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Śniadeckich 8, P.O. Box 21, 00-956 Warszawa 10, Poland

E-mail: zelazko@impan.gov.pl

Abstract. In this paper we extend the characterization of characters given in [1], [2] and [8] onto

m-pseudoconvex algebras. As a consequence (and a generalization) we give a characterization

of continuous homomorphisms from m-pseudoconvex algebras into commutative semisimple m-

pseudoconvex algebras.

1. Introduction. In the papers [1] and [2] it was shown that a subspace M of codi-

mension one in a commutative complex unital Banach algebra A is a maximal ideal if

and only if it consists of non-invertible elements. Equivalently: a linear functional f on

A is multiplicative (a character) if and only if the value f(x) belongs to the spectrum

σ(x) for each element x in A. This result was extended in [8] to the non-commutative

case by showing that if f is a linear fuctional on a unital algebra A, which is mul-

tiplicative on each commutative subalgebra of A, then it is a character on A. It was

already mentioned in [2] that the above result holds true for (commutative) complete

locally bounded algebras and for (commutative) complete locally multiplicatively con-

vex (m-convex) algebras, the latter under an additional assumption of continuity of f

or closedness of M (the non-commutative versions of these results follow immediately

from [8]). In this paper we give a common generalization of these two results, by showing

that the above-mentioned holds true for complete complex unital locally multiplicatively

pseudoconvex algebras. The necessary definitions are found in the next section. The two

generalizations mentioned in [2] are straightforward so that no proofs are given there. The

necessary ingredient there is the existence of a submultiplicative homogeneous seminorm

with respect to which the functional f is continuous. In the case of a locally bounded

algebra it is the spectral radius and in the case of an m-convex algebra it is the algebra

seminorm with respect to which f is continuous. In our case the only difficulty is to
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obtain a suitable (homogeneous) algebra seminorm. In our exposition we shall essentially

follow the nice presentation of the Banach algebra result given in [5], where the result is

given directly in the non-commutative case (with an argument shorter than in [8]) and is

based upon a simple lemma in analytic functions of one complex variable (reproved here

as Lemma 2) produced for this purpose.

As a consequence of our Theorem 1, we also give a spectral characterization of homo-

morphisms from m-pseudoconvex algebras to m-pseudoconvex commutative semisimple

algebras (Theorem 5); it is generalization of a result obtained in [2].

2. Definitions, notations, and prerequisites. A topological algebra is a (real or com-

plex) algebra which is a topological vector space and the multiplication is jointly con-

tinuous. A locally bounded space is a topological vector space X possessing a bounded

neighbourhood of zero (a set S ⊂ X is bounded if it is absorbed by every neighbourhood

of the origin, i.e. for each such neighbourhood U there is a positive scalar λ such that

λS ⊂ U). A locally bounded space is necessarily metrizable and its completion is also

locally bounded. The topology of a locally bounded space X can be given by means of

a p-homogeneous seminorm, 0 < p ≤ 1, i.e. a non-negative subadditive fuctional ‖ · ‖
satisfying ‖λx‖ = |λ|p‖x‖ for all scalars λ and all elements x in X. Detailed information

on locally bounded spaces can be found in [4]. A locally bounded algebra A is a topo-

logical algebra which is a locally bounded space. Its topology can be given by means of

a p-homogeneous algebra norm ‖ · ‖, 0 < p ≤ 1, i.e. a p-homogeneous norm satisfying

moreover ‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ A and ‖e‖ = 1, if A has a unity e. Most facts

true for Banach algebras are also true for complete locally bounded algebras (see [4],

[6], [7], [9]). In particular, a commutative complete locally bounded algebra has always

a continuous (non-zero) character, and so the space M(A) of these characters (provided

with the Gelfand topology) is non-void.

An m-convex algebra is a topological algebra whose topology is given by means of a

family of (homogeneous) algebra seminorms, and an m-pseudoconvex algebra is a topo-

logical algebra whose topology is given by means of a family of p-homogeneous algebra

seminorms (p depending upon the seminorm in question, 0 < p ≤ 1). We can always

assume that such a family is saturated, i.e. together with any finite set | · |1, . . . , | · |n of

(respectively) pi-homogeneous seminors (0 < pi ≤ 1) the family contains its maximum

given by ‖x‖ = max{|x|p/pii : 1 ≤ i ≤ n}, which is a continuous p-homogeneous algebra

norm, where p = min{p1, . . . , pn}. Under this assumption we can always claim that a

continuous linear functional f on the algebra A in question is continuous with respect to

some p-homogeneous seminorm | · | of the family considered, i.e. |f(x)|p ≤ C|x| for some

positive C and all x in A.

The completion of an m-convex or m-pseudoconvex algebra is again such an alge-

bra. The important feature of complete m-pseudoconvex unital algebras is that all entire

functions of one compex variable operate on them, i.e. if φ(ζ) =
∑∞

0 αnζ
n is an entire

function, then for each element x of the algebra A in question the series
∑∞

0 αnx
n con-

verges to an element (denoted by φ(x)) in A. In particular, the exponential function exp

operates on A and for each x in A the element exp(x) is invertible with inverse exp(−x).



CHARACTERIZATION OF CHARACTERS 407

Denote by G(A) the set of all invertible elements in a unital algebra A and by σA(x)

the spectrum of an element x in A, i.e. the set {λ ∈ C : x− λeA 6∈ G(A).

Note that the class of all Banach algebras is contained in the class of all locally

bounded algebras, which, in turn, is contained in the class of all m-pseudoconvex algebras.

For more information on these algebras see [3], [6], [7], [9].

3. The results. Our main result reads as follows.

Theorem 1. Let A be a complex complete m-pseudoconvex algebra with a unity e. Then

a continuous linear functional f on A satisfying

(1) f(e) = 1

is a character if and only if its kernel f−1(0) consists of non-invertible elements.

For the sake of completeness we give a proof of the following lemma; it is due to

Walter Rudin ([5], Lemma 10.8).

Lemma 2. Let ϕ be an entire function such that

(2) |exp[λ2ϕ(λ)]| ≤ exp(|λ|+ C)

for all complex λ and some non-negative constant C. Then ϕ = 0.

Proof. Assume that ϕ 6= 0 and try to get a contradiction. Since |exp[λ2ϕ(λ)]| =

exp(Re[λ2ϕ(λ)]), relation (2) implies

(3) Re[λ2ϕ(λ)] ≤ |λ|+ C.

In particular

(4) Re[λ2ϕ(λ)] ≤ 2|λ| for |λ| ≥ C.
Let r > C and C ≤ |λ| ≤ r. By (4) we obtain for such a λ

Re[λ2ϕ(λ)] ≤ 4r − Re[λ2ϕ(λ)] < 4r +m− Re[λ2ϕ(λ)],

where m = max{|λ2ϕ(λ)| : |λ| ≤ C}. Since |Im[λ2ϕ(λ)]| = |Im[4r + m − λ2ϕ(λ)]|, the

above relation implies

(5) |λ2ϕ(λ)| ≤ |4r +m− λ2ϕ(λ)|.
This relation holds, in particular, if |λ| = r, so, by the maximum principle, if |λ| ≤ r.

The function 4r + m − λ2ϕ(λ) has no zero for |λ| < 2r (if |λ| ≤ C it follows from the

definition of m and if C ≤ |λ| ≤ 2r it follows from relation (5)), so the function

(6) φr(λ) =
r2ϕ(λ)

4r +m− λ2ϕ(λ)

is holomorphic for |λ| < 2r. Relation (5) implies |φr(λ)| ≤ 1 for |λ| = r and so for all

λ satisfying |λ| ≤ r. Thus for any complex λ, lim supr→∞ |φr(λ)| ≤ 1. On the other

hand, our assumption ϕ 6= 0 and the formula (6) imply that this limit is infinite. The

contradiction shows that ϕ(λ) = 0 for all complex λ and the conclusion follows.

Proof of Theorem 1. If f is a character, then the kernel M = f−1(0) consists of non-

invertible elements. So it is sufficient to show that if M ∩G(A) = ∅, then f is a character.

Let (|·|α) be a saturated family of pα-homogeneous, 0 < pα ≤ 1, algebra seminorms giving
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the topology of A. Since f is continuous, there is an index αo and a positive constant C

such that |f(x)|pαo ≤ C|x|αo for all x in A. Without loss of generality we can assume

C ≥ 1. Thus

(7) |f(x)|/C ≤ 1

for all x in the closed unit ball Bo for | · |αo , i.e. for all x satisfying |x|αo ≤ 1. Denote by

B the convex envelope of Bo, i.e. the set of all convex combinations x =
∑n

1 cixi, where

xi ∈ Bo, ci ≥ 0 and
∑
i ci = 1. For any x of this form we have by (7)

|f(x)|/C =
∣∣∣
∑

i

cif(xi)
∣∣∣/C ≤

∑

i

ci|f(xi)|/C ≤
∑

i

ci = 1,

so that |f(x)|/C ≤ 1 for all x in B. Consequently,

(8) |f(x)| ≤ C|x|o
for all x in A, where | · |o is the Minkowski fuctional for B, i.e. a (homogeneous) seminorm

on A. In particular, | · |o is not the zero seminorm. Clearly | · |o is continuous. Since | · |αo
is an algebra seminorm, we have B2

o ⊂ Bo, i.e. Bo is an idempotent set. But the convex

envelope of an idempotent set is again idempotent (see [3]), so that the seminorm | · |o is

submultiplicative.

Let now x ∈ M with |x|o ≤ 1. First we are going to show that x2 ∈ M . Since entire

functions operate on A, the element exp(λx) is well defined for each complex λ and it is

invertible with inverse exp(−λx), so that it does not belong to M . Put φ(λ) = f(exp(λx));

it is a well defined complex-valued function on C which is non-vanishing for each complex

λ. We have

(9) φ(λ) = f
( ∞∑

n=0

λnxn

n!

)
=
∑

n

λnf(xn)

n!
.

Since

(10) |f(xn)| ≤ C|xn|o ≤ C|x|no ≤ C,
φ is an entire function, and since it does not vanish, it is of the form φ(λ) = exp[ψ(λ)],

where ψ is entire too. By (1) and (9) we have φ(0) = f(e) = 1 and φ′(0) = f(x) = 0.

This implies ψ(0) = ψ′(0) = 0, and so we can assume ψ(λ) = λ2ϕ(λ) with an entire ϕ.

By (9) and (10) we have

|φ(λ)| ≤ C
∞∑

0

|λ|n = C exp(|λ|).

It follows that |ψ(λ)| = |λ2ϕ(λ)| ≤ |λ|+ logC and so |exp[λ2ϕ(λ)] ≤ exp(|λ|+ C ′), with

C ′ = logC ≥ 0. Thus the assumption (2) of Lemma 2 is satisfied, and ϕ = 0 by that

lemma. Thus φ(λ) = 1 for all λ, and so, by the formula (9), f(x2) = 0 and x2 ∈ M .

The same conclusion holds without assuming |x|o ≤ 1, because then we can replace x by

x/|x|o. Let now x be an arbitrary element of A. Since, by (1), x − f(x)e ∈ M , we have

x2 − 2f(x)x+ f(x)2e ∈M and so

(11) f(x2) = f(x)2

for all x in A. This formula implies immediately the conclusion in the commutative case:
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just use the formula xy = 1
2 [(x + y)2 − x2 − y2]. In the non-commutative case formula

(11) gives only f [(x+ y)2] = [f(x) + f(y)]2, which implies f(xy+ yx) = 2f(x)f(y) for all

x, y ∈ A. Consequently, f(x) = 0 implies

(12) f(xy + yx) = 0

for all y in A. This fact together with formula (11) and the identity

(xy − yx)2 = 2[x(yxy) + (yxy)x]− (xy + yx)2

implies f(xy − yx) = 0, which together with (12) implies f(xy) = 0 whenever f(x) = 0.

Thus for arbitrary x, y ∈ A we have x − f(x)e ∈ M and so f(xy − f(x)y) = 0, or

f(xy) = f(x)f(y). The conclusion follows.

In the above proof the assumption of continuity of f was essential and without this

assumption the result fails to be true even in the locally convex case (see [10]).

The following corollary gives a condition for existence of continuous characters for

non-commutative m-pseudoconvex algebras.

Corollary 3. Let A be a complete complex unital m-pseudoconvex algebra. Then A has

a continuous character if and only if A has a continuous linear functional f satisfying

f(x) ∈ σ(x) for all x in A, or, equivalently, if and only if A has a closed subspace of

codimension one consisting of non-invertible elements.

Remark 4. It is not known whether a non-commutative m-pseudoconvex algebra can

have a discontinuous character if it has no continuous one. In fact no such complete

topological algebra is known, even in the commutative case (an incomplete example is

easy: the algebra of polynomials in one non-nilpotent variable contained in the radical of

a Banach algebra).

We extend now Theorem 1 by replacing a functional by a linear map into a commu-

tative semisimple m-pseudoconvex algebra.

Recall that a unital algebra is said to be semisimple if its Jacobson radical (the

intersection of all its maximal left ideals, which is equal to the intersection of all its

maximal right ideals) is the zero ideal. In the case of a commutative m-pseudoconvex

algebra the radical is equal to the intersection of all maximal closed ideals (kernels of

continuous characters), so that in such a semisimple algebra the condition f(x) = 0 for

all f ∈M(A) implies x = 0.

Let A and B be complex algebras with unities respectively eA and eB . A linear map

T : A→ B is said to be a unital homomorphism if it satisfies

(13) T (xy) = TxTy and TeA = eB .

The following result for commutative Banach algebras was already obtained in [2].

Theorem 5. Let A and B be complete complex unital m-pseudoconvex algebras. Assume

moreover that B is commutative and semisimple. Then a continuous linear map T from

A to B is a unital homomorphism if and only if

(14) σB(Tx) ⊂ σA(x)

for all x in A.
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Proof. If T is a unital homomorphism from A to B, x ∈ A and λ 6∈ σA(x), then (x −
λeA)(x−λeA)−1 = eA and taking T on both sides we obtain (Tx−λeB)T ([x−λeA]−1) =

eB , so that λ 6∈ σB(Tx) and the formula (14) is satisfied.

Assume now that the formula (14) holds true. Since B is commutative, the space

M(B) is non-void. For each f in M(B) the functional F (x) = f(Tx) is a continuous

linear functional on A. Moreover

F (x) = f(Tx) ∈ σB(Tx) ⊂ σA(x),

so that the kernel of F consists of non-invertible elements. By Theorem 1, F is a character

on A and so

f(T (xy)) = F (xy) = F (x)F (y) = f(Tx)f(Ty), or f(T (xy)− TxTy) = 0

for all x, y ∈ A and all f in M(B). Since B is semisimple, the first half of (13) follows.

Similarly, f(TeA) = F (eA) = 1 = f(eB), or f(TeA − eB) = 0 for all f in M(B). The

second half of formula (13) and the conclusion follow now from the semisimplicity of B.

Remark 6. The above result fails to be true in case when B fails to be semisimple, or

fails to be commutative (even in the finite dimensional case). Let A be the unital complex

algebra generated by an element t satisfying t3 = 0. All elements of A are of the form

x = α(x)e + β(x)t + γ(x)t2, α(x), β(x), γ(x) ∈ C, and so dimA = 3. Put B = A and

define Tx = α(x)e + γ(x)t + β(x)t2 ∈ B. Clearly σB(Tx) = {α(x)} = σA(x), but T is

not a homomorphism since T (t)2 = 0 and T (t2) = t.

Put now B = M3, the algebra of all 3 × 3 complex matrices. Let Ji, i = 1, 2, 3, be

the set of all matrices in B with all entries in the i-th column equal to 0. It can be easily

seen that for each i the set Ji is a left ideal in B. It is a maximal left ideal, since for each

matrix x 6∈ Ji we can find a matrix y ∈ Ji with det(x+ y) 6= 0, so that x+ y is invertible

in B. Thus B is semisimple, since J1∩J2∩J3 = {0}. By the left regular representation we

can imbed our previous algebra A in B as a unital subalgebra. This imbedding is given

by

x→



α(x) β(x) γ(x)

0 α(x) β(x)

0 0 α(x)


 ,

so that the previously considered map T can be treated as a map from A into B, and B

is this time semisimple. As before, we have σ(Tx) = σ(x) but T is not a homomorphism.

Note that the last construction is rather formal, since the algebra T (A) is not semi-

simple. The author does not know what happens if instead of assuming the semisimplicity

of B we assume only the semisimplicity of the closure of T (A) in B.
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