
GEOMETRY AND TOPOLOGY OF CAUSTICS — CAUSTICS ’02

BANACH CENTER PUBLICATIONS, VOLUME 62

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 2004

PERTURBATIONS OF CAUSTICS AND FRONTS

GOO ISHIKAWA

Department of Mathematics, Hokkaido University

Sapporo 060-0810, Japan

E-mail: ishikawa@math.sci.hokudai.ac.jp

Dedicated to Professor Tatsuo Suwa for his 60th birthday

1. Introduction. A degenerate singularity of a plane caustic bifurcates into several

cusps. Then we may ask:

How many cusps do there appear after a stable perturbation?

In this article, we review the algebraic formula for the number of complex cusps, thus

the upper estimate of the number of real cusps, and, gradually, we show their several

possible, known and unknown, generalisations, in a comprehensible manner, as best as

possible.

We start with the ordinary singularity theory. Let f : (C2, 0)→ (C2, 0) be an unstable

holomorphic map-germ. We consider the problem of counting the number of cusps after

a stable perturbation. We note that the cusps appear, for the perturbed f , at a point

on the singular locus J = 0, defined by the Jacobian J = J(f1, f2), where the extended

mapping (J, f1.f2) : C2 → C3 is not immersive. So we count the intersection number at 0

of the jet section j2f : C2 → J2(C2,C2) with the variety in J2(C2,C2) defined by J and

2-minors of the Jacobi matrix of (J, f1.f2). Since j2f is an immersion, setting the ideal

J = J1,1 =
〈
J(f1, f2), J(f1, J(f1, f2)), J(f2, J(f1, f2))

〉
O2
,

we have:

Theorem 1.1 ([3], see also [8]). The number κ of cusps for a stable perturbation f̃

from f : (C2, 0)→ (C2, 0) is equal to the dimension over C of the quotient algebra (doubly

iterated Jacobian algebra) Q = O2/J :

κ = dimCO2

/〈
J(f1, f2), J(f1, J(f1, f2)), J(f2, J(f1, f2))

〉
O2
,

provided dimCQ <∞.
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Second, we consider the problem on caustics. Let f : (C2, 0) → T ∗C2 = C4 be a

Lagrangian immersion. Recall the cotangent bundle T ∗C2 with the canonical coordinates

(p1, p2; q1, q2) has the symplectic 2-form ω = dp1 ∧ dq1 + dp2 ∧ dq2 and the canonical

Lagrangian projection π : T ∗C2 → C2, π(p, q) = q. We suppose the immersion f satisfies

f∗ω = 0. Then π ◦ f is called the Lagrangian mapping and its critical value set is called

caustic of f . Now assume f is not necessarily Lagrange stable with respect to π, and ask:

How many cusps do there appear after a Lagrange stable perturbation?

We denote by κ = κ(π◦f̃) the number of cusps near the origin, under the projection π,

of a Lagrange stable perturbation f̃ of f . Since π ◦ f̃ is also a stable perturbation of π ◦f ,

we can calculate the number of cusps by the above theorem from π◦f : (C2, 0)→ (C2, 0).

In Lagrangian singularity theory, Lagrangian immersions and their caustics are anal-

ysed via their generating families [1]. Thus we are also led to the following question:

What is the algebraic formula for κ in term of the generating family of f?

Let F : (Cr ×C2, 0)→ C be a Morse family. (It is not assumed to be R+-stable [1].)

That F is a Morse family means that the catastrophe set

C(F ) :=

{
(x, λ) ∈ Cr ×C2

∣∣∣ ∂F
∂x1

= 0, . . . ,
∂F

∂xr
= 0

}

is regularly defined in Cr×C2, namely,
(
∂F
∂x1

, . . . , ∂F∂xr

)
: (Cr×C2, 0)→ Cr is submersive

along C(F ). Then the mapping f = L(F ) : C(F )→ T ∗C2 defined by

L(F )(x, λ) =
( ∂F
∂λ1

,
∂F

∂λ2
, λ1, λ2

)
,

is a Lagrangian immersion. Conversely, any Lagrangian immersion can be constructed

by this method, up to parametrisation. Thus we call F the generating family of the

Lagrangian immersion f . The singularities of caustics of f coincides with the singularities

of the projection Π|C(F ) : C(F ) → C2, where Π : Cr × C2 → C2 is the projection

(x, λ) 7→ λ. The critical value set of Π|C(F ) is called the bifurcation set of F , which agrees

with the caustic of the Lagrangian immersion L(F ).

Now we set the Hessian of F by

J(∇F ) := J
( ∂F
∂x1

, . . . ,
∂F

∂xr

)
=
∂
(
∂F
∂x1

, . . . , ∂F∂xr

)

∂ (x1, . . . , xr)
,

denoting by J(a1, . . . , ar) the Jacobian det
(
∂ai
∂xj

)
of a1, . . . , ar by x1, . . . , xr, and the

“secondary Hessian” of F by

J
(2)
i (∇F ) := J

( ∂F
∂x1

, . . . ,
∂F

∂xi−1
, J(∇F ),

∂F

∂xi+1
, . . . ,

∂F

∂xr

)
,

replacing ∂F
∂xi

by J(∇F ) for i = 1, . . . , r. Then we set

Jr,1,1 :=
〈 ∂F
∂x1

, . . . ,
∂F

∂xr
, J(∇F ), J

(2)
1 (∇F ), . . . , J (2)

r (∇F )
〉
Or+2

.

Then we have:

Theorem 1.2. The number κ of cusps of a Lagrange stable perturbation of L(F ) is

equal to the dimension dimCQ of the doubly iterated Jacobian algebra

Q := Or+2/Jr,1,1,
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provided dimCQ <∞.

Note that if dimCQ <∞ then dimCOr/〈∂φ/∂x1, . . . , ∂φ/∂xr〉 <∞ for φ = F (x, 0).

Thus φ has an R+-versal deformation and F is induced from it.

Example 1.3. Set F (x1, λ1, λ2) = x5
1 + λ1x

2
1 + λ2x1, with r = 1. Then we have

∂F
∂x1

= 5x4
1 + 2λ1x1 +λ2, J(∇F ) = ∂2F

∂x2
1

= 20x3
1 + 2λ1, and J

(2)
1 (∇F ) = ∂3F

∂x3
1

= 60x2
1. Thus

Q = O3/〈x2
1, λ1, λ2〉. Therefore we have κ = dimCQ = 2.

We give here the proof of Theorem 1.2 shortly, since the proof provides the prototype

for the proofs of possible generalisations.

Proof of Theorem 1.2. C(F ) is defined by ∇F =
(
∂F
∂x1

, . . . , ∂F∂xr

)
= 0 and the singular

locus of Π|C(F ) coincides with the singular locus of (∇F, λ1, λ2) : Cr+2 → Cr+2 on C(F ),

and it is defined by J(∇F ) = 0 on C(F ). Moreover the cusp locus coincides with the

singular locus of (∇F, J(∇F ), λ1, λ2) : Cr+2 → Cr+3. The (r + 2)-minors of its Jacobi

matrix are

J(∇F ), J
(2)
1 (∇F ), . . . , J (2)

r (∇F ).

Now consider the jet space J3(Cr+2,C). Then jets of Morse families form an open

subspace M ⊂ J3(Cr+2,C). We set C := {j3F (x0) ∈ M |∇F (x0) = 0}. Then C

is a submanifold of M of codimension r. Now the (r + 2)-minors of Jacobi matrix of

(∇F, J(∇F ), λ1, λ2), which is considered as an (r + 2) × (r + 3) matrix with entries

in OC , defines a determinantal variety Σ ⊂ C of codimension 2. Then Σ is Cohen-

Macaulay. Moreover the defining ideal of Σ is reduced over the regular locus of Σ. Then

the intersection index of j2F : Cr+2 → M with Σ gives the number of cusps after an

R+-stable perturbation of F , and it is given by dimCQ via (j3F )∗ : Or+2 ← OM .

Here we have two points for the idea of the proof: First we note that, for instance,

J
(2)
i (∇F ) is expressed by a unique (universal) polynomial on partial derivatives of order

not greater than 3 of F , for any F . In fact, we use throughout this paper the following

well-known fact:

Lemma 1.4. Let h be a polynomial function on J r(Cm,Cp). Then, for each i from

{1, . . . ,m}, there exists a unique polynomial d
dxi

h over Jr+1(Cm,Cp) such that
(
d
dxi

h
)
◦

jr+1f = ∂
∂xi

(h ◦ jrf), for any f : (Cm, x0) → (Cp, y0), x0 ∈ Cm, y0 ∈ Cp. The

operator h 7→ d
dxi

h is characterised by the properties d
dxi

(hk) =
(
d
dxi

h
)
k + h

(
d
dxi

k
)
,

and d
dxi

xj = δij,
d
dxi

(yα,j) = yα+ei,j , where yα,j(j
rf(x0)) =

∂|α|yj◦f
∂xα (x0), and ei equals

(0, . . . , 1, . . . 0) (i-th component).

Second, recall that a local ring A is called Cohen-Macaulay if there exists a regular

sequence a1, . . . , an (n = dim(A)), belonging to the maximal ideal; a1 is a non-zero

divisor in A, a2 is a non-zero divisor in A/〈a1〉A, and so on ([21], Ch. 6). In general

the length of a regular sequence does not exceed the dimension of the ring. Therefore

a Cohen-Macaulay ring possesses the possibly longest regular sequence, and it is known

by this property the intersection theory, or the theory of multiplicity, works very well

([7], Prop. 7.1). A regular local ring, for example On, is Cohen-Macaulay. In fact, in On,

the coordinate functions x1, . . . , xn form a regular sequence. If On/J is Cohen-Macaulay

for an ideal J ⊂ On, then we call the zero locus Z(J ) of J with the defining ideal J
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Cohen-Macaulay variety in Cn. Non-singular submanifolds are surely Cohen-Macaulay

varieties. Another class of important examples for Cohen-Macaulay varieties is given by

“determinantal varieties”. In fact we have used the following fundamental algebraic fact:

Proposition 1.5 ([13], see also [4]). Let A be a Cohen-Macaulay local ring. Then,

for the ideal J generated by `-minors of an n×m-matrix with entries in A, the quotient

ring A/J is Cohen-Macaulay, provided dim(A) − dim(A/J ) = (n + 1 − `)(m + 1 − `),

the “ideal” codimension.

We have applied Proposition 1.5 in the above proof of Theorem 1.2 to A = OC ,

n = r + 2, m = r + 3 and ` = r + 2. We can also apply it to show Theorem 1.1.

The usage of the Cohen-Macaulay property for the problem of counting perturbed

isolated singularities is first considered in [3], along the general framework of intersection

theory. Later the original idea is re-explained in [8] for obtaining the new result on the

number of double folds. Note that the idea itself of counting perturbed singularities is

considered through the deep investigations of germs C2 → C3 due to Mond (cf. [22],

[23], [24]). See also [30], [28], [29], [19], [20] for the related studies. After [3], [8], there

appears a sequence of investigations on the problem of counting general isolated Thom-

Boardman singularities [26], [4], [5], [6]. Then we observe that there are two main points

for obtaining right formulae: one is seeking the appropriate defining ideals of treating

singularities on jet spaces and second is seeing their Cohen-Macaulay property. For com-

plicated singularities, both points cause non-trivial problems. In the following sections

we collect, around the problems of caustics and wavefronts, several situations where we

can overcome these points.

The singularities of generating families of functions can be studied from the viewpoint

of singularities of mappings: Let us consider again a Morse family F : (Cr ×C2, 0)→ C

for plane caustic. Then we consider G := (F,Π) : (Cr × C2, 0) → C × C2, G(x, λ) =

(F (x, λ), λ). Then the critical locus of G coincides with the catastrophe set C(F ) of F .

Moreover the cusp (namely, Σr,1,0) singular points of G are exactly the fold (namely, Σ1,0)

singular points of Π|C(F ), while the swallowtail (namely, Σr,1,1,0) singular points of G are

exactly the cusp (namely, Σ1,1,0) singular points of Π|C(F ). The R+-stable deformation

of F induces a stable deformation of G. Therefore Theorem 1.2 follows, for instance, from

the following (Corollary 4.4(3) of [4]):

Theorem 1.6 (Fukui, Nuño Ballesteros, Saia). The number of Σn−2,1,1,0-points for

a stable perturbation of a K-finite map-germ G : (Cn, 0)→ (C3, 0) with corank 1 is equal

to dimCOn/Jn−2,1,1(G), where Jn−2,1,1(G) is generated by 3-minors M1, . . . , of Jacobi

matrix Jac(G) of G, (n− 2)-minors N1, . . . , of Jac(G,M) and (n− 2)-minors L1, . . . , of

Jac(G,M,N).

Note that, if G = (F,Π), the ideal Jn−2,1,1(G) defined in the above theorem coincides

with the ideal treated in Theorem 1.2. Thus we have the second proof of Theorem 1.2.

The problem of counting the number of cusps of caustics is closely related to the

problem of counting the number of swallowtails of wave fronts. In fact, G|C(F ) : C(F )→
C × C2 is the wave front of the Legendrian lifting L̃(F ) : C(F ) → C × T ∗C2 of the

Lagrangian immersion L(F ) : C(F )→ T ∗C2. In fact F |C(F ) : C(F )→ C is a generating
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function of L(F ) since dF = ∂F
∂λ1

dλ1 + ∂F
∂λ2

dλ2 on C(F ) =
{
∂F
∂x1

= 0, . . . , ∂F∂xr = 0
}

.

Thus actually the formula of Theorem 1.2 can be interpreted, from the singularity theory

of mappings, as the formula for the number of swallowtails of perturbed wave front. Of

course, since swallowtails project to cusps, we have the same formula.

In Legendrian singularity theory, the singularities of wave fronts are analysed via

generating families of hypersurfaces [1]. So we give the counting formula for swallowtails

of wave fronts in the language of generating families of hypersurfaces.

Let H : (Cr × C3, 0) → (C, 0) be a function family. Assume the equation H = 0

defines a Morse family of hypersurfaces in Cr. This means that the big singular set

C̃(H) :=

{
(x, λ)

∣∣∣ H = 0,
∂H

∂x1
= 0, . . . ,

∂H

∂xr
= 0

}
,

is non-singular. The image Π(C̃(H)) of C̃(H) under the projection Π : Cr ×C3 → C3 is

called the discriminant of H. This coincides with the front of the Legendrian immersion

defined by H. In fact the mapping L̃(H) : C̃(H)→ PT ∗C3 defined by

L̃(H)(x, λ) =

([
∂H

∂λ1
,
∂H

∂λ2
,
∂H

∂λ3

]
, λ1, λ2, λ3

)

is a Legendre immersion in the projective cotangent bundle PT ∗C3 over C3. For the

Legendre fibration π : PT ∗C3 → C3, the front of L̃(H), that is the image of π ◦ L̃(H),

coincides with the discriminant Π(C̃(H)). Any Legendre immersion to PT ∗C3 is obtained

by this process, up to parametrisation.

Theorem 1.7. The number of swallowtails in the fronts of a stable perturbation of

L̃(H) is equal to the dimension dimC Q̃ of the algebra

Q̃ := Or+3

/〈
H,

∂H

∂x1
, . . . ,

∂H

∂xr
, J(∇H), J

(2)
1 (∇H), . . . , J (2)

r (∇H)
〉
Or+3

,

provided dimC Q̃ <∞.

Proof. Up to K-equivalence, we may assume that H = F − λ3 for a Morse fam-

ily F (x, λ1, λ2). Then we apply Theorem 1.6 to G : (Cr × C2, 0) → C × C2, where

G(x, λ1, λ2) = (F (x, λ), λ1, λ2).

Note that a more geometric formula is known ([27], [18], [11], [12]) on the number

of cusps appearing in a generic plane section of the discriminant by means of Milnor

number. However it seems to be open yet to relate it to the formula in term of the

iterated Jacobians.

In the following sections we consider several generalisations of the above results in-

cluding singular cases and try to understand them clearly: In Section 2, we introduce

the counting formulae for the numbers of A4 and D4 singularities of caustics due to

Fukui and Weyman. In Section 3, we count the numbers of simplest singularities of sin-

gular Lagrangian immersions: open Whitney umbrellas. In Section 4, we count isolated

singularities of singular Lagrangian immersions composed with Lagrangian projections.

Actually, as the result obtained firstly in this paper, we give the formulae for the numbers

of singularities S3, S4, S5 and T5 introduced in [2].



106 G. ISHIKAWA

In the last section, we give open questions. We do not treat in this paper the interest-

ing problem on the algebraic equations for the number of real cusps and other isolated

singularities over the real. Also we do not treat the topological invariance of the com-

plex or real numbers of isolated singularities and Euler characteristics of non-isolated

singularities of stable perturbations.

The present paper is based partly on my talk under the same title at Yokohama,

Japan, on November 2000, in the occasion of the celebration for the 60th birthdays of

Professor Fukuda and of Professor Izumi. I would like to thank Professor Toshizumi

Fukui and Professor Jerzy Weyman for their encouragement to my writing of this note

by their asking the question on perturbations of caustics. I would like to thank Professor

D. Siersma for his reminding me the other geometric formulae on the numbers of cusps.

I would like to thank organisers of the conference Caustics’02, for their encouragement

to my completing of the present paper.

2. Space caustics. So far we have investigated the number of A3 singularities of

caustics on the plane. Then it is natural to ask about the number of A4 and D4 singu-

larities of caustics in the three space [1].

Remark 2.1. The number of A2-singularities of a generating family F : (Cr ×
C, 0)→ C, F = F (x, λ) is given by dimCOr+1/Jr,1, Jr,1 = 〈∇F, J(∇F )〉.

Let F : (Cr ×C3, 0) → C be a generating Morse family of a Lagrangian immersion

f : (C3, 0)→ T ∗C3. The fold (A2) locus of Π|C(F ) is defined by ∇F = 0 and J(∇F ) = 0.

The cusp (A3) locus of Π|C(F ) is defined by ∇F, J(∇F ) and J
(2)
1 (∇F ), . . . , J

(2)
r (∇F ).

Then, for the description of swallowtail (A4) locus of Π|C(F ), we intend to consider the

mapping
(
∇F, J(∇F ), J

(2)
1 (∇F ), . . . , J (2)

r (∇F ), λ1, λ2, λ3

)
: (Cr+3, 0)→ (C2r+4, 0),

as in the proof of Theorem 1.2. However actually there is no reason to expect that its

singular locus coincides with the swallowtail locus of Π|C(F ), because

∇F, J(∇F ), J
(2)
1 (∇F ), . . . , J (2)

r (∇F )

are far from being independent. In fact, in [4], [5] it is observed that the singular locus

includes the locus of D4 as well as the locus of A4.

Anyway we define the ideal Jr,1,1,1 in Or+3 generated by

∇F, J(∇F ), J
(2)
1 (∇F ), . . . , J (2)

r (∇F )

and Jacobians of r elements from ∇F, J(∇F ), J
(2)
1 (∇F ), . . . , J

(2)
r (∇F ) with respect to

x1, . . . , xr. Moreover we define the ideal Jr,2 in Or+3 generated by ∇F and (r − 1)-

minors of the Jacobi matrix Jac(∇F ) of ∇F . Then the following result is the remarkable

Theorem 3.2 of [5] rewritten in the language of generating family.

Theorem 2.2 (Fukui-Weyman [5]). Let F : (Cr × C3, 0) → C be a Morse family.

Then we have the formulae for the number #D4 of D4-singular points and the number

#A4 of A4-singular points, respectively, after a Lagrange stable perturbation:

#D4 = dimCOr+3/Jr,2,
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and

#A4 = dimCOr+3/Jr,1,1,1 − 4 dimCOr+3/Jr,2,
provided dimCOr+3/Jr,2 <∞ and dimCOr+3/Jr,1,1,1 <∞.

Example 2.3. Consider the generating family of type D4:

F (x1, x2, λ1, λ2, λ3) = x2
1x2 + x3

2 + λ1x
2
2 + λ2x1 + λ3x2,

(r = 2). Then

dimCO5/J2,2 = dimCO5

/〈 ∂F
∂x1

,
∂F

∂x2
,
∂2F

∂x2
1

,
∂2F

∂x1∂x2
,
∂2F

∂x2
2

〉
O5

= 1.

Moreover we have

J2,1,1,1 =
〈
x2

1, x1x2, x
2
2, λ1x1, λ1x2, λ

2
1, λ2, λ3

〉
O5
.

Thus we see O5/J2,1,1,1 has a basis {1, x1, x2, λ1} and

dimCO5/J2,1,1,1 = 4

for D4. On the other hand, for the generating family of type A4:

F (x1, x2, λ1, λ2, λ3) = x5
1 + x2

2 + λ1x
3
1 + λ2x

2
1 + λ3x1,

(r = 2), we have dimCO5/J2,2 = 0 and O5/J2,1,1,1 = 1.

Let f : (C3, 0)→ T ∗C3 be a Lagrangian immersion and π : T ∗C3 → C3 the canonical

projection. We can re-formulate Theorem 2.2, without using the term of generating family,

as follows: Considering the composition π ◦ f = (q1 ◦ f, q2 ◦ f, q3 ◦ f), we define J2 as the

ideal generated by the 2-minors of the Jacobi matrix Jac(q1 ◦ f, q2 ◦ f, q3 ◦ f) and define

J1,1,1 as the ideal generated by the Jacobian J = J(q1 ◦ f, q2 ◦ f, q3 ◦ f), the secondary

Jacobians

J
(2)
1 = (J, q2 ◦ f, q3 ◦ f), J

(2)
2 = J(q1 ◦ f, J, q3 ◦ f), J

(2)
3 = J(q1 ◦ f, q2 ◦ f, J)

and the trinary Jacobians, namely, 3-minors of

Jac(q1 ◦ f, q2 ◦ f, q3 ◦ f, J, J (2)
1 , J

(2)
2 , J

(2)
3 ).

Then we have:

Corollary 2.4. Let f : (C3, 0) → T ∗C3 be a Lagrangian immersion. Then the

number #D4 of D4-singularities and #A4 of A4-singularities respectively appearing in a

Lagrange stable perturbation of f is given by

#D4 = dimCO3/J2, #A4 = dimCO3/J1,1,1 − 4 dimCO3/J2,

provided dimCO3/J2 <∞ and dimCO3/J1,1,1 <∞.

Proof. Let F : (Cr × C3, 0) → C be a generating family of f . We may suppose

ϕ := πr|C(F ) : (C(F ), 0) → (Cr, 0), C(F ) being the catastrophe set-germ, is a complex

analytic isomorphism. Also consider the inclusion i : (C(F ), 0) → (Cr × C3, 0). Then

the composition of i∗ : Or+3 → OC(F ) with the inverse of ϕ∗ : Or → OC(F ) induces the

isomorphisms

Or+3/Jr,2 ∼= O3/J2, and Or+3/Jr,1,1,1 ∼= O3/J1,1,1.
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Here we also give the result on the numbers of A4 and D4 for generating families

H(x1, . . . , xr, λ0, λ1, . . . , λ3) = 0 on (Cr × C4, 0) of Legendre immersions (C3, 0) →
PT ∗C4. We define, for H, similarly as above, ideals J̃r,2 and J̃r,1,1,1 in Or+4, but adding

H to the generators of Jr,2 and Jr,1,1,1 respectively. Then we have

Corollary 2.5. Let H : (Cr × C4, 0) → (C, 0) be a Morse generating family of

hypersurfaces for a Legendrian immersion L̃(H) : C̃(H) → PT ∗C4. Then the numbers

#D4 and #A4 of D4 and A4 singularities respectively of a Legendrian perturbation of

L̃(H) are given by:

#D4 = dimCOr+4/J̃r,2,
and

#A4 = dimCOr+4/J̃r,1,1,1 − 4 dimCOr+4/J̃r,2,
provided dimCOr+4/J̃r,2 <∞ and dimCOr+4/J̃r,1,1,1 <∞.

Remark 2.6. The counting of isolated singularities of caustics in the four space has

several difficulties: The ideals associated to Thom-Boardman singularities are actually

defined in general ([25], [26], [4], [5]): They are called Morin ideals of Thom-Boardman

singularities. However, for A5-singularities or Σr,1,1,1,1-singularities, the Morin ideal does

not define a Cohen-Macaulay variety (Theorem 3.1 of [5]). Moreover we do not know

the coefficients of necessary correcting terms for the counting of the number of Σr,1,1,1,1-

singularities. Furthermore, we note that D5-singularity of caustics is no longer a Thom-

Boardman singularity. So we need, in general, a method to find the defining ideals for

closures of K-orbits in jet spaces.

3. Open Whitney umbrellas. Let f : (Cn, 0) → T ∗Cn be an isotropic mapping;

f∗ω = 0. In this and in the next sections, we do not assume f is an immersion (i.e. of

corank 0). Instead we do assume f is of corank not exceeding 1.

In this section we do not treat singularities of caustics nor singularities of Lagrangian

projections. Instead we do treat the singularities of f up to the symplectic equivalence [16].

Actually we consider Thom-Boardman singularities of type Σ1,1,... for isotropic mappings.

In this paper, by the isotropic jet space we mean the space of isotropic jets of corank

not exceeding 1:

JrI (Cn, T ∗Cn) :=
{
jrf(x) |x ∈ Cn, f : (Cn, x)→ T ∗Cn, f∗ω = 0, corank(f) ≤ 1

}
.

Moreover we set

JrI (n, 2n) := {jrf(0) | f : (Cn, 0)→ (T ∗Cn, 0), f∗ω = 0, corank(f) ≤ 1}.
Recall that the Thom-Boardman singularity Σ1k = Σ1,1,... (k times) is defined in

the ordinary jet space Jr(Cn, T ∗Cn) (k ≤ r); Σ1k(Cn, T ∗Cn) ⊆ Jr(Cn, T ∗Cn) is a

submanifold of codimension (n+ 1)k. Then simply we set

Σ1k
I (Cn, T ∗Cn) := Σ1k(Cn, T ∗Cn) ∩ JrI (Cn, T ∗Cn).

Similarly, for Σ1k(n, 2n) ⊆ Jr(n, 2n), we set

Σ1k
I (n, 2n) := Σ1k(n, 2n) ∩ JrI (n, 2n).
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Then, via the trivialisation

Jr(Cn, T ∗Cn) ∼= Cn × T ∗Cn × Jr(n, 2n),

we have

JrI (Cn, T ∗Cn) ∼= Cn × T ∗Cn × JrI (n, 2n)

and

Σ1k
I (Cn, T ∗Cn) ∼= Cn × T ∗Cn × Σ1k

I (n, 2n).

We abbreviate Jr(Cn, T ∗Cn) by Jr, and similarly we abbreviate JrI (Cn, T ∗Cn) (resp.

Σ1k
I (Cn, T ∗Cn)) by JrI (resp. Σ1k

I ).

It is known that the isotropic map-germ of corank not greater than 1 is essentially

described by Jr(1, 2) up to symplectic equivalence ([14], [15], [16], [17]). In particular we

have:

Lemma 3.1 ([14]). Σ1k
I (n, 2n) is a submanifold of JrI (n, 2n) of codimension 2k.

Σ1k
I = Σ1k

I (Cn, T ∗Cn) is a submanifold of JrI = JrI (Cn, T ∗Cn) of codimension 2k.

Generic isotropic mappings of corank not greater than 1 are classified into open Whit-

ney umbrellas of type k (0 ≤ k ≤ [n/2]) ([14]). They are characterised by the symplectic

stability [16]. Among them, the classification coincides with the classification by Thom-

Boardman singularities: An open Whitney umbrella f : (Cn, x) → (T ∗Cn, f(x)) is of

type k if and only if jrf(x) ∈ Σ1k,0
I (= Σ1k

I \ Σ
1k+1

I ). We abbreviate an open Whitney

umbrella of type k by OWUk.

For an isotropic mapping f : (C2n, 0) → T ∗C2n, open Whitney umbrellas of type n

appear isolatedly by Lemma 3.1 after a symplectically stable perturbation. Then we

naturally have the question:

How many open Whitney umbrellas of isolated type do there appear after a symplec-

tically stable perturbation?

We define, in general, for a map-germ f : (Cm, 0)→ (Cp, 0) with m ≤ p, the ideal J1k

of Om generated by m-minors M
(1)
1 ,M

(1)
2 , . . . , of the Jacobi matrix (an m × p-matrix)

Jac(f) of f , m-minors M
(2)
1 ,M

(2)
2 , . . . , of the Jacobi matrix (an m × (p +

(
p
m

)
)-matrix)

Jac(f,M (1)), m-minors M
(3)
1 ,M

(3)
2 , . . . , of Jac(f,M (1),M (2)), . . . , and lastly m-minors

of Jac(f,M (1),M (2), . . . ,M (k−1)).

Then we have:

Proposition 3.2. Let f : (C2n, 0) → T ∗C2n be an isotropic map-germ of corank

not exceeding 1. Then the number #OWUn of open Whitney umbrellas of type n after a

symplectically stable perturbation of f is given by

#OWUn = dimCO2n/J1n ,

provided dimCO2n/J1n <∞.

Proof. The corresponding ideal to J1n in OJn is a regular defining ideal of Σ1n .

Moreover it gives a regular defining ideal in OJn
I

of Σ1n
I , which is non-singular of codi-

mension 2n. This means that, at each point of Σ1n
I , there are 2n elements from the ideal

which give a submersion at the point. The number of open Whitney umbrellas of type n
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after a symplectically stable perturbation is equal to the intersection number of Jnf(C2n)

and Σ1n
I in JnI = JnI (C2n, T ∗C2n). This implies the result.

In particular, setting n = 1 in Proposition 3.2, we have the following result.

Corollary 3.3. Let f : (C2, 0) → T ∗C2 be an isotropic map-germ of corank not

greater than 1. Denote by u the number of open Whitney umbrellas of symplectically

stable perturbations of f . Then

u = dimCO2/J1,

where J1 is the ideal generated by 2-minors of Jacobi matrix Jac(f) of f .

We apply the above result to the problem of counting the number of folded umbrellas

of fronts.

A map-germ g : (Cn, 0) → (Cn+1, 0) with dense immersion locus is called a frontal

map-germ if, for any t ∈ (Cn, 0), there exists unique limit of tangent spaces through

immersive points lims→t g∗(TsCn) =: Tt depending smoothly on t.

For example, the swallowtail (x1, x2) 7→ (x1, x
3
2 + x1x2,

3
4x

4
2 + 1

2x1x
2
2) and the folded

umbrella (x1, x2) 7→ (x1, x
2
2, x1x

3
2) are frontal, while the Whitney umbrella (x1, x2) 7→

(x1, x
2
2, x1x2) is not frontal, when they are regarded as map-germs (C2, 0)→ (C3, 0).

Let g : (Cn, 0)→ (Cn+1, 0) be frontal. Then the map-germ to the Grassmannian

G : (Cn, 0)→ Gr(n, TCn+1) = PT ∗Cn+1

defined by G(t) = Tt is an integral map-germ: If we consider the contact form

α = dr − ∑n
i=1 pi dqi on C2n+1 = J1(Cn,C) ⊂ PT ∗Cn+1, then G∗α = 0 provided

G(0) ∈ J1(Cn,C). For integral mappings see [1]. Then we have the following:

Proposition 3.4. Let g : (C2n, 0)→ (C2n+1, 0) be a frontal mapping with the inte-

gral lifting G : (C2n, 0)→ J1(C2n,C) = C4n+1 of corank not greater than 1. Set

G = (g1, . . . , g2n, e; a1, . . . , a2n)

with de = a1 df1 + . . . + a2n df2n. Then the number #FUn of folded umbrellas of type n

after a frontal stable perturbation of g is equal to #OWUn for the isotropic map-germ

f = (g1, . . . , g2n, a1, . . . , a2n) : (C2n, 0)→ T ∗C2n. Therefore

#FUn = dimCO2n/J1n(f).

In particular consider the case n = 2. It is known that any integral map G : (C2, 0)→
Gr(2, TC2) of corank not exceeding 1 is approximated by an integral map G̃ such that

g̃ = π ◦ G̃ has only swallowtails and folded umbrellas as singularities (cf. [9]). Denote by s

(resp. u) the number of swallowtails (resp. folded umbrellas) for perturbations g̃ = π ◦ G̃
from g. Then we have:

Corollary 3.5. Let g : (C2, 0) → (C3, 0) be a frontal map-germ with the inte-

gral lifting G : (C2, 0) → J1(C2,C) = C5 of corank not greater than 1. Set G =

(g1, g2, e; a1, a2) with de = a1 dg1 + a2 dg2. Then we have s = dimCQ with

Q := O2/
〈
J(g1, g2), J(g1, J(g1, g2)), J(J(g1, g2), g2)

〉
O2
.
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Moreover we have u = dimCQ
′ with

Q′ := O2

/〈
J(g1, g2), J(g1, a1), J(g1, a2)

J(g2, a1), J(g2, a2), J(a1, a2)

〉

O2

.

Remark 3.6. Lowering more the dimension, consider a plane curve g : (C, 0) →
(C2, 0) as front. Then the number κ of cusps of frontal perturbations of g is equal to the

order of the plane curve-germ g: κ = ord(g).

4. Supersingularities of caustics. Here we count isolated singularities of isotropic

mappings relatively to the Lagrangian projections, namely singularities of composed

isotropic mapping f : (Cn, 0)→ T ∗Cn with the Lagrangian fibration π : T ∗Cn → Cn. If

f is an immersion, then f is a Lagrangian immersion, and the composed mapping π ◦ f
is exactly the Lagrangian mapping of f . In general, the singularity of composed mapping

is not necessarily reflected to the singularity of the caustic; the set of critical values of

the composed mapping π ◦ f . This is the reason to use the term “supersingularity”.

We denote by π : T ∗Cn → Cn the canonical projection. We define Thom-Boardman

singularity Σ1k
i1,i2,...,I

for isotropic mappings of corank not greater than 1 by

Σ1k
I ∩ π−1

r (Σi1,i2,...) ⊂ JrI = JrI (Cn, T ∗Cn).

Here we use the letter “I” for “isotropic”, and denote by

πr : JrI (Cn, T ∗Cn)→ Jr(Cn,Cn)

the projection induced by π : T ∗Cn → Cn. Note that the closure Σ1k
i1,i2,...,I

in JrI =

JrI (Cn, T ∗Cn) is equal to

Σ1k
I ∩ π−1

r (Σi1,i2,...).

In [2], we classify simple Lagrangian projections of open Whitney umbrellas of type 1.

Moreover we know the “nice range” for isotropic mappings Cn → T ∗Cn of corank not

exceeding 1 under the Lagrangian equivalence is {n ∈ N |n ≤ 4}. This means that any

isotropic map-germ f : (Cn, 0) → T ∗Cn of corank not greater than 1 is perturbed into

an isotropic mapping with only Lagrange stable germs at any point in a sufficiently

small neighbourhood of 0, provided n ≤ 4. Note that a generic isotropic map-germ

(C4, 0)→ T ∗C4 of type Σ1,1 has unique Lagrange equivalence class (Theorem 3 of [14]).

Also note that the nice range for Lagrangian immersions is {n ∈ N |n ≤ 5} ([1], [17]).

Now we consider the supersingularities of caustics with n ≤ 4. From the classification

in [2], we have:

Theorem 4.1. Let f : (Cn, 0) → T ∗Cn be an isotropic map-germs of corank not

exceeding 1 with n = 1, 2, 3 or 4. Then f has a Lagrange stable perturbation with singu-

larities only in the following list :

(1) n = 1. A2 = Σ0
1,0,I the fold.

(2) n = 2. In addition, A3 = Σ0
1,1,0,I the cusp, and S3 = Σ1,0

1,0,I the (original) open

Whitney umbrella.

(3) n = 3. In addition, A4 = Σ0
1,1,1,0,I the swallowtail, D4 = Σ0

2,0,I the umbilic, and

S4 = Σ1,0
1,1,0,I .
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(4) n = 4. In addition, A5 = Σ0
1,1,1,0,I , D5, S5 = Σ1,0

1,1,1,0,I , T5 = Σ1,0
2,0,I and W5 =

Σ1,1,0
1,1,0,I .

Remark 4.2. Note that, in the case n = 4, as a generic isotropic mapping, the

open Whitney umbrellas of type 2 appear as well as that of type 1. Thus we must

put, in addition to the list from Theorem 1 of [2], the Lagrangian equivalence classes of

generic open Whitney umbrellas of type 2. However generic projections of open Whitney

umbrellas of type 2 has unique Lagrangian equivalence class by Theorem 3 of [14]. In this

paper we denote the unique class by W5. It was denoted in [14] by f4,2. The singularity T5,

found by Ilya Bogaevskii ([2]) is given by a stable projection of corank two at the singular

point of the open Whitney umbrella of type 1 in the smallest dimension.

Now naturally we ask:

What is the algebraic formula for the number of isolated supersingularities after a

Lagrange stable perturbation of an isotropic map-germ of corank one?

We give the formulae for the numbers of A2, A3, S3, S4, S5,W5 and T5 for isotropic

map-germs of corank one. For S5, yet we have an inequality (Proposition 4.9). We observe

naturally a possible similarity between the pair (D4, A4) and the pair (T5, S5). Thus we

conjecture that the equality for S5 in Proposition 4.9 holds.

Now we start with A2. The following fact is very easy to see:

Proposition 4.3. Let f : (C, 0) → T ∗C be a map-germ. Then the number of

A2-singular points appearing in a Lagrange stable perturbation of f is given by

#A2 = dimO1/J1 provided dimO1/J1 <∞, where J1 := 〈J(π ◦ f)〉.
Next we turn to A3. The formula of A3 for a Lagrangian immersion is given in Sec-

tion 1. Also for isotropic map-germ of corank one, we have the following:

Proposition 4.4. Let f : (C2, 0) → T ∗C2 be an isotropic map-germ. Then the

number of A3-singular points appearing in a Lagrange stable perturbation of f is given by

#A3 = dimO2/J1,1

provided dimO2/J1,1 <∞, where we set as before

J1,1 :=
〈
J(f1, f2), J(f1, J(f1, f2)), J(J(f1, f2), f2)

〉
,

setting π ◦ f = (f1, f2) : (C2, 0)→ (C2, 0).

Proof. Since a Lagrange stable perturbation of f induces a stable perturbation of π◦f ,

in this case, Proposition 4.4 follows from Theorem 1.1.

Next we proceed to count supersingularities. First we note that #S3 = #OWU1

(resp. #W5 = #OWU2) for a Lagrange stable perturbation of f : (C2, 0)→ T ∗C2 (resp.

f : (C4, 0)→ T ∗C4). Thus already we have given the formulae for S3 and W5 in Section 3.

Now we study on S4, namely, Σ1,0
1,1,0,I singularity.

Let f : (Cn, 0) → T ∗Cn be an isotropic map-germ. Consider the ideal J 1
1,1 in On

generated by n-minors of the Jacobi matrix Jac(f) and n-minors of Jac(J(π ◦ f), π ◦ f).

Lemma 4.5. The ideal J̃ 1
1,1 in OJ2

I
induced naturally from J 1

1,1 defines the Cohen-

Macaulay varieties Σ1
1,1,I of codimension 3 in J2

I . Ĵ is regular on the submanifold Σ1
1,1,I

of codimension 3 in J2
I . Moreover Σ1

1,1,I \ Σ1
1,1,I has codimension greater than 3 in J2

I .
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Proof. Since Ĵ 1
1,1 defines Σ1

1,1,I , which a hypersurface in the submanifold Σ1
I , we see

Σ1
1,1,I with the ideal Ĵ 1

1,1 is a Cohen-Macaulay variety. Note that codim(Σ1
1,1,I) = 3. For

the typical singularity S4, f : (C3, 0) → T ∗C3, we have dimCO3/J 1
1,1 = 1 by a simple

calculation. This shows that Ĵ 1
1,1 is regular on Σ1

1,1,I . Since

Σ1
1,1,I \ Σ1

1,1,I = Σ1
2,I

is of codimension 4, we have the result.

In particular we have the following formula, by Lemma 4.5, and by counting the

intersection number of j2f(C3) and Σ1
1,1,I(C

3, T ∗C3) in J2
I = J2

I (C3, T ∗C3):

Theorem 4.6. Let f : (C3, 0)→ T ∗C3 be an isotropic map-germ of corank 1. Then

the number of S4-singularities of a Lagrangian stable perturbation of f is given by

#S4 = dimCO3/J 1
1,1,

provided dimCO3/J 1
1,1 <∞.

Lastly we turn to T5 and S5. Actually we study Σ1,0
1,1,1,0,I and Σ1,0

2,0,I singularities.

Let f : (Cn, 0)→ T ∗Cn be an isotropic map-germ of corank not greater than 1. Con-

sider the ideal J 1
1,1,1 in On generated by n-minors of the Jacobi matrix Jac(f), n-minors

J
(2)
1 , . . . , J

(2)
n (and J(π◦f)) of Jac(J(π◦f), π◦f), and n-minors of Jac(J

(2)
1 , . . . , J

(2)
n , J(π◦

f), π ◦ f).

Moreover consider the ideal J 1
2 in On generated by n-minors of the Jacobi matrix

Jac(f) and (n− 1)-minors of Jac(π ◦ f).

Then we have:

Lemma 4.7.

(1) The ideal J̃ 1
2 in OJ1

I
induced naturally from J 1

2 defines the Cohen-Macaulay vari-

eties Σ1
2,I of codimension 4 in J2

I . Ĵ 1
2 is reduced on the submanifold Σ1

2,I of codimension 4

in J1
I . Moreover Σ1

2,I \ Σ1
2,I has codimension greater than 4 in J1

I .

(2) The ideal Ĵ 1
1,1,1 in OJ3

I
induced naturally from J 1

1,1,1 defines the variety

Σ1
1,1,1,I ∪ Σ1

2,I

of codimension 4 in J3
I . Ĵ 1

1,1,1 is reduced on the submanifold Σ1,0
1,1,1,I of codimension 4

in J3
I , but of multiplicity 4 on the submanifold Σ1,0

2,0I . Moreover

Σ1
1,1,1,I ∪ Σ1

2,I \
(
Σ1,0

1,1,1,I ∪ Σ1,0
2,0,I

)

has codimension greater than 5 in J3
I .

Proof. (1) Set X := Σ1
2,I ⊂ J1

I , and Y := Σ1
I ⊂ J1

I . Then X has codimension 4 in J1
I

([15]). Moreover X ⊂ Y ⊂ J1
I and Y is a regular submanifold of codimension 2 in J1

I

(Section 3). Now let z ∈ Y . Then the 2n-column vectors of the n× 2n-matrix z generate

an (n − 1)-dimensional vector space V = V (z) ⊂ Cn since z ∈ Σ1. Take a local frame

e1, . . . , en−1 near z of V . Let q1, . . . ,qn be the column vectors of Jac(π ◦ z). Set

(q1, . . . ,qn) = (e1, . . . , en−1)A(z).
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Then A(z) is a matrix of size (n− 1)×n with entries in OY . Then z ∈ π−1Σ2 if and only

if rankA(z) ≤ n−2. We see in OY , Ĵ 1
2 agrees with the ideal generated by (n−1)-minors

of A(z). Moreover X is of codimension 2 in Y . Thus X is a determinantal variety in Y .

Therefore X is Cohen-Macaulay. For T5 singularity, by a simple calculation, we have

dimCO4/J 1
2 = 1.

(2) First note that the zero locus Z = Z(Ĵ 1
1,1,1) is included in Σ1

I . Since Ĵ 1
1,1 defines

a hypersurface in Σ1
I , we see there exists an element J (2) ∈ OJ3

I
such that Ĵ 1

1,1 = Ĵ 1 +

〈J (2)〉O
J3
I

. Let z ∈ Σ1
I . Then n-column vectors of Jac(f) generate an (n− 1)-dimensional

space V = V (z). We take a local frame e1, . . . , en−1 of V (z) over Σ1
I ⊂ J3

I . We add en to

get a local frame e1, . . . , en−1, en of Cn. We set

Jac(π ◦ f, J(π ◦ f), J (2)) = (e1, . . . , en−1, en)C(z),

for an n×(n+2)-times matrix C(z). Then Ĵ 1
1,1,1 is generated by n-minors of C(z) over Σ1

I .

Thus we see

Z(Ĵ 1
1,1,1) = Σ1

1,1,1,I ∪ Σ1
2,I .

and it is of codimension 2 in Σ1
I .

By a simple calculation, when n = 4, we have dimCO4/J 1
1,1,1 = 1, for a S5 singularity,

and dimCO4/J 1
1,1,1 = 4, for a T5 singularity. Here we present the calculation for T5. For an

isotropic map-germ f : (Cn, 0)→ T ∗Cn (n ≥ 4) of type T5, up to Lagrange equivalence,

we have

π ◦ f(t, x2, x3, . . . , xx−1) =
(1

2
t2 − x2x3,−

1

3
t3 − 3x2

2 − x2x3t− 2x2x4, x3, . . . , xn−1

)
,

and moreover, up to a symplectomorphism of (T ∗Cn, f(0)), we have

f(t, x2, x3, . . . , xx−1) =
(
x2t,

1

3
t3, 0, . . . , 0,

1

2
t2, x2, x3, . . . , xn−1

)
.

Note that a diffeomorphism of (T ∗Cn, f(0)) preserves the ideal J 1 generated by n-minor

of Jac(f). Then we have

J 1
1,1,1 =

〈
t, x2, x3x4, x

2
4, x

3
3

〉
On ,

which defines 4-fold T5-locus {t = 0, x2 = 0, x3 = 0, x4 = 0}. Thus we have the required

results.

By Lemma 4.7, counting the intersection number of j3f(C4) with the zero locus

Z(Ĵ 1
2 ) and Z(Ĵ 1

1,1,1) in J3
I (C4, T ∗C4), we have:

Theorem 4.8. Let f : (C4, 0) → T ∗C4 be an isotropic map-germ of corank not

greater than 1. Then the number #T5 of T5-singularities of a Lagrangian stable pertur-

bation of f is given by the following formula:

#T5 = dimCO4/J 1
2 ,

provided dimCO4/J 1
2 <∞.

Proposition 4.9. Let f : (C4, 0) → T ∗C4 be an isotropic map-germ of corank not

exceeding 1. Then the number #S5 of S5-singularities is estimated by

#S5 ≤ dimCO4/J 1
1,1,1 − 4 dimCO4/J 1

2 ,

provided dimCO4/J 1
2 <∞ and dimCO4/J 1

1,1,1 <∞.
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5. Open questions. We collect here several practical questions related to the results

in this paper.

(Q1) Recall that the formulae for the numbers of A4 and of D4 for Lagrangian im-

mersions are given in Section 2. Thus we ask: Do the same formulae hold on the numbers

of A4 and D4, not only for a Lagrange immersion, but also for an isotropic map-germ of

corank one (C3, 0)→ T ∗C3?

(Q2) We have observed a similarity between the pair (D4, A4) and the pair (T5, S5)

in Section 4. Does the similarity have any reason?

(Q3) What are the formulae for the number of A5 and D5 of a Lagrangian immersion

and of an isotropic map-germ of corank one? See Remark 2.6.

(Q4) We can formulate the following conjecture:

Let f : (Cn, 0) → TCn be an isotropic map-germ of corank at most one. Then the

number #Σ1k
i1,i2,...,I

of isolated singularities, with an isotropic Thom-Boardman symbol

Σ1k
i1,i2,...,I

, appearing in a Lagrange stable perturbation of f is equal to the dimension of

the quotient On/J 1k
i1,i2,...

by the Morin ideal J 1k
i1,i2,...

for the corresponding (non-isotropic)

Thom-Boardman singularity Σ1k
i1,i2,...

of composed mappings.

Is the conjecture true in general? We have shown in this paper, it is true for the cases

A2, A3, S3, S4, T5 and for W5, in the nice range n ≤ 4, except for the cases A4, D4, A5

and S5. Remark that D5-singularity is not described as a Thom-Boardman singularity

(Remark 2.6). See Sections 2, 3 and 4 for the details.
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