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Abstract. In the first half of the paper, we consider singularities of infinitesimal contact

transformations and first order partial differential equations, the main results being related to the

classical Sternberg-Chen theorem for hyperbolic germs of vector fields. The second half explains

how to construct global generating phase functions for solutions of Hamilton-Jacobi equations

and see what their singularities look like.

Introduction. This is a more or less self-contained (self-centred?) presentation of

the subject. A contact form on a manifold V is a 1-form c such that, for every x ∈ V ,

the linear form cx on TxV is non-zero and the bilinear form on the hyperplane Ker cx
induced by dcx is non-degenerate; as there is no non-degenerate alternate bilinear form

on an odd-dimensional space, this implies that dimV is odd.

Examples. A generic 1-form α on an odd-dimensional manifold W is a contact form

at generic points: more precisely, there is a closed, smooth hypersurface S of W such that

α|W\S is a contact form.

Let J1M = J1(M,R) be the space of 1-jets j1f(x) = (x, f(x), dfx) of real functions f

on a manifold M ; if we denote the points of J1M by (q, u, p), q ∈M , u ∈ R, p ∈ (TqM)∗,
the canonical contact form of J1M is cM := du−p dq. Locally, a section σ of the “source”

projection sM : (q, u, p) 7→ q is of the form j1f if and only if σ∗cM = 0.

A contact structure on V is a hyperplane field K (i.e. a codimension 1 vector sub-

bundle of TV ) with the following property: for each a ∈ V , there exists a contact form c

on a neighbourhood U of a such that Kx = Ker cx for every x ∈ U .

In the first part of the paper, we consider singularities in contact geometry proper:

given a hypersurface E of a manifold V endowed with a contact structure K, we explain

how to describe what happens near a point a ∈ E at which TaE = Ka.

In the second part of the paper, closer to our original talk, we consider “concrete”

contact structures like that of J1M , on spaces equipped with a projection like sM ; the
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singularities have more to do with this projection than with the contact structure itself.

All objects are assumed “smooth enough” (for example C∞).

Acknowledgements. I wish to thank the organisers of this very pleasant and in-

structive meeting for their hospitality.

1. Some background; singularities of Lie and Liouville fields

1.1. Lie fields. Given a contact structure K on a manifold V , a contact transformation

of K is a transformation h of V which preserves K: for each x ∈ V , the derivative Txh

sends Kx onto Kh(x). A Lie field of K is an infinitesimal contact transformation, i.e. a

vector field X on V whose flow consists of contact transformations. For each contact form

c generating K in an open subset of V , this is expressed by the identity c ∧ LXc = 0,

where LX is the Lie derivative with respect to X.

Proposition 1 (Lie). If K is the contact structure generated by a contact form c

on V , then X 7→ cX is an isomorphism of the space of Lie fields of K onto the space

of real functions on V . Hence each Lie field is determined by its (contact) Hamiltonian

−cX with respect to c.

Proof. Given a real function H on V , we wish to show that there is a unique Lie

field X such that

H = −cX.(1)

By the Cartans’ homotopy formula LXc = d(cX) + (dc)X (interior product), this is

expressed by (1) and

(−dH + (dc)X) ∧ c = 0(2)

Now, for each x ∈ V , we have TxV = Kx ⊕ Ker dcx. If we write Xx = Yx + Zx in

this decomposition, (1) reads cxZx = −H(x), which determines Zx since cx is a linear

coordinate on the one-dimensional kernel of dcx. Moreover, at x, (2) can be written

(−dHx + dcxYx)|Kx = 0,(3)

which determines Yx because v 7→ (dcx v)|Kx is an isomorphism of Kx onto its dual

space.

1.2. First order partial differential equations and such. Under those hypotheses, let

E be a hypersurface of V . Locally, the contact structure is defined by a 1-form c and

E is the set of zeros of a real function H, which is the contact Hamiltonian of a unique

Lie field X with respect to c. Now, we have Xx ∈ Kx ∩ TxE for every x ∈ E; indeed,

(1) yields cxXx = −H(x) = 0, hence (−dHx + dcxXx)Xx = 0 by (3), i.e. dHxXx = 0

since dcx(Xx, Xx) = 0. Of course X depends on the choice of H and c, but, for each x ∈ E,

the subspace generated by Xx depends only on E and K: indeed, either TxE = Kx, in

which case Xx = 0 because of (3), or TxE ∩Kx is a hyperplane of Kx, whose orthogonal

for the non-degenerate form dcx|Kx×Kx is the line χx generated by Xx, again by (3). Note

that this does not depend on the choice of c, for another choice would replace c by λc for

some non-vanishing real function λ, hence the restriction of d(λc)x = λ(x)dcx + dλx ∧ cx
to Kx ×Kx would be λ(x)dcx|Kx×Kx .
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In summary, E consists of the closed subset Σ of those x such that TxE = Kx (called

singular points and generically isolated) and the open subset E \ Σ, on which there is a

field of lines x 7→ χx ⊂ TxE ∩ Kx called characteristic lines ; the integral curves of this

line field are the characteristic curves .

First order partial differential equations and their solutions. A first order partial

differential equation on an n-dimensional manifold M is an equation of the form

H(q, u, dudq ) = 0, where H is a real function on J1M . A solution of the equation is a

function ϕ defined on some open subset of M and such that H ◦ j1ϕ = 0. If we identify

ϕ to the image of the section j1ϕ of sM , we see that a solution of the equation is a

Legendrian submanifold , i.e. an n-dimensional submanifold on which cM induces the null

1-form, or, equivalently, an n-dimensional submanifold all of whose tangent spaces are

contained in the corresponding contact hyperplanes.

Hence, forgetting about the projection sM , we can define a geometric solution of the

equation to be a Legendre submanifold of J1M contained in H−1(0). Such a generalised

solution may project badly onto M ; the second half of this paper provides scissors allowing

the construction of a “normal” solution from a geometric one.

Generalised first order partial differential equations. If we go back to the more general

situation of an arbitrary contact structure K on a manifold V of dimension 2n + 1,

a generalised first order partial differential equation is just a hypersurface E of V ; its

solutions are the Legendrian submanifolds of V contained in E.

Example. If n = 1, the (maximal) solutions contained in E \Σ are the characteristic

curves (which can sometimes be extended smoothly through singular points).

1.3. Cauchy problems. We shall prove that first order partial differential equations

have solutions and explain how those solutions can be constructed.

Classical Cauchy problems. First consider a Hamilton-Jacobi equation on M , i.e. a

first order partial differential equation on I ×M of the form ∂tu + H(t, q, u, ∂qu) = 0

for some interval I 3 0 and some real function H on I × J1M , where t, q denote the

variables in I,M respectively. A Cauchy problem consists in looking for solutions ϕ(t, q)

of the equation which take a prescribed value ϕ0(q) for t = 0.

Denote the points of J1(I×M) by (t, q, u, τ, p) with (t, q) ∈ I×M , u ∈ R and (τ, p) ∈(
T(t,q)(I×M)

)∗
= R× (TqM)∗, hence cI×M = du− τ dt−p dq. Our Cauchy problem can

be reformulated as follows: find a Legendre submanifold L (the image of j1ϕ) contained

in the hypersurface τ + H(t, q, u, p) = 0 and passing through the (n − 1)-dimensional

submanifold L0 of J1(I ×M) defined by (q, u, p) = j1ϕ0(q) and τ = −H
(
t, j1ϕ0(q)

)
.

This is not absurd since L0 obviously is isotropic, i.e. cI×M induces the zero form on L0

or, equivalently, L0 is everywhere tangent to the contact structure.

Generalised Cauchy problems. Let E be a generalised first order partial differential

equation in a (2n + 1)-dimensional manifold V endowed with a contact structure K; a

generalised Cauchy problem for the equation consists in looking for the solutions of E

which contain a given isotropic (n−1)-dimensional submanifold L0 of V . The problem is

well-posed if, for each x ∈ L0, the characteristic line χx exists and does not lie in TxL0.
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Example. A classical Cauchy problem is well-posed: indeed, with the notation of the

definition, the t-component of the Lie field on J1(I ×M) generated by the Hamiltonian

τ +H(t, q, u, p) is 1.

Proposition 2. Let L0 ⊂ E be a well-posed generalised Cauchy problem. Then, a

solution L of this Cauchy problem can be obtained by taking the union of local charac-

teristic curves through points of L0. Moreover, any solution of the given Cauchy problem

coincides with L near L0, for every solution of E is a union of characteristic curves.

Proof. Our hypothesis clearly implies that L is an n-dimensional submanifold near L0.

As the problem is local, we may assume that K is defined by a contact form c and that E

is the set of zeros of a real function H having 0 as a regular value; if gt denotes the flow of

the Lie field X whose Hamiltonian is H, the submanifold L consists (locally) of all points

gt(x) with x ∈ L0 and t small enough, and its tangent space at gt(x) is the direct sum of

Txg
t(TxL0) and RTxg

t(Xx) = RXgt(x); our first assertion follows because both of these

subspaces are contained in Kgt(x), the first because gt is a contact transformation and L0

is isotropic, the second because cgt(x)Xgt(x) = −H(gt(x)) = 0 (recall that x ∈ E implies

gt(x) ∈ E since X is tangent to E).

Given a solution S of E, we have to show that it is the union of characteristic curves,

i.e. that we have χx ⊂ TxS for every x ∈ S. Assume that, for some a ∈ S, we have

χa 6⊂ TaS; then, what we have just done for L0 applies to S and shows that, near a, some

union of characteristic curves through points of S is an (n + 1)-dimensional isotropic

submanifold of V , contradicting the following

Basic fact. An isotropic submanifold V of a (2n+ 1)-dimensional contact manifold

has dimension at most n.

Proof. The problem being local, we may assume that the contact structure K is defined

by a contact form c. If we denote by i the inclusion of L0, the relation i∗c = 0 yields

d(i∗c) = 0, i.e. i∗ dc = 0. Hence, for each x ∈ V , the subspace TxV is contained in Kx and

dcx|TxV×TxV = 0; this last equation means that TxV is contained in its orthogonal TxV
⊥

for the non-degenerate bilinear form dcx|Kx×Kx ; hence we have dimTxV ≤ dimTxV
⊥ =

2n− dimTxV .

Remark. The generic singularities of solutions of ill-posed generalised Cauchy prob-

lems can be (and therefore must have been) studied; it should be noted that, in the clas-

sical case of J1M , their images by the projection (q, u, p) 7→ (q, u) onto J0M = M ×R

are more singular than the generic wavefronts, which are the projections of non-singular

Legendre submanifolds.

Corollary 3. A smooth classical solution ϕ : (t, q) 7→ ϕt(q) of a classical Cauchy

problem must be as follows near t = 0: with the notation of the definition, the Le-

gendre submanifold j1ϕt(M) is the image of j1ϕ0(M) by the contact transformation gt
of J1M obtained by integrating(1) the time-dependent Lie field Xt whose Hamiltonian is

Ht : (q, u, p) 7→ H(t, q, u, p).

(1) Meaning that g0(x) = x and ∂tgt(x) = Xt(gt(x)).
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Proof. As mentioned before, the t-component of the Lie field on J1(I ×M) generated

by the Hamiltonian τ + H(t, q, u, p) is 1; as its (q, p)-component is Xt(q, p), its flow

g̃s : (t, q, u, τ, p) 7→ (ts, qs, us, τ s, ps) is given by ts = t + s, (qs, us, ps) = gs ◦ g−1
t (q, u, p)

and (since it preserves the zero level of its Hamiltonian) τ s = −H(ts, qs, us, ps) if τ =

−H(t, q, u, p); the geometric solution of the equation satisfying the given initial condition

being (locally) the union of all g̃t
(
0, q, ϕ0(q),−H(0, j1ϕ0(q)), dϕ0(q)

)
, this implies what

we claimed.

Note. There are two difficulties with this corollary: gt
(
j1ϕ0(M)

)
may not be defined

for all t and, even if it is, gt
(
j1ϕ0(M)

)
can be badly projected onto M for some t’s (if M

is not compact, this can even be the case for every t 6= 0). One cannot do much against

the first difficulty, but the second can sometimes be settled by constructing a genuine

(weak) solution of the Cauchy problem from the badly projected geometric solution, as

we shall see in part 2.

1.4. Singularities of Lie fields and first order equations. Given a hypersurface E of a

(2n+1)-dimensional manifold V endowed with a contact structure K, consider a singular

point of the generalised first order partial differential equation E, namely an a ∈ E such

that TaE = Ka, which can also be expressed as follows: if c is a contact form defining

K near a and H a real function having 0 as a regular value and such that H−1(0) = E

near a, the Lie field X whose Hamiltonian with respect to c is H vanishes at a.

Thus, the classification of (generalised) first order partial differential equations near

their singular points has to do with the classification of Lie fields near their zeros. Now,

transversality arguments show that (Baire-)almost every Lie field has only hyperbolic

zeros(2), and we have the following contact version of the Sternberg-Chen theorem, es-

sentially due to Guillemin and Schaeffer:

Theorem 4. For j = 0, 1, let Kj be a contact structure on a manifold Vj and let

Xj be germ at aj ∈ Vj of a Lie field having a hyperbolic zero at aj. The following two

conditions are equivalent :

i) The Lie fields X0 and X1 are contact conjugate: there is a local contact transfor-

mation(3) h : (V0, a0)→ (V1, a1) such that h∗X1 = X0.

ii) X0 and X1 are formally contact conjugate: there exists a local contact transfor-

mation g : (V0, a0)→ (V1, a1) such that g∗X1 and X0 have infinite contact at a0.

Idea of a proof. Of course i) implies ii). Assuming ii), we may replace X1 by g∗X1

and assume that X0, X1 are germs of Lie fields having infinite contact at 0. If we denote

their flows by ρt0, ρ
t
1 and the stable (resp. unstable) manifold of X0 by W s (resp. Wu),

two cases may occur:

If X0 is in the Poincaré domain, i.e. the germ of V0 at a0 is W s or Wu, then it is

comparatively easy to show that ρ−t1 ◦ ρt0 (in the attracting case) or ρt1 ◦ ρ−t0 (in the

repelling case) converges in the C∞ sense when t → +∞ to the required h, which is a

contact transformation like every ρ−t1 ◦ ρt0 and a conjugacy because ρ−t1 ◦ ρt0
(
ρs0(x)

)
=

ρs1
(
ρ−t−s1 ◦ ρt+s0 (x)

)
, hence at the limit h

(
ρs0(x)

)
= ρs1

(
h(x)

)
.

(2) Meaning that none of the eigenvalues of its differential at a zero lies on the imaginary axis.

(3) Meaning that Txh(K0)x = (K1)h(x) for every x.
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Otherwise, X0 is in the Siegel domain and similar arguments show that the infinite

jets
(
j∞(ρ−t1 ◦ρt0)

)
|W s and

(
j∞(ρt1 ◦ρ−t0 )

)
|Wu converge when t→ +∞; their limits define

the jet along W s ∪Wu of a diffeomorphism h1 having infinite contact with the identity

at a0, such that h∗1X1 and X0 have infinite contact along W s ∪Wu; moreover, so have

h∗1K0 and K0.

Then, one can define a local conjugacy h2 between X0 and h∗1X1 as the solution of

a “Cauchy problem”: take a small embedded sphere S around a0 in W s, transversal

to the orbits of X0, choose any germ S̃ at S of a hypersurface transversal to W s, and

decide that h2(x) = x for x ∈ S̃; if ρt2 denotes the flow of h∗1X1, our conjugacy is given

for x 6∈ Wu by h2(x) = ρ
τ(x)
2

(
ρ
−τ(x)
0 (x)

)
, where τ(x) is determined by the condition

ρ
−τ(x)
0 (x) ∈ S̃. It can be shown that this extends by continuity to a local diffeomorphism

h2 : (V0, a0)→ (V0, a0) having infinite contact with the identity along W s ∪Wu.

Now, we do have h∗2h
∗
1X1 = X0 but not h∗2h

∗
1K1 = K0, so we need a third (fourth)

diffeomorphism germ h3 preserving X0 and pulling back h∗2h
∗
1K1 to K0; this will prove our

theorem with h = h1◦h2◦h3 (or, rather, h = g◦h1◦h2◦h3). To do so, we first work in the

(local) quotient Q of V0 \Wu by ρ1
0, which is a thickened version S̃×T (where T = R/Z)

of the corresponding quotient S̃ by the flow ρt0. The two contact structures on Q induced

by K0 and h∗2h
∗
1K1 have infinite contact along the image Qs of W s and are invariant

by the T-action induced by the flow ρt0. Hence an equivariant (local) version of Gray’s

theorem enables us to find a diffeomorphism germ (Q,Qs)→ (Q,Qs) commuting to the

T-action, having infinite contact with the identity along Qs and pulling back the second

contact structure to the first. This diffeomorphism germ can be lifted in a unique fashion

to a diffeomorphism germ having infinite contact with the identity along W s \ {a0}, and

the same methods as in the previous step show that the lifted diffeomorphism can be

extended by the identity on W u so as to get h3.

Notes. The interested reader can find the relevant details in [6], [8]. Of course,

forgetting about the contact structure, we get a proof of the Sternberg-Chen theorem.

In the Poincaré domain, the result is much easier and more effective, since there

exists an integer k, depending only on the differential dX0(a), such that X1 and X0 are

conjugate if and only if they are formally conjugate at order k. Moreover, this remains

true in the analytic category, which is far from being the case in the Siegel domain because

of “small divisors”.

Recently, the author has put all such results in the framework of invariant manifold

theory [13], [14]. The initial remark is that h is a conjugacy between X0 and X1 if and

only if the local vector field X0×X1 : (x0, x1) 7→
(
X0(x0), X1(x1)

)
on V0×V1 is tangent

to the graph of h.

The above rather abstract statement of the theorem should be completed with “con-

crete” normal forms. The first step is the following classical result:

Proposition 5 (Darboux). For every point a of a (2n+ 1)-dimensional manifold V

endowed with a contact form c, there exists a local diffeomorphism h : (V, a)→ (J 1Rn, 0)

such that h∗c = cRn . In other words, up to smooth changes of coordinates, there is only

one local contact form in each odd dimension.
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The theory of formal normal forms can then be obtained as follows (we refer to [8]

for details): write cRn = dw + 1
2 (q dp− p dq), where w := u+ 1

2pq, identify each Lie field

to its Hamiltonian and the Lie bracket of two Lie fields to the Lagrange bracket of their

Hamiltonians. This makes the space Ê∞ of formal power series in the variables w, q, p into

a Lie algebra, on which the Lagrange bracket respects the graduation obtained by giving

weight 2 to w and weight 1 to q and p; for each integer k, the (finite-dimensional) space Êk,

obtained by taking the quotient of Ê∞ by its elements of order > k (for this graduation) is

made into a Lie algebra; a formal Lie field X̂∞ vanishing at 0 identifies to an infinitesimal

automorphism of Ê∞, and it can be shown that its semi-simple part σ̂∞, obtained by

taking the projective limits of the semi-simple parts of the automorphisms of the Êk’s

induced by X̂∞, is (induced by) a formal Lie field, which is linearisable (this is the reason

for preferring w to u) in the following sense: there exists a formal contact transformation

ĥ sending σ̂∞ onto its linear part (in terms of Hamiltonians, its homogeneous part of

“degree” 2). Then, the image by h of the nilpotent (i.e. nilpotent in each Êk with k <∞)

part ν̂∞ of X̂∞ is a formal Lie field (or formal Hamiltonian) commuting with σ̂∞; hence

ĥ∗ν̂∞ commutes with ĥ∗σ̂∞ and therefore consists of “resonant” terms.

Then, one has a look at this formal normal form ĥ∗σ̂∞+ĥ∗ν̂∞: if it is polynomial, it can

be identified to a “concrete” normal form; otherwise, it can be expressed (in a non-unique

way in general) as a formal power series in finitely many “resonant monomials”, and a

corresponding “concrete” normal form is just any smooth function of those monomials

whose Taylor expansion at 0 is this formal power series. By Theorem 4 above, every

hyperbolic germ of a Lie field admits such a normal form.

When the Hamiltonian H of a Lie field is put into normal form, so is(4) the first order

partial differential equation H = 0. However, if one is interested in the equation and not

in H itself, there is a better, easier way which we shall now explain.

1.5. Singularities of first order equations and Liouville fields. Given a generalised

first order partial differential equation, i.e. a hypersurface E of a (2n + 1)-dimensional

manifold V endowed with a contact structure K, and an a ∈ E such that TaE = Ka,

Proposition 5 above enables us to assume that E = J1Rn, a = 0 and that K is the

standard contact structure du = p dq; if H : (J1Rn, 0) → R is a local submersion such

that E = H−1(0) near 0, the relation TaE = Ka reads dH(0) ∧ du = 0; as we have

dH(0) 6= 0, the implicit function theorem implies that, near 0, E is the graph of a

function u = g(q, p) with g(0) = 0 and dg(0) = 0. Taking (q, p) as coordinates on E, we

can see that its characteristics are the flowlines of the vector field

Xg : (q, p) 7→
(
∂pg(q, p),−∂qg(q, p) + p

)
,

which is the sum of the Hamiltonian vector field
−→
dg : (q, p) 7→

(
∂pg(q, p),−∂qg(q, p)

)
with

Hamiltonian g and the “standard Liouville field” X0 : (q, p) 7→ (0, p). It follows that

Xg is a Liouville vector field , meaning that LXgωRn = ωRn , where ωRn = dq ∧ dp is the

standard symplectic form of T ∗Rn = Rn×Rn ∗; every local Liouville field vanishing at 0

is of that form, and the following result is easy:

(4) Forgetting about the projection (q, u, p) 7→ (q, u), but a contact transformation h sends the

geometric solutions of an equation E onto the geometric solutions of h(E).
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Lemma 6. Given two function germs g0, g1 : (T ∗Rn, 0) → (R, 0) with dg0(0) =

dg1(0) = 0, the following two conditions are equivalent :

1. There exists a diffeomorphism germ h̃ : (J1Rn, 0)→ (J1Rn, 0) preserving cRn and

sending the graph of g0 onto the graph of g1.

2. There exists a diffeomorphism germ h : (T ∗Rn, 0) → (T ∗Rn, 0) preserving ωRn

and sending Xg0
onto Xg1

.

This reduces the local classification of first order partial differential equations to that

of Liouville fields. As before, there is a formal aspect (for which we refer to [26]) and an

abstract part, analogous to Theorem 4, which turns out to be much simpler:

Theorem 7 ([26], [12]). For j = 0, 1, let Xj be germ at 0 ∈ T ∗Rn of a Liouville field

having a hyperbolic zero at 0. The following two conditions are equivalent :

1. The Liouville fields X0 and X1 are symplectically conjugate: there is a local diffeo-

morphism h : (T ∗Rn, 0)→ (T ∗Rn, 0) preserving ωRn and such that h∗X1 = X0.

2. There exists a local diffeomorphism g : (T ∗Rn, 0) → (T ∗Rn, 0) such that g∗X1

and X0 have infinite contact at 0 and that g∗ωRn − ωRn vanishes at 0.

Proof (see [12] for more details). Clearly, 1 implies 2. If 2 is satisfied, by the Sternberg-

Chen theorem, there exists a diffeomorphism germ h2 : (T ∗Rn, 0) → (T ∗Rn, 0), having

infinite contact with g at 0, such that h∗2X1 = X0; hence ω1 := h∗2ωRn and ω0 := ωRn

coincide at 0, and we should find a diffeomorphism germ h1 : (T ∗Rn, 0) → (T ∗Rn, 0)

preserving X0 and such that h∗1ω1 = ω0: property 1 will follow with h := h2 ◦ h1.

As in [28], this is done most easily by the “path method”, so fundamental in singularity

theory: setting ωt := ω0+t(ω1−ω0), we look for a local isotopy (ht)0≤t≤1 (where h0(z) ≡ z
and ht(0) ≡ 0) such that h∗tωt = ω0 for every t; such a local isotopy is obtained by

integrating a time-dependent local vector field (Yt)0≤t≤1 (namely d
dtht = Yt ◦ ht), and

the relation h∗tωt ≡ ω0 is equivalent to d
dth
∗
tωt ≡ 0, i.e. LYtωt + ω1 − ω0 ≡ 0. Now,

since ωt is closed, we have LYtωt = d(ωtYt); moreover, for j = 0, 1, as X0 is a Liouville

field for ωj , we have ωj = d(ωjX0), hence the equation LYtωt + ω1 − ω0 ≡ 0 reads

d
(
ωtYt + (ω1 −ω0)X0

)
≡ 0. Each ωt being non-degenerate near 0 because ωt(0) ≡ ω0(0),

we can define the required Yt by ωtYt + (ω1 − ω0)X0 ≡ 0; it does satisfy Yt(0) ≡ 0, and

it is quite easy to check that the local isotopy (ht) thus generated preserves X0.

Notes. The normal forms of Liouville fields obtained via the Jordan decomposition

may be unsuitable, e.g. if one is interested in getting normal forms for pseudo-differential

operators up to conjugacy by a Fourier integral operator(5) and wishes the model to be a

second order differential operator; to realise this wish, it may be necessary to use “bad”

normal forms as in [17].

For n = 1 (case considered in [17]), as noticed by Davydov, it is possible not to

forget about the projection J1Rn 3 (q, u, p) 7→ (q, u) ∈ J0Rn and get polynomial normal

forms [26], [17] of first order implicit differential equations up to contact transformations

preserving that projection, i.e. induced by local diffeomorphisms of J0Rn.

(5) Or [29] quantised contact transformation.
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2. Some global results. The first three paragraphs of this section, essentially sym-

plectic, are developed more or less independently from the first section. In the end, we

explain how to use them in contact geometry.

2.1. Generating functions. If we still denote by Rn ∗ the dual space of Rn and by

(q, p) the points of T ∗Rn = Rn×Rn ∗, Poincaré’s lemma asserts that a mapping f of Rn

into Rn ∗ is the differential of a function ϕ : Rn → R if and only if the differential

2-form dq∧ df(q) is identically zero, which amounts to saying that the differential 2-form

ωRn = dq ∧ dp induces the null form on the graph L of f : in modern jargon [2], L is a

Lagrangian submanifold of the symplectic structure ωRn . The primitive ϕ of f is unique

up to a constant, and the relation L = dϕ(Rn) can be expressed by saying that ϕ is a

generating function of the Lagrangian submanifold L.

Let now h : T ∗Rn → T ∗Rn be a symplectic (or canonical) transformation, i.e. a

diffeomorphism such that h∗ωRn = ωRn (if n = 1, it means that h is orientation- and

area-preserving). If the points of (T ∗Rn)2 are denoted by
(
(q, p), (Q,P )

)
, this amounts

to saying that the 2-form dQ∧ dP − dq ∧ dp induces the null 2-form on the graph Γ of h.

Therefore, if we introduce the isomorphism A of (T ∗Rn)2 onto T ∗ (T ∗Rn) defined by

A
(
(q, p), (Q,P )

)
:=
(
(Q, p), (P, q)

)
, the transformation h is symplectic if and only if AΓ

is Lagrangian. Now, when h is (for example) C1-close enough to the identity, AΓ is the

graph of a map F : T ∗Rn → (T ∗Rn)∗. Hence there exists a real function Φ(Q, p), unique

up to a constant, such that F = dΦ. In other words, Γ is defined by the equations
{
q = ∂pΦ(Q, p)

P = ∂QΦ(Q, p).

We call Φ a generating function of h.

However, there exist Lagrangian submanifolds of T ∗Rn which project badly on Rn

and symplectic transformations of T ∗Rn which do not have a generating function in

the above sense. Such objects appear in the study of the simplest non-linear first order

partial differential equations; for example, by Corollary 3 above, the solutions of the

Cauchy problem
{
∂tu(t, q) + 1

2∂qu(t, q)2 = 0

u(0, q) = u0(q),

where u0 is a real function in one variable, are obtained locally as follows: the graph of

the differential of ut : q 7→ u(t, q) must be Lt = gt(L0), where gt(q, p) = (q + tp, p). Now,

the reader can check that in general, all the Lt’s are not globally graphs of functions(6).

According to the situation considered, Lt will or will not be an acceptable solution

of the problem(7). Anyway, the Lagrangian submanifolds which are not graphs have

enough interest to justify an extension of the notion of a generating function(8). The

same question arises for symplectic transformations far away from the identity.

(6) When u0 varies too much, it may happen that none of them is for t 6= 0.

(7) It is acceptable in optics but not when the objects under study, e.g. cars, can collide.

(8) All the more since the geometric substratum of the theory of linear differential operators

[29], [23] is nothing but the study of non-linear first order partial differential equations.
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2.2. Generating families. The answer to this question often is so simple that it could

have been given one century sooner: just “add (finitely many) variables” and consider

generating families (also called generating phase functions). Thus, as often in algebraic

geometry and singularity theory, “singular” objects are viewed as sections of “regular”

higher-dimensional objects. The idea first appeared at the local level (for example in

Hörmander [22]), but we shall now describe a global construction.

If (gt)0≤t≤1 is a symplectic isotopy of T ∗Rn (i.e. (t, x) 7→ gt(x) is “smooth enough”

and t 7→ gt is a path in the group of symplectic transformations, such that g0 = Id), it

can be obtained by solving for each x ∈ T ∗Rn the Cauchy problem
{

d
dtgt(x) = ġt (gt(x))

g0(x) = x,
(4)

where the infinitesimal generator (ġt)0≤t≤1 of the isotopy is the time-dependent vector

field defined by the first equation. When, for example, the Lipschitz constants Lip ġt,

1 ≤ t ≤ 1, are bounded from above, it is easy to check that there exists a subdivision

0 = t0 < t1 < . . . < tN+1 = 1 of [0, 1] such that, for 0 ≤ j ≤ N , the symplectic

transformation hj = gtj+1
◦ g−1

tj is close enough to the identity to have a generating

function Φj . If Φ : (T ∗Rn)N+1 → R is defined by

Φ
(
(Qj , pj)0≤j≤N

)
=

N∑

j=0

Φj(Qj , pj)−
N−1∑

j=0

pj+1Qj ,(5)

then, setting {
qj = ∂pΦ(Qj , pj)

Pj = ∂QΦ(Qj , pj),

we have

dΦ = PN dQN + q0 dp0 +
N−1∑

j=0

(
(Pj − pj+1) dQj + (qj+1 −Qj) dpj+1

)
.(6)

The graph of g1 = hN ◦. . .◦h0 is in bijection with the set of those
(
(qj , pj), (Qj , Pj)

)
0≤j≤N

in the product of the graphs of the hj ’s such that (qj+1, pj+1) = (Qj , Pj) for 0 ≤ j < N .

Hence (6), together with the fact that Φj generates hj for each j, shows that the graph

of g1 is in bijection with the set ΣΦ of those (Q, p; v) =
(
QN , p0; (Qj , pj+1)0≤j<N

)
which

satisfy(9)

∂vΦ(Q, p; v) = 0 ,

the bijection being

ΣΦ 3 (Q, p; v)
IΦ7−→
((
∂pΦ(Q, p; v), p

)
,
(
Q, ∂QΦ(Q, p; v)

))
.

The function Φ is called a generating phase function of the symplectic transformation g1;

this includes the following two features:

• the map ∂vΦ is transversal to 0 (since (Qj , pj) is a coordinate system on the graph

of hj for each j) and therefore ΣΦ is a 2n-dimensional submanifold;

• the map IΦ is (for the same reason) an embedding.

(9) “Messing up” a bit the order of the variables on which Φ depends.
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The formula (6) shows that S(Q; v) = Φ(Q, 0; v) is a generating phase function of the

Lagrangian submanifold L1 := g1({p = 0}):
• the map ∂vS is transversal to 0 and therefore ΣS := ∂vS

−1(0) is an n-dimensional

submanifold;

• the map ΣS 3 (Q; v)
IS7−→
(
Q, ∂QS(Q; v)

)
is an embedding, whose image is L1.

The “bad points” of L1 can then be studied by applying singularity theory to the

family SQ of functions of v defined by SQ(v) = S(Q; v): since the family has “nothing

special” in general from the viewpoint of local singularities, this is just the theory of

singularities of Lagrangian and Legendrian projections, as developed by Arnold and his

school [2], [4] since the mid-sixties.

2.3. Generating families which are “quadratic at infinity”. With the notation of (4),

the infinitesimal generator (ġt) of the symplectic isotopy (gt) satisfies LġtωRn = 0, i.e.

d(ωRn ġt) = 0; hence, by Poincaré’s lemma, each ωRn ġt is the differential of a real func-

tion Ht and, if we decide for example that Ht(0) = 0, then (t, x) 7→ Ht(x) is smooth;

the family (Ht) is called a Hamiltonian of the isotopy; the identity ωRn ġt = dHt shows

that (Ht) determines (ġt) (which we shall denote ġt =
−−→
dHt as in Section 1.5 above) and

therefore, by (4), (gt). It is easy to check that the generating functions Φj in the previous

paragraph are given (up to a constant) by

Φj(Q, p) = ΦHj (Q, p) := pq +

∫ tj+1

tj

(
pj(t)q̇j(t)−Ht

(
qj(t), pj(t)

))
dt,

where
(
qj(t), pj(t)

)
= gt ◦ g−1

tj (q, p) and Q = qj(tj+1): as (q, p) 7→ (Q, p) is a diffeomor-

phism by the very definition of a generating function, this makes sense.

Consider the following three cases:

1. There exists a co-compact lattice Z ⊂ T ∗Rn such that every Ht is Z-periodic and

therefore induces a function on the 2n-torus T = T ∗Rn/Z.

2. Every Ht is Zn-periodic with respect to q and all the Ht’s, viewed as functions on

T ∗Tn = Tn ×Rn ∗, vanish off the same compact subset.

3. There exists a quadratic form K on T ∗Rn such that all the Ht’s equal K off the

same compact subset.

The following lemma is easy:

Lemma 8. Let ΦH denote the generating family Φ defined in the previous paragraph

(with Φj := ΦHj ), and let Φ0,ΦK be the generating families obtained from the same

subdivision (tj) by replacing each Ht by 0,K respectively. Then, ΦH is quadratic at

infinity in the following sense:

i) Φ0,ΦK are quadratic forms ;

ii) in cases 1 and 2, d(ΦH − Φ0) : (T ∗Rn)N+1 →
(
(T ∗Rn)N+1

)∗
is bounded ;

iii) in case 3, d(ΦH − ΦK) : (T ∗Rn)N+1 →
(
(T ∗Rn)N+1

)∗
is bounded.
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Let us explain how this property can be used: if we make the linear change of variables

(Q, p; v) 7→ (Q, p;w), where w = (yj , xj)1≤j≤N ∈ (T ∗Rn)N is defined by
{
yj := Qj −Qj−1 (recall that QN = Q)

xj := pj − p,
then ΦH , Φ0 and ΦK , viewed as functions of (Q, p;w), remain generating phase functions

of g1, Id and exp
−→
dK respectively and we have that Φ0(Q, p;w) = pQ+ F 0(w) with

F 0(w) = x1y1 + . . .+ xNyN .

• In case 1, FH(Q, p;w) := ΦH(Q, p;w) − pQ is Z-periodic with respect to (Q, p)

and therefore induces a function on T × (T ∗Rn)N (this is the main reason for changing

v into w); by Lemma 8 ii), the differential of FH(Q, p;w) − F 0(w) is bounded; as F 0

is a non-degenerate quadratic form, standard arguments in differential topology show

that FH , viewed as a function on T × (T ∗Rn)N , has at least 2n+ 1 critical points, and

at least 22n if they are counted with their multiplicity. In other words, g1 has at least

2n + 1 fixed points up to translation in Z, and at least 22n if they are counted with

their multiplicity. This is the celebrated Conley-Zehnder theorem [16]: the endpoint of

a Hamiltonian isotopy of a standard symplectic structure on the 2n-torus has at least

2n+ 1 fixed points, and at least 22n if they are counted with their multiplicity.

• In case 2, similarly, SH(Q;w) := ΦH(Q, 0;w) is Zn-periodic with respect to Q and

therefore induces a function on Tn × (T ∗Rn)N which (as F 0 is non-degenerate) has at

least n+ 1 critical points, and at least 2n if they are counted with their multiplicity. This

proves another of Arnold’s conjectures [1], implying the Conley-Zehnder theorem [7]: the

image of the zero section {p = 0} of T ∗Tn by the endpoint of a Hamiltonian isotopy has

at least n+ 1 intersection points with the zero section, and at least 2n if the intersection

is transversal.

• In case 3, assume that the quadratic form FK(Q, p;w) = ΦK(Q, p;w)− pQ is non-

degenerate (which means that the linear Hamiltonian vector field
−→
dK has no non-trivial

periodic orbit of period 1). Then, the same arguments show that FH has at least one

critical point, i.e. that g1 has at least one fixed point. For suitable H, one can use this

approach to give a very simple proof [10], [27] of the Weinstein conjecture in R2n [33]

and construct the Hofer-Zehnder capacity [21].

2.4. Quasi-functions and their generating families. In case 2 above, a symplectic ver-

sion [7] of Thom’s isotopy extension lemma [32] implies the following: a smooth deforma-

tion (Lt)0≤t≤1 of the zero section L0 = {p = 0} of T ∗Tn is of the form Lt = ht(L0) for a

Hamiltonian isotopy (ht) of T ∗Tn (meaning that ωTn ḣt is exact for every t) if and only

if the Liouville form p dq of T ∗Tn induces an exact 1-form on each Lt, and the same is

true when Tn is replaced by an arbitrary compact manifold M .

Now, this condition means that each Lt is the image of a Legendrian submanifold

L̃t of J1M (unique up to translation in the u direction) by the canonical projection

π : (q, u, p) 7→ (q, p). In fact, if (Ht) is a Hamiltonian of (ht) we can lift (ht) to the

contact isotopy (h̃t) with (contact) Hamiltonian (Ht ◦ π), choose for L̃0 the zero section

(image {u = 0, p = 0} of j10) and let L̃t = h̃t(L̃0).



SINGULARITIES IN CONTACT GEOMETRY 51

Quasi-functions and their critical points. Following Arnold [3], this is expressed by

calling each L̃t a quasi-function; since the isotopy extension lemma is true in contact

geometry, a quasi-function on M can also be defined as a Legendrian submanifold of

J1M which can be obtained from the zero section by a smooth deformation through

Legendrian submanifolds of J1M .

The 1-jet of a true function ϕ is a quasi-function, for it can be joined to the zero

section by the smooth family j1(tϕ)(M); hence it is natural to define the critical points

of a quasi-function to be its intersections with {p = 0}, and to call them non-degenerate

when the intersection is transversal.

As the restriction of the projection π : J1M → T ∗M to a quasi-function is a La-

grangian immersion but not necessarily an embedding, the following result is more general

than its symplectic version, due to Sikorav [30] (and established above if M = Tn):

Theorem 9 ([15]). For each quasi-function L on a closed manifold M , there exists

a finite-dimensional vector space E and a real function S on M × E with the following

properties :

1. S is a generating family for L:

• the “vertical derivative” M × E 3 (Q; v) 7→ ∂vS(Q; v) ∈ E∗ is transversal to 0,

hence ΣS := ∂vS
−1(0) is a submanifold of the same dimension as M .

• ΣS 3 (Q; v)
JS7−→
(
Q,S(Q; v), ∂QS(Q; v)

)
is an embedding and JS(ΣS) = L.

2. S is “non-degenerate quadratic at infinity” in the following sense: there exists a

non-degenerate quadratic form K on E such that M ×E 3 (Q; v) 7→ S(Q; v)−K(v) has

compact support.

More precisely, if (Lt)0≤t≤1 is a smooth family of Legendrian submanifolds joining

the zero section L0 to L1 = L, there exists a smooth real function (t, Q; v) 7→ St(Q; v) on

[0, 1]×M ×E such that St is a generating family of Lt for every t, quadratic at infinity

in the sense of Property 2 above (with the same K for every t).

By Property 1, the critical points of L are the images by JS of the critical points of S;

hence Property 2 implies at once the following result, more general than the symplectic

version due to Hofer [20]:

Corollary 10. The number of critical points of a quasi-function on a closed mani-

fold M is bounded below by the cuplength c`(M) of M plus 1, and by the sum b∗(M) of

the Betti numbers of M when none of those critical points is degenerate.

In other words, the lower bounds for the number of critical points of a “generalised

function” (quasi-function) on M are essentially the same as for real functions on M .

About the proof of Theorem 9. Far from Sikorav’s “intrinsic” proof in [30], Chekanov

had the idea of embedding M as a submanifold of Rn. Theorem 9 follows by extending

(Lt) to a “suitable” deformation (L̃t) of the zero section in J1Rn: by the composition

formula (5) [15], [19] (or its generalisation to contact transformations [11]), L̃t has a

generating family S̃t, defined on Rn×E, and St is just its restriction to M×E (such is the

meaning of “suitable”), modulo some “cut-off” using bump functions, necessary because
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of our new and rather demanding notion of “quadratic non-degenerate at infinity”, which

is not essential.

2.5. Application to classical Cauchy problems. Given a manifold M (which we assume

closed for simplicity) and a smooth family (Ht)0≤t≤1 of real functions on J1M , we are

looking for a solution of the Hamilton-Jacobi equation

∂tu+Ht(q, u, ∂qu) = 0(7)

which equals a given (smooth) ϕ0 : M → R for t = 0. Denoting by (gt) the (local) contact

isotopy generated by the Lie field with Hamiltonian Ht, we assume that the quasi-function

Lt := gt
(
j1ϕ0(M)

)
is well-defined for every t (which is the case when (Ht) has compact

support, for example). By Corollary 3 above, if our problem admits a smooth solution

ϕ : (t, x) 7→ ϕt(x), then it is given by the formula j1ϕt(M) = Lt.

Since M is closed, this formula does define a genuine solution of our Cauchy problem

for small enough t. When t increases, we have seen that, if πM denotes the natural

projection of J1M onto J0M = M × R, the Cerf diagram (wavefront , according to

Arnold)

W :=
⋃

0≤t≤1

(
{t} × πM (Lt)

)

may not be the graph of a function (t, q) 7→ ϕt(q), but a singular hypersurface, which

appears globally as a discriminant because of the following consequence of Theorem 9:

Lemma 11. Under the above hypotheses, there exist a finite-dimensional vector

space E, a smooth real function S : (t, Q; v) 7→ St(Q; v) on [0, 1] ×M × E and a non-

degenerate quadratic form K on E with the following properties :

1. For 0 ≤ t ≤ 1, St is a generating family for Lt.

2. The function [0, 1]×M × E 3 (Q; v) 7→ St(Q; v)−K(v) has compact support.

Proof. Apply Theorem 9 to the deformation
(
h(Lt)

)
of the zero section, where h is the

contact transformation of J1M given by h(q, u, p) =
(
q, u−ϕ0(q), p−dϕ0(q)

)
and denote

by S′ the generating family thus obtained. Then the function (Q; v) 7→ ϕ0(Q) + S′t(Q; v)

is a generating family of Lt for each t, which almost satisfies our requirements: to get

Property 2 stricto sensu, just use bump functions.

It does follows that the wavefront W is the discriminant of S, viewed as a family

of functions of v ∈ E depending on the parameter (t, Q) ∈ [0, 1] ×M . In some cases

(caustics), this wavefront is the “physical” solution of the problem.

When, on the contrary, the only acceptable solutions are functions or distributions

on M , Lemma 11 enables us to construct such a solution as follows: let C > 0 be

large, so that every St,Q : v 7→ St(Q; v) coincides with K on EC := S−1
t,Q(−∞,−C] =

K−1(−∞,−C]. For each (t, Q), consider the “minimax” critical value of St,Q defined by

ϕ(t, Q) = ϕt(Q) := inf
σ

maxSt,Q ◦ σ,

where σ varies among all relative singular homology cycles whose class is a fixed gen-

erator of Hj(E,EC) ∼= Z and j is the index of K. It is quite easy to check that ϕ is

a Lipschitzian solution of our problem (this was suggested to me [9], [11] by Sikorav);
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indeed, its definition implies that it is a Lipschitzian section of the wavefront—hence ϕt
is smooth and satisfies j1ϕt(M) = Lt whenever the latter is well-projected, for example

when t = 0; moreover, the 1-jet of ϕ in the sense of distributions is its almost everywhere

defined 1-jet in the usual sense, which is readily seen to satisfy (7).

This generalised solution in the sense of analysis, obtained as a section of a generalised

solution in the sense of geometry, does not depend on the choice of S because of the

following result, first stated ([34], Proposition 1.5) in the symplectic case:

Theorem 12 ([31]). If S1 : M × E1 → R and S2 : M × E2 → R are two generating

families of the same quasi-function on M , quadratic non-degenerate at infinity, they

are stably (right-)equivalent : there exist non-degenerate quadratic forms Kj on finite-

dimensional real vector spaces Fj (j = 1, 2), such that S1(Q; v1) +K1(w1) = S2(Q; v2) +

K2(w2) for some diffeomorphism (Q; v1, w1) 7→
(
Q; v2(Q; v1, w1), w2(Q; v1, w1)

)
.

Until recently, we did not know how to characterise the minimax solution, except

in one case [24]: when every Ht is strictly convex with respect to p, ϕt(Q) is just the

u-coordinate of the lowest point of the wavefront above (t, Q); indeed, Lt admits a gen-

erating family which is positive definite at infinity, hence the minimax is a minimum.

This implies at once that ϕ satisfies the “entropy condition” [25], [18] or, in more recent

language, is a “viscosity solution”.

In the general case, Gianmarco Capitanio has just obtained [5] the direct geometric

characterisation of the minimax solution we were looking for.

The advantage of this solution is that its generic singularities can be studied using

singularity theory, yielding for example the following result:

Theorem 13 ([24]). A generic minimax function ϕ on a manifold B is smooth except

possibly along a closed stratified hypersurface; viewed in appropriate smooth local charts

of B, this hypersurface and the graph of ϕ are semi-algebraic.

It would certainly be good to have an analogue of this theorem for viscosity solutions,

which most applied mathematicians seem to find interesting even though they are not as

appealing aesthetically as minimax solutions.

Final Note. René Thom died while I was writing this paper, which is a pale reflec-

tion of his enormous influence on science—and, at a more anecdotal level, on my destiny.

The construction of weak solutions of Hamilton-Jacobi equations below can be viewed as

an answer to a question he repeatedly asked his seminar in the mid-seventies.
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[23] L. Hörmander, The Analysis of Linear Partial Differential Operators, Springer, Berlin,

1983–85.



SINGULARITIES IN CONTACT GEOMETRY 55
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tielles, Thèse, Université Paris 7, January 1994.

[25] P. D. Lax, Hyperbolic systems of conservation laws II , Comm. Pure Appl. Math. 10 (1957),

537–566.

[26] M. Manouchehri, Formes normales d’équations différentielles implicites et de champs de
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