 24]. In particular, Yood studied [25]

C*-seminorms on a *-algebra A0 that can be defined via a family F of positive linear func-
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tionals on A0. These C*-seminorms, whose definition is strongly inspired by the Gelfand

seminorm on a Banach *-algebra, are, in general, not everywhere defined and for this rea-

son they have been called unbounded. Yood also gave a characterization of C*-seminorms

defined by admissible positive linear functionals. The importance of admissibility relies

on the fact that the Gelfand-Naimark-Segal (GNS) construction based on an admissible

form produces a bounded representation. The role of unbounded C*-seminorms for the

representation theory of a *-algebra has been studied by Bhatt, Inoue and Ogi in [12].

A second generalization of the theory of C*-seminorms is obtained by enlarging the

environment where to consider them replacing *-algebras with partial *-algebras. A first

study in this direction was made in [5], where unbounded C*-seminorms on partial *-

algebras [3] were studied with the aim of extending some results of representation theory

obtained in [12] in the case of *-algebras.

Recently a study on the possibility of extending Yood’s approach to the partial al-

gebraic setting has been undertaken [22] for the case of quasi *-algebras and in [23]

for general partial *-algebras. In both cases positive linear functional are systematically

replaced with positive sesquilinear forms, due to the lack of an everywhere defined mul-

tiplication. In particular, in the case of partial *-algebras, a relevant role is played by

a special kind of non-everywhere defined sesquilinear forms called biweights: they are

exactly the kind of forms that allow a GNS construction for partial *-algebras [2, 3].

In this paper we will shortly review all the subject of (unbounded) C*-seminorms,

focusing our attention on those constructed by means of families of positive linear or

sesquilinear forms, starting from the very familiar case of Banach *-algebras, then we

survey Yood’s results for the case of a *-algebra with no topology given a priori and then

we summarize the main results concerning the generalization to partial *-algebras.

Before going forth, we give, for the reader’s convenience, the definitions of partial

*-algebra and quasi *-algebra that are needed in the sequel.

A partial *-algebra is a complex vector space A, endowed with an involution x 7→ x∗

(that is, a bijection such that x∗∗ = x) and a partial multiplication defined by a set

Γ ⊂ A× A (a binary relation) such that:

(i) (x, y) ∈ Γ implies (y∗, x∗) ∈ Γ;

(ii) (x, y1), (x, y2) ∈ Γ implies (x, λy1 + µy2) ∈ Γ, ∀λ, µ ∈ C;

(iii) for any (x, y) ∈ Γ, there is defined a product x · y ∈ A, which is distributive w.r.

to the addition and satisfies the relation (x · y)∗ = y∗ · x∗.

We shall assume the partial *-algebra A contains a unit e, i.e., e∗ = e, (e, x) ∈ Γ, ∀x ∈
A, and e · x = x · e = x, ∀x ∈ A. (If A has no unit, it may always be embedded into a

larger partial *-algebra with unit, in the standard fashion.)

Given the defining set Γ, spaces of multipliers are defined in the obvious way:

(x, y) ∈ Γ ⇔ x ∈ L(y) or x is a left multiplier of y

⇔ y ∈ R(x) or y is a right multiplier of x.

One of the most relevant examples of partial *-algebras is provided by a notable family

of unbounded operators in Hilbert space H. In fact, let D be a dense domain in H; we
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define

L†(D,H) = {A closable : D(A) = D; D(A∗) ⊃ D}.
The vector space L†(D,H) becomes a partial *-algebra with the involution A 7→ A† =

A∗dD and weak partial multiplication defined as follows:

(A,B) ∈ Γ⇔ BD ⊂ D(A†∗) and A†D ⊂ D(B∗)
(A�B)ξ := A†∗Bξ, ∀ξ ∈ D.

A quasi *-algebra (A,A0) is a partial *-algebra where A0 is a *-algebra A0 ⊂ A and

Γ = {(a, b) ∈ A× A : a ∈ A0 or b ∈ A0}.
The definition of quasi *-algebra was originally given by Lassner [17, 18]) independently

of that of partial *-algebra. Following [20], if (A,A0) is a quasi *-algebra, we shall always

assume that A is an A0-bimodule.

The most typical example of a quasi *-algebra is provided by the completion A ≡ Â0

of a locally convex *-algebra A0[τ ] whose multiplication is not jointly continuous.

Full details on partial *-algebras and their representation theory can be found in [3].

2. The case of *-algebras

Definition 1. Let A0 be a *-algebra with unit e. A seminorm p on A0 is called a C*-

seminorm if

(1) p(ab) ≤ p(a)p(b) for all a, b ∈ A0;

(2) p(a∗a) = p(a)2 for each a ∈ A0.

Of course, (1) and (2) imply that p(a∗) = p(a) for each a ∈ A0 and if, p 6= 0, p(e) = 1.

From a beautiful result of Sebestyén [21] it follows that (2) implies (1).

Example 1 (Normed *-algebras). It is well-known that C*-seminorms can be used to

get information on the structure of a normed or Banach *-algebra [13]. We collect here,

just as example, some very basic facts for this case.

If A0 is a Banach *-algebra with unit e, then each positive linear functional ω is

continuous and ‖ω‖ = ω(e). This fact allows us to construct the so-called Gelfand-

Naimark seminorm p on A0 by putting

p(a) = sup
ω∈S(A0)

ω(a∗a)1/2, a ∈ A0.(1)

where S(A0) denotes the set of all positive linear functionals ω on A0 with ω(e) = 1.

One has: p(a) ≤ ‖a‖ for every a ∈ A0. If ω is a positive linear functional on A0 and

x ∈ A0, then the linear functional ωx defined by ωx(a) = ω(x∗ax) is also positive and

if ω(x∗x) = 1 then ωx ∈ S(A0). Using this fact, that as we shall see will be the key for

the construction of Gelfand-like seminorms in general *-algebras [cfr. Definition 2], one

can prove that actually (1) defines a C*-seminorm on A0. In general, p is not a norm; i.e.

there may exist non-zero elements a ∈ A0 such that p(a) = 0. Let

Np = {b ∈ A0 : p(b) = 0}.
Then it is easily seen that Np is a closed *-ideal of A0. The quotient A0/Np is a C*-

algebra, with norm ‖[a]‖ = p(a). The set Np is nothing but the *-radical R∗ of the
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Banach *-algebra A0 (i.e., the intersection of the kernels of all *-representations of A0)

and so *-semisimplicity of A0 corresponds to Np = {0}. If A0 is a C*-algebra, for each

a ∈ A0, there exists a positive linear functional ω with ω(e) = 1 such that ω(a∗a) = ‖a‖2.

This then leads to the well-known Gelfand’s characterization of the norm of a C*-algebra:

‖a‖ = p(a) = sup
ω∈S(A0)

ω(a∗a)1/2, ∀a ∈ A0.

Gelfand-like seminorms on a *-algebra where no topology is given a priori have been

considered by B. Yood [25]. We briefly review his main results.

Definition 2. Let A0 be *-algebra. A family F of positive linear functionals on A0 is

called balanced if, for each x ∈ A0 and ω ∈ F , the positive linear functional ωx defined

by

ωx(a) = ω(x∗ax), a ∈ A0

also belongs to F .

If F is a balanced family of positive linear functionals, then one can define:

D(pF) = {a ∈ A0 : sup
ω∈Fs

ω(a∗a) <∞}

where Fs = {ω ∈ F : ω(a) = e} and

pF(a)2 = sup
ω∈Fs

ω(a∗a).

Then D(pF) is a *-subalgebra of A0 and pF is an unbounded C*-seminorm on A0.

Definition 3. A positive linear functional ω on A0 is called admissible if, for every

a ∈ A0, there exists γa > 0 such that

|ω(x∗a∗ax)| ≤ γaω(x∗x), ∀x ∈ A0.

Admissibility is a relevant property of positive linear functionals, since it is indeed

equivalent to the boundedness of the corresponding GNS representation.

Let q be a seminorm on A0 and ω a linear functional on A0. Then ω is said to be

continuous with respect to q, or, simply, q-continuous if there exists γ > 0 such that:

|ω(a)| ≤ γq(a), ∀a ∈ A0.

Admissibility is characterized by the following

Proposition 4. A state ω on A0 is admissible if, and only if, there is a submultiplicative

seminorm q on A0 such that ω is q-continuous.

Now let us suppose that a C*-seminorm on A0 is given; it is natural to ask what the

relationship between q and the C*-seminorm defined by the family of all q-continuous

positive linear functionals on A0 is.

Theorem 5. Let q be a C*-seminorm on A0 and F the set of all q-continuous positive

functionals on A0. Then D(pF) = A0 and

q(x)2 = sup
ω∈Fs

ω(a∗a), ∀a ∈ A0.
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The following statement characterizes the existence of a maximal C*-seminorm q on

A0, i.e., q(x) ≥ p(x) (x ∈ A0) for any other C*-seminorm p on A0.

Theorem 6. Let q be a C*-seminorm and F the set of all q-continuous positive func-

tionals on A0. Then q is a maximal C*-seminorm if, and only if, F coincides with the

set of all admissible positive linear functionals on A0.

Some of Yood’s results have been extended to *-algebras without unit by Bhatt, In-

oue and Ogi in [12], where also *-representation induced by unbounded C*-seminorms

have been studied. The same authors in [9, 11, 12] have also studied the role that un-

bounded C*-seminorms play in the the spectral analysis of *-algebras. Well-behaved

*-representations defined by unbounded C*-seminorms are analyzed in [8]. Several exam-

ples can also be found in these papers. Since we shall discuss biweights, let it be noted that

admissibility of weights and quasi-weights on a *-algebra with very many applications is

discussed in [10].

3. The case of a partial *-algebra. In this section we will overview the main facts

concerning unbounded C*-seminorms on partial *-algebras. We first consider the interplay

between C*-seminorms and the representation theory of partial *-algebras and then we

show how Yood’s approach for *-algebras can be extended to the present case. For a more

complete discussion we refer to [5, 23].

A mapping p of a (partial) ∗-subalgebra D(p) of A into R+ is said to be an unbounded

m∗-(semi)norm on A if

(i) p is a (semi) norm on D(p);

(ii) p(x∗) = p(x), ∀x ∈ D(p);

(iii) p(xy) ≤ p(x)p(y), ∀x, y ∈ D(p) such that x ∈ L(y).

An unbounded m∗-(semi)norm p on A is said to be an unbounded C∗-(semi)norm if

(iv) p(x∗x) = p(x)2, ∀x ∈ D(p) such that x∗ ∈ L(x).

An unbounded m∗-(semi)norm (resp. C∗-(semi)norm) on A is said to be an m∗-
(semi)norm (resp. C∗-(semi)norm) if D(p) = A.

An (unbounded) m∗-seminorm p on A is said to have Property (B) if it satisfies the

following basic density-condition:

(B) R(A) ∩ D(p) is dense in D(p) with respect to p.

Let p be an unbounded C*-seminorm with property (B). Let us denote with Â the

set of all p- Cauchy sequences and in this set we introduce the equivalence relation

{an} ∼ {bn} ⇔ lim
n→∞

p(an − bn) = 0.

Then, as shown in [5, 3], the quotient Ap ≡ Â/ ∼ is a C*-algebra. If a ∈ A, we put

ã = (an) with an = a for every n ∈ N.

This fact is very relevant for our proposes, since a C*-algebra has plenty of *-repre-

sentations (and also a faithful one, by the Gelfand-Naimark theorem). These *-represen-

tations can be used to construct (quasi) *-representations of A that depend in crucial
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way on the algebra

Np = {x ∈ D(p) ∩R(A); ax ∈ D(p), ∀a ∈ A}.

We give an outline of the construction.

For any *-representation Πp of Ap we put

π0
p(x) = Πp(x̃), x ∈ D(p).

where x̃ denotes any sequence p-converging to x. Then π0
p is a *-representation of D(p)

on HΠp .

Of course, what we want to get is a *-representation of the whole A. Then, we begin

with defining the domain D(πp) as the linear span of the set

{Πp((xy)∼)ξ;x, y ∈ Np, ξ ∈ HΠp},
where Hπp is the closure of D(πp) in HΠp . Next we define

πp(a)
(∑

k

Πp((xkyk)∼)ξk

)
=
∑

k

Πp((axk)∼ỹk)ξk, a ∈ A,
∑

k

Πp((xkyk)∼)ξk ∈ D(πp).

Proposition 7. πp is a linear map of A into L†(D(πp),Hπp) satisfying the following

properties:

(i) πp(a
∗) = πp(a)†, ∀a ∈ A;

(ii) πp(ax) = πp(a)�πp(x), ∀a ∈ A, ∀x ∈ R(A);

(iii) ‖πp(x)‖ ≤ p(x), ∀x ∈ D(p). Furthermore, if πp is faithful then

‖πp(x)‖ = p(x), ∀x ∈ A.

A linear map π of A into L†(D(πp),Hπp) satisfying (i) and (ii) above is called a quasi

*-representation. In order to obtain a true *-representation, some additional condition on

p is required.

The unbounded C*-seminorm p is called

• finite if Np = D(p);

• semifinite if Np is p-dense in D(p).

Theorem 8. Let A be a partial *-algebra and p a semifinite C*-seminorm on A. Then

every quasi *-representation πp induced by p is a bounded *-representation.

Remark 9. One can also reverse the point of view: given a *-representation π of a partial

*-algebra, it is possible to construct an unbounded C*-seminorm rπ on A. Following the

same steps as before, we can also build up a *-representation πNrπ called natural. The

relationship between πNrπ and the *-representation π where we had started from has been

investigated in [5].

3.1. Constructing C*-seminorms from biweights. The possibility of constructing C*-

seminorms is closely linked to the GNS representation determined by positive linear

functionals. In the case of partial *-algebras a GNS contruction is possible starting from

a particular class of positive sesquilinear forms called biweights that we define below.
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Let ϕ be a positive sesquilinear form on D(ϕ) × D(ϕ), where D(ϕ) is a subspace of

A. Then we have

ϕ(x, y) = ϕ(y, x), ∀x, y ∈ D(ϕ),(2)

|ϕ(x, y)|2 ≤ ϕ(x, x)ϕ(y, y), ∀x, y ∈ D(ϕ).(3)

We put

Nϕ = {x ∈ D(ϕ);ϕ(x, x) = 0}.
By (3) we have

Nϕ = {x ∈ D(ϕ);ϕ(x, y) = 0, ∀ y ∈ D(ϕ)},
and so Nϕ is a subspace of D(ϕ) and the quotient space D(ϕ)/Nϕ ≡ {λϕ(x) ≡ x +

Nϕ;x ∈ D(ϕ)} is a pre-Hilbert space with respect to the inner product (λϕ(x)|λϕ(y)) =

ϕ(x, y), x, y ∈ D(ϕ). We denote by Hϕ the Hilbert space obtained by the completion of

D(ϕ)/Nϕ.

Definition 10. Let ϕ be a positive sesquilinear form on D(ϕ)×D(ϕ). A subspace B(ϕ)

of D(ϕ) is said to be a core for ϕ if

(i) B(ϕ) ⊂ R(A);

(ii) {ax; a ∈ A, x ∈ B(ϕ)} ⊂ D(ϕ);

(iii) λϕ(B(ϕ)) is dense in Hϕ;

(iv) ϕ(ax, y) = ϕ(x, a*y), ∀ a ∈ A, ∀x, y ∈ B(ϕ);

(v) ϕ(a*x, by) = ϕ(x, (ab)y), ∀ a ∈ L(b), ∀x, y ∈ B(ϕ).

We denote by Bϕ the set of all cores B(ϕ) for ϕ.

Definition 11. A positive sesquilinear form ϕ on D(ϕ) × D(ϕ) such that Bϕ 6= ∅ is

called a biweight on A.

For the sake of completeness, we outline the GNS construction for a biweight. Let ϕ

be a biweight on A with a core B(ϕ). We put

π◦ϕ(a)λϕ(x) = λϕ(ax), a ∈ A, x ∈ B(ϕ).

Then it follows from (3) and (iii) of Definition 10 that the biweight ϕ satisfies the condi-

tion:

ϕ(x, x) = 0 for x ∈ B implies ϕ(ax, ax) = 0 ∀a ∈ A.

Thus π◦ϕ(a) is a well-defined linear operator of λϕ(B(ϕ)) into Hϕ. Furthermore, it follows

from (iv) and (v) of Definition 10 that π◦ϕ is a *-representation of A. We denote by πBϕ
the closure of π◦ϕ. Then the triple (πBϕ , λϕ,Hϕ) is called the GNS construction for the

biweight ϕ on A with the core B(ϕ).

Definition 12. Let F be a family of biweights on A and B a subspace of RA. We say

that F is a B-regular family if B is a common core for all elements of F .

If F is B-regular we put, for a ∈ A:

pF (a) = sup{ϕ(ax, ax)1/2, ϕ ∈ F , x ∈ B, ϕ(x, x) = 1}(4)

and

D(pF) = {a ∈ A; pF (a) <∞} .(5)
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We also define:

qF (a) = sup{|ϕ(ax1, x2)|, ϕ ∈ F , x1, x2 ∈ B, ϕ(x1, x1) = 1, ϕ(x2, x2) = 1}(6)

and

D(qF) = {a ∈ A; qF (a) <∞} .(7)

Using the Schwarz inequality, we easily prove that:

D(pF) ⊆ D(qF ) and qF (a) ≤ pF (a), ∀a ∈ D(pF).

With the help of (iii) of Definition 10, one can prove that

qF (a) = sup{|ϕ(ax, y)|, ϕ ∈ F , x ∈ B, ϕ(x, x) = 1, y ∈ D(ϕ), ϕ(y, y) = 1}.(8)

From this equality, one gets that, for any B-regular family F of biweights on A

(i) D(pF) = D(qF) is a partial *-algebra in A;

(ii) pF(a) = qF (a) for every a ∈ D(pF);

(iii) pF is an unbounded C*-seminorm on D(pF).

3.2. C*-seminorms and admissible biweights. Similarly to the case of positive linear

functionals, the notion of admissibility can be introduced for a biweight ϕ but it is linked

to a core of admissibility.

Definition 13. A biweight ϕ on the partial *-algebra is admissible if there exists a core

B(ϕ) such that

∀a ∈ A, ∃γa > 0 : ϕ(ax, ax) ≤ γaϕ(x, x), ∀x ∈ B(ϕ).

Assume now that F is a B-regular family of biweights with common core B. Let

ϕ ∈ F , a ∈ A and x ∈ B. Then, if ϕ(x, x) = 0, we get ϕ(ax, ax) = 0. If ϕ(x, x) > 0, then,

putting w = x/ϕ(x, x)1/2 we have ϕ(w,w) = 1 and

ϕ(ax, ax) = ϕ(aw, aw)ϕ(x, x).

Then if a ∈ D(pF) we obtain

ϕ(ax, ax) ≤ pF (a)2ϕ(x, x).(9)

Then the following is clear:

Proposition 14. Let F be a B-regular family of biweights with common core B. If

D(pF) = A, then each ϕ ∈ F is admissible.

Definition 15. Let q be a seminorm defined on a partial *-subalgebra D(q) of A and ϕ

a sesquilinear form on D(ϕ)×D(ϕ), D(ϕ) ⊆ A. We say that ϕ is q-continuous if

(i) D(q) ⊆ D(ϕ);

(ii) ∃ γϕ > 0 : |ϕ(a, b)| ≤ γϕq(a)q(b), ∀a, b ∈ D(q).

We denote with ‖ϕ‖q the infimum of all positive constants for which (ii) holds.

Let ϕ be a biweight on A with domain D(ϕ)and core B(ϕ). For each x ∈ B(ϕ), we

define a positive sesquilinear form on A× A by

ϕx(a, b) = ϕ(ax, bx), a, b ∈ A.
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Definition 16. Let ϕ be a biweight on A with domain D(ϕ)and core B(ϕ) and let q be

a seminorm with domain D(q). We say that ϕ has a q-continuous B(ϕ)-orbit if each ϕx,

x ∈ B(ϕ), is q-continuous.

A biweight ϕ could have a q-continuous B(ϕ)-orbit, without ϕ being q-continuous.

For a fixed B ⊆ RA we denote with BW (A,B) the family of all biweights of A having

B as a core and we consider a seminorm q on A with D(q) = A. Let

CO(q,B) = {ϕ ∈ BW (A,B) : ϕ has a q-continuous B-orbit}
and

COe(q,B) = {ϕ ∈ CO(q,B) : ‖ϕx‖q ≤ ϕ(x, x), x ∈ B}.
The following characterizes admissibility of biweights.

Theorem 17. Let ϕ be a biweight on A with domain D(ϕ) . A necessary and sufficient

condition for ϕ to be admissible is that there exists an everywhere defined submultiplicative

seminorm q on A and a core B(ϕ) for ϕ such that ϕ ∈ COe(q, B(ϕ)).

The next step consists in considering conditions under which COe(q,B) = CO(q,B),

like it happens for the corresponding objects on *-algebras. For doing this we recall some

definitions.

If A is a partial *-algebra and a ∈ A, the length `(a) is the largest n ∈ N ∪ {∞} such

that an is well-defined in A.

We put

RA∞ = {a ∈ RA : `(a∗a) =∞}.
Now, let q be a C*-seminorm on A (i.e., D(q) = A), B ⊆ RA and ϕ a biweight on

A with ϕ ∈ CO(q,B). Then a Kaplansky-like inequality can be proven for elements of

RA∞. This implies that

|ϕx(a, b)| ≤ ϕ(x, x) q(a)q(b), ∀a, b ∈ RA∞.(10)

If RA∞ is q-dense in A, (10) extends easily to the whole A. This, in turn implies that

Proposition 18. Let q be a C*-seminorm on A and assume that RA∞ is q-dense in A.

Then, for each B ⊂ RA, CO(q,B) = COe(q,B).

The assumption that RA is dense in A implies [3, Lemma 8.1.2] that there exists a

C*-algebra R, with ‖ ‖q, and a linear map x ∈ A→ x̃ ∈ R, preserving the involution and

such that x̃ · y = x̃ · ỹ whenever x · y is well defined. By the Gelfand-Naimark theorem,

there exists an isometric *-isomorphism Φ of R onto a C*-algebra M of bounded operators

in Hilbert space H. If ξ ∈ H, we put

ϕξ(a, b) = 〈Φ(ã)ξ|Φ(b̃)ξ〉, a, b ∈ A.

Then ϕξ is a well-defined positive sesquilinear form on A×A and it can be shown that it

is a biweight with D(ϕξ) = A and B(ϕξ) = B. Moreover ϕξ ∈ COe(q,B). Now, if e ∈ B,

we have

q(a)2 = sup{ϕξ(a, a); ‖ξ‖ = 1} ≤ pF (a)2, ∀a ∈ A.

But pF (a) ≤ q(a), for every a ∈ A. Then
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Theorem 19. Let q be a C*-seminorm on A and B a subspace of RA, q-dense in A and

such that e ∈ B. If F = CO(q,B), then D(pF) = A, and

q(a) = pF (a), ∀a ∈ A.(11)

4. The case of quasi *-algebras. The results of the previous section apply, of course,

to the case of a quasi *-algebra (A,A0). The particularly simple structure of quasi *-

algebras allows however to obtain results similar to those of the previous section without

making reference to the notion of biweight. We will briefly overview in this section the

main results obtained in [22].

To begin with, we define certain particular types of seminorms on a quasi *-algebra.

Definition 20. Let (A,A0) be a quasi *-algebra with unit e and p a seminorm on A.

We say that p is a Q*-seminorm on (A,A0) if

(Q*1) p(a) = p(a∗), ∀a ∈ A;

(Q*2) p(e) = 1

(Q*3) for each x ∈ A0 there exists γx > 0 such that

p(ax) ≤ γx p(a), ∀a ∈ A.

If p is a Q*-seminorm, we can define

p0(x) := max{ sup
p(a)=1

p(ax), sup
p(a)=1

p(xa)},(12)

then p(x) ≤ p0(x) for every x ∈ A0 and

p(ax) ≤ p(a)p0(x), ∀a ∈ A, x ∈ A0.

We will call p0 the reduced seminorm of p.

One of the most favorable situations occurs when, in analogy to what happens for the

so-called CQ*-algebras [6], p0 is a C*-seminorm on A0.

Definition 21. A Q*-seminorm p is called a CQ*-seminorm if p0 is a C*-seminorm

on A0.

If p itself satisfies the C*-condition when restricted to A0, then we call it an extended

C*-seminorm on (A,A0).

Definition 22. Let (A,A0) be a quasi *-algebra with unit e. A positive sesquilinear form

ϕ on A× A is called left invariant if

ϕ(xa, b) = ϕ(a, x∗b), ∀a, b ∈ A, x ∈ A0.(13)

The set of all positive, left invariant sesquilinear forms is denoted with P`.
Due to positivity, any ϕ ∈ P` is hermitian, i.e. ϕ(b, a) = ϕ(a, b) for any a, b ∈ A, and

satisfies the Cauchy-Schwarz inequality.

In analogy to the cases of states or biweights, an element ϕ ∈ P` is called admissible

if for each a ∈ A there exists γa > 0 such that

ϕ(ax, ax) ≤ γaϕ(x, x), ∀x ∈ A0.
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If ϕ ∈ P` and a ∈ A, we can define a positive linear functional ωaϕ on A0 by

ωaϕ(x) = ϕ(xa, a), x ∈ A0.

Let F be any subset of P`. We put:

F0 = {ωaϕ : ϕ ∈ F , a ∈ A}.
Then F0 is balanced [Definition 2]; thus the set

A0(F0) =
{
x ∈ A0 : sup{ωaϕ(x∗x) : ϕ ∈ F , a ∈ A, ϕ(a, a) = 1} <∞

}

is a *-subalgebra of A0 and

|x|F0 =
(
sup{ωaϕ(x∗x) : ϕ ∈ F , a ∈ A, ϕ(a, a) = 1}

)1/2

defines a C*-seminorm on A0(F0).

Let F ⊆ P`. For a ∈ A, we put

pRF (a) = sup
ϕ∈Fs

ϕ(a, a)1/2, where Fs = {ϕ ∈ F : ϕ(e, e) = 1}.

Then, we set

A(F) = {a ∈ A : pRF (a) <∞ and pRF (a∗) <∞},
pF (a) = max{pRF (a), pRF(a∗)}.

Then A(F) is a *-invariant subspace of A but, in general, need not be quasi *-algebra

over A0(F0). There is, however, some special situation.

If ϕ ∈ P` and x ∈ A0, we put ϕx(a, b) := ϕ(ax, bx). It is easily seen that ϕx ∈ P`.
Definition 23. Let F ⊆ P`. We say that F is strongly balanced if, for each ϕ ∈ F and

for each x ∈ A0, the following conditions are fulfilled:

(i) ϕx ∈ F ;

(ii) if ϕ(x, x) = 0 for some x ∈ A0, then ϕ(ax, ax) = 0 for any a ∈ A,

If F be strongly balanced, then the following inequality holds

pRF(ax) ≤ |x|F0 · pRF (a), ∀a ∈ A(F), x ∈ A0(F0)

This implies that, (A(F),A0(F0)) is a quasi *-algebra, pF is a *invariant seminorm on

(A(F),A0(F0)) and

pF(ax) ≤ |x|F0 · pF (a), ∀a ∈ A(F), x ∈ A0(F0)

A family F ⊆ P` is called well-behaved if

pF(a) = pRF(a) = pRF(a∗), ∀a ∈ A

Following the different assumptions on F , we then have

Proposition 24. Let (A,A0) be a quasi *-algebra and F ⊂ P` a family of sesquilinear

forms on A× A. Then the following statements hold:

(i) There exists a quasi *-algebra (A(F),A0(F0)) contained in (A,A0) such that pF is

a *-invariant seminorm on (A(F),A0(F0)).

(ii) If F is well-behaved, then pF is a Q*-seminorm on (A(F),A0(F0)).

(iii) If F is strongly balanced, then pF is an extended C*-seminorm on (A(F),A0(F0)).
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Of course, if | |F0 = (pF )0, where (pF)0 is the reduced seminorm of pF [see (12)] then

pF would automatically be a CQ*-seminorm.

Proposition 25. Let F ⊂ P` be a well-behaved family of sesquilinear forms and

(A(F),A0(F0)) the quasi *-algebra constructed as above. The following statements are

equivalent:

(i) |x|F0 = (pF)0(x), ∀x ∈ A0(F0).

(ii) ϕ(xa, xa) ≤ (pF)0(x)2ϕ(a, a), ∀ϕ ∈ F , x ∈ A0, a ∈ A.

(iii) For each ϕ ∈ F and a ∈ A, ωaϕ is (pF)0-continuous.

If any of the previous statements holds then pF is a CQ*-seminorm on (A(F),A0(F0)).

Example 2. Let I be a compact interval on the real line and consider the quasi*-algebra

[7] of functions (Lp(I), C(I)) where C(I) stands for the *-algebra of all continuous func-

tions on I and Lp(I) is the usual Lp-space on I. We assume that p ≥ 2. Let w ∈ L p
p−2 (I)

(we take 1/0 =∞) and w ≥ 0. Then

ϕ(w)(f, g) =

∫

I

f(x)g(x)w(x)dx, f, g ∈ Lp(I)

defines a left invariant positive sesquilinear form on Lp(I). If w ∈ L∞(I), then ϕ(w) is

admissible. We put

F = {ϕ(w) : w ∈ L p
p−2 (I), w ≥ 0}.

It is easy to see that F is strongly balanced and that ϕ(w) ∈ Fs if, and only if, ‖w‖1 = 1.

Very easy estimates show that A0(F0) = C(I) and |φ|F0 = ‖φ‖∞. On the other hand,

A(F) = {f ∈ Lp(I) : sup
‖w‖1=1

∫

I

|f(x)|2w(x)dx <∞} = L∞(I).

Therefore, the extended C*-seminorm pF coincides with the L∞-norm on L∞(I).

Example 3. Let D be a dense domain in Hilbert space H and let L†(D,H) the weak

partial *-algebra of operators defined in the Introduction. Let

B(D) = {X ∈ L†(D,H) : X is bounded and X : D → D, X† : D → D}.
Then B(D) is a *-algebra and

(
L†(D,H),B(D)

)
can be viewed as a quasi-*-algebra under

the weak multiplication:

A�Bf = ABf ; B �Af = BAf, A ∈ L†(D,H), B ∈ B(D).

If f ∈ D, the positive sesquilinear form ϕf defined by

ϕf (A,B) =< Af,Bf >, A,B ∈ L†(D,H)

is left invariant.

Let now M be a subspace of D and let

F = {ϕf ; f ∈M}
Then A0(F0) = B(D) and |B|F0 = ‖B‖, for each B ∈ B(D). On the other hand

pRF (A) = sup
ϕ∈Fs

ϕ(A,A)1/2 = ‖AdM‖
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Thus

A(F) = {A ∈ L+(D,H) : AdM and A∗dM are bounded}.
The corresponding seminorm

pF (A) = max{‖AdM‖, ‖A∗dM‖}
is a *-invariant seminorm but not, in general, a Q*-seminorm. If M = D, then A(F) =

A0(F0) = B(D) and pF is a C*-seminorm.

As we did for partial *-algebras, we can now examine the problem of the relationship

between admissibility of a sesquilinear form ϕ ∈ P` and its continuity with respect to

some seminorm on (A,A0). This can be done in complete analogy to the case of partial

*-algebras, but proofs are different. We do not enter the details, referring to [22] for more

information. We simply give the main results.

Let q be a Q*-seminorm on (A,A0) and we denote with C(q) the set of all q-continuous

elements of P`. It is easy to see that for each Φ ∈ C(q), then Φx ∈ C(q) for every x ∈ A0

(but C(q) is not necessarily strongly balanced, since (i) of Definition 23 may fail). Moreover

one has ‖Φx‖q ≤ ‖Φ‖q q(x)2 for each Φ ∈ C(q) and x ∈ A0. As seen above, A(C(q)) is a

quasi *-algebra over A0(C(q)0) and A0(C(q)0) = A0.

In order to describe admissibility, we consider some special subset of C(q). Let

C0(q) = {ϕ ∈ C(q) : ‖ϕ‖q = ϕ(e, e)}
and

Ce(q) = {ϕ ∈ C0(q) : ϕx ∈ C0(q), ∀x ∈ A0}.
Let F ⊂ C0(q). In this case we have:

pRF (a) = sup
ϕ∈Fs

ϕ(a, a)1/2 ≤ q(a), ∀a ∈ A.

So A(F) = A and therefore pF is a *-invariant seminorm on A (but not necessarily a

Q*-seminorm). Moreover,

pF(a) ≤ pC0(q)(a) ≤ q(a), ∀a ∈ A.(14)

From the definition itself it follows that if ϕ ∈ Ce(q), then ϕ is admissible, i.e. Ce(q) ⊂
Pa` . This implies that Ce(q) is strongly balanced and therefore, pCe(q) is an extended

C*-seminorm.

Proposition 26. Let ϕ ∈ P`. A necessary and sufficient condition for ϕ to be admissible

is that there exists an (everywhere defined) extended C*-seminorm q on (A,A0) such that

ϕ ∈ Ce(q).

The discussion so far applies to the particular case where q = pF for some subset F
of P`. In this case, each ϕ ∈ F is pF -continuous on (A(F),A0(F0)); i.e., F ⊆ C(pF). If

F is strongly balanced, we get:

pF (a) = pCe(pF )(a) = pC0(pF )(a), ∀a ∈ A

and by Proposition 26, each ϕ ∈ F is admissible on (A(F),A0(F0). In other words, given

a strongly balanced subset F of P`, it is always possible to find a quasi*-algebra contained

in (A,A0), namely, (A(F),A0(F0)), where ϕ ∈ F is admissible.
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Example 4. Let H be a Hilbert space and let A ⊆ B(H) be any *-algebra with unit of

bounded operators. If f ∈ H, we put:

ϕf (A,B) =< Af,Bf >, A,B ∈ A.

Then each ϕf is left-invariant and the set F = {ϕf ; f ∈ H} is strongly balanced. In this

case A(F) = A0(F0) = A and

pF (A) = ‖A‖, A ∈ A.

The set C(pF) consists of all sesquilinear forms Φ for which there exists K > 0 such that:

Φ(a, b) ≤ K‖A‖‖B‖, ∀a,B ∈ A.

This set properly contains F , in general. Since A is a *-algebra, C(pF ) = C0(pF) = Ce(pF)

and pF (A) = pC(A) = ‖A‖, for every A ∈ A.

In order to show that, in general, F 6= Ce(pF ) let us consider a bounded self-adjoint

operator A with continuous spectrum σ ⊂ R and let C(σ) denote the *-algebra of all

continuous functions on the compact set σ with its usual sup norm ‖ ‖∞. Let

A = {f(A); f ∈ C(σ)}
where f(A) is defined via the functional calculus. As is known, each f(A) is bounded and

‖f(A)‖ = ‖f‖∞. Then A is a C*-algebra of bounded operators. We take F as above.

Let now λ0 ∈ σ be fixed. We define a sesquilinear form ϕλ0
by

ϕλ0
(f(A), g(A)) = f(λ0)g(λ0), f, g ∈ C(σ).

ϕλ0
is positive, left invariant and bounded. Indeed,

|ϕλ0
(f(A), g(A))| = |f(λ0)g(λ0)| ≤ ‖f‖∞‖g‖∞ = ‖f(A)‖‖g(A)‖, f, g ∈ C(σ).

This implies that ‖ϕλ0
‖pF ≤ 1. In fact, it is easy to realize that the equality holds true.

We now show that it is not possible to find η ∈ H such that

ϕλ0
(f(A), g(A)) =< f(A)η, g(A)η >, ∀f, g ∈ C(σ).

Indeed, if E(·) denotes the spectral measure of A, we would have:

ϕλ0
(f(A), g(A)) = < f(A)η, g(A)η >

=

∫

σ

f(λ)g(λ)d < E(λ)η, η >= f(λ0)g(λ0), ∀f, g ∈ C(σ),

and this is possible only if λ0 is an eigenvalue of A.

Conclusion. The discussion so far has been focused on the problem of construction of

Gelfand-like seminorms in partial or quasi *-algebras. Of course, one expects that they

can provide useful information on these structures, especially when the latter carry some

locally convex topology. The first step in this direction is to consider the case of normed

or even Banach partial *-algebras that have been recently studied in [4]. Therein, in fact

Gelfand-like seminorms defined by biweights having a common core are used to introduce

notions (like that of *-radical) that could hardly be defined (due to the partial nature of

the multiplication) by a simple adaptation of the ordinary definitions. Some interesting

results on the structure of Banach partial *-algebras have been obtained (for instance,

on the continuity of *-representations). Even if these results can only be considered as
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preliminary (and work is still in progress!), they seem to motivate sufficiently the study

of the extensions of C*-seminorms to the partial algebraic case.
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